1
|
Zhang T, Jia L, Niu Z, Li X, Men S, Jiang L, Ma M, Wang H, Tang X, Chen Q. Comparative transcriptomic analysis delineates adaptation strategies of Rana kukunoris toward cold stress on the Qinghai-Tibet Plateau. BMC Genomics 2024; 25:363. [PMID: 38609871 PMCID: PMC11015565 DOI: 10.1186/s12864-024-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to understand how the frogs survive in winter. RESULTS Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants (glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the physiological traits of hibernation were nevertheless passed down to active state in spring. CONCLUSIONS Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengkang Men
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Jiang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
2
|
Thoral E, Dargère L, Medina-Suárez I, Clair A, Averty L, Sigaud J, Morales A, Salin K, Teulier L. Non-lethal sampling for assessment of mitochondrial function does not affect metabolic rate and swimming performance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220483. [PMID: 38186271 PMCID: PMC10772603 DOI: 10.1098/rstb.2022.0483] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/26/2023] [Indexed: 01/09/2024] Open
Abstract
A fundamental issue in the metabolic field is whether it is possible to understand underlying mechanisms that characterize individual variation. Whole-animal performance relies on mitochondrial function as it produces energy for cellular processes. However, our lack of longitudinal measures to evaluate how mitochondrial function can change within and among individuals and with environmental context makes it difficult to assess individual variation in mitochondrial traits. The aims of this study were to test the repeatability of muscle mitochondrial metabolism by performing two biopsies of red muscle, and to evaluate the effects of biopsies on whole-animal performance in goldfish Carassius auratus. Our results show that basal mitochondrial respiration and net phosphorylation efficiency are repeatable at 14-day intervals. We also show that swimming performance (optimal cost of transport and critical swimming speed) was repeatable in biopsied fish, whereas the repeatability of individual oxygen consumption (standard and maximal metabolic rates) seemed unstable over time. However, we noted that the means of individual and mitochondrial traits did not change over time in biopsied fish. This study shows that muscle biopsies allow the measurement of mitochondrial metabolism without sacrificing animals and that two muscle biopsies 14 days apart affect the intraspecific variation in fish performance without affecting average performance of individuals. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Lauréliane Dargère
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Ione Medina-Suárez
- Instituto de Oceanografía y Cambio Global, IOCAG, Universidad de Las Palmas de Gran Canaria, Unidad Asociada ULPGC-CSIC, Campus de Taliarte, 35214 Telde, Gran Canaria, Canary Islands, Spain
| | - Angéline Clair
- Plateforme Animalerie Conventionnelle et Sauvage Expérimentale de la Doua (ACSED), Fédération de Recherche 3728, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS-Lyon, INRAE, INSA, VetAgroSup 69622, Villeurbanne, France
| | - Laetitia Averty
- Plateforme Animalerie Conventionnelle et Sauvage Expérimentale de la Doua (ACSED), Fédération de Recherche 3728, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS-Lyon, INRAE, INSA, VetAgroSup 69622, Villeurbanne, France
| | - Justine Sigaud
- Plateforme Animalerie Conventionnelle et Sauvage Expérimentale de la Doua (ACSED), Fédération de Recherche 3728, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS-Lyon, INRAE, INSA, VetAgroSup 69622, Villeurbanne, France
| | - Anne Morales
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Karine Salin
- Ifremer, CNRS, RD, Laboratory of Environmental Marine Sciences, Université de Brest, 29280 Plouzané, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| |
Collapse
|
3
|
Salgado-García RL, Kraffe E, Tripp-Valdez MA, Ramírez-Arce JL, Artigaud S, Flye-Sainte-Marie J, Mathieu-Resuge M, Sicard MT, Arellano-Martínez M, Racotta IS. Energy metabolism of juvenile scallops Nodipecten subnodosus under acute increased temperature and low oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111373. [PMID: 36690296 DOI: 10.1016/j.cbpa.2023.111373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
High temperature increases energy demand in ectotherms, limiting their physiological capability to cope with hypoxic events. The present study aimed to assess the metabolic tolerance of juvenile Nodipecten subnodosus scallops to acute hyperthermia combined with moderate hypoxia. A previous study showed that juveniles exhibited a high upper temperature limit (32 °C), but the responses of juveniles to combined hyperthermia and low dissolved oxygen are unknown. Scallops were exposed to control conditions (treatment C: 22 °C, ∼7.1 mg O2 L-1 or PO2 156.9 mmHg), acute hyperthermia under normoxia (treatment T: 30 °C, ∼6.0 mg O2 L-1 or PO2 150.9 mmHg) or acute hyperthermia plus hypoxia (treatment TH: 30 °C, ∼2.5 mg O2 L-1 or PO2 62.5 mmHg) for 18 h. In T, juveniles exhibited an enhanced oxygen consumption, together with a decrease in adenylate energy charge (AEC) and arginine phosphate (ArgP), and with no changes in metabolic enzyme activity in the muscle. In TH, scallops maintained similar AEC and ArgP levels in muscle as those observed in T treatment. This response occurred along with the accumulation of inosine monophosphate and hypoxanthine. Besides, reduced citrate synthase and pyruvate kinase activities, enhanced hexokinase activity, and a higher octopine dehydrogenase/lactate dehydrogenase ratio in the mantle indicated the onset of anaerobiosis in TH. These responses indicate that juvenile scallops showed tissue-specific compensatory responses regarding their energy balance under moderate hypoxia at high temperatures. Our results give an insight into the tolerance limit of this species to combined hyperthermia and hypoxia in its northern limit of distribution.
Collapse
Affiliation(s)
- Rosa L Salgado-García
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional (IPN), La Paz, B.C.S, Mexico; Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Edouard Kraffe
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| | - Miguel A Tripp-Valdez
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Jose L Ramírez-Arce
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Sebastien Artigaud
- University of Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzane, France.
| | | | | | - M Teresa Sicard
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| | - Marcial Arellano-Martínez
- Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Instituto Politécnico Nacional (IPN), La Paz, B.C.S, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR), La Paz, B.C.S, Mexico.
| |
Collapse
|
4
|
Zhu W, Zhao C, Zhao T, Chang L, Chen Q, Liu J, Li C, Xie F, Jiang J. Rising floor and dropping ceiling: organ heterogeneity in response to cold acclimation of the largest extant amphibian. Proc Biol Sci 2022; 289:20221394. [PMID: 36196548 PMCID: PMC9532983 DOI: 10.1098/rspb.2022.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Low temperature imposes strong selective pressure on ectotherms. To maximize their overall fitness under cold conditions, the ectotherms may either try to maintain their physiological activities through metabolic compensation or enter into metabolic depression; however, some species adopt both strategies to cope with different degrees of cold. Nevertheless, how these two seemingly opposite strategies are coordinated has rarely been elucidated. Here, we investigated the molecular strategy underlying the cold acclimation of Andrias davidianus, the largest extant amphibian, using multi-organ metabolomics and transcriptomics. The results showed remarkable organ heterogeneity in response to cold. While most organs showed transcriptional upregulation of metabolic processes, the heart exhibited downregulation. This heterogeneity explained the adaptive reorganization in resource allocation, which compensates for metabolic maintenance by compromising growth. Importantly, the cardiac function might constitute a 'ceiling' to constrain the space for compensation, especially under colder conditions. Additionally, the opposite transcriptional regulation of oxidative phosphorylation and other pathways might also shape the overall metabolic capacity under cold conditions. The heterogeneity in cold responses may have directed a shift in cold adaptive strategy from compensation to depression with a drop in temperature. These results provide a novel insight into the regulatory mechanisms underlying cold survival strategies of ectotherms.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
5
|
Gerber L, MacSween CE, Staples JF, Gamperl AK. Cold-induced metabolic depression in cunner (Tautogolabrus adspersus): A multifaceted cellular event. PLoS One 2022; 17:e0271086. [PMID: 35917356 PMCID: PMC9345476 DOI: 10.1371/journal.pone.0271086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolic depression and dormancy (i.e., stopping/greatly reducing activity and feeding) are strategies used by many animals to survive winter conditions characterized by food shortages and cold temperatures. However, controversy exists on whether the reduced metabolism of some fishes at cold temperatures is due to dormancy alone, or also involves active metabolic depression. Thus, we acclimated winter-dormant cunner [Tautogolabrus adspersus, a north temperate wrasse which in Newfoundland is at the northern limit of its distribution] and winter-active Atlantic salmon (Salmo salar) to winter (0°C; 8h light: 16h dark) and summer (10°C; 16h light: 8 h dark) conditions, and measured the thermal sensitivity of ATP-producing and O2-consuming processes in isolated liver mitochondria and hepatocytes when exposed in vitro to temperatures from 20 to 0°C and 10 to 0°C, respectively. We found that: 1) liver mitochondrial State 3 respiration and hepatocyte O2 consumption in cunner were only ~ one-third and two-thirds of that measured in salmon, respectively, at all measurement temperatures; 2) cunner mitochondria also have proton conductance and leak respiration (State 4) values that are only approximately one-third of those in salmon; 3) the mitochondria of cunner show a dramatic reduction in respiratory control ratio (from ~ 8 to 3), and a much greater drop in State 3 respiration, between 10 and 5°C (Q10 values in 10- and 0°C-acclimated fish of 14.5 and 141.2, respectively), as compared with salmon (3.9 and 9.6, respectively); and 4) lowering temperature from 5 to 0°C resulted in ~ 40 and 30% reductions in hepatocyte O2 consumption due to non-mitochondrial respiration and Na+-K+-ATPase activity, respectively, in cunner, but not in salmon. Collectively, these results highlight the intrinsic capacity for metabolic depression in hepatocytes and mitochondria of cunner, and clearly suggest that several cellular processes play a role in the reduced metabolic rates exhibited by some fishes at cold temperatures.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - Courtney E. MacSween
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - James F. Staples
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
6
|
Huynh KW, Pamenter ME. Lactate inhibits naked mole-rat cardiac mitochondrial respiration. J Comp Physiol B 2022; 192:501-511. [PMID: 35181821 DOI: 10.1007/s00360-022-01430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 12/25/2022]
Abstract
In aerobic conditions, the proton-motive force drives oxidative phosphorylation (OXPHOS) and the conversion of ADP to ATP. In hypoxic environments, OXPHOS is impaired, resulting in energy shortfalls and the accumulation of protons and lactate. This results in cellular acidification, which may impact the activity and/or integrity of mitochondrial enzymes and in turn negatively impact mitochondrial respiration and thus aerobic ATP production. Naked mole-rats (NMRs) are among the most hypoxia-tolerant mammals and putatively experience intermittent hypoxia in their underground burrows. However, if and how NMR cardiac mitochondria are impacted by lactate accumulation in hypoxia is unknown. We predicted that lactate alters mitochondrial respiration in NMR cardiac muscle. To test this, we used high-resolution respirometry to measure mitochondrial respiration in permeabilized cardiac muscle fibres from NMRs exposed to 4 h of in vivo normoxia (21% O2) or hypoxia (7% O2). We found that: (1) cardiac mitochondria cannot directly oxidize lactate, but surprisingly, (2) lactate inhibits mitochondrial respiration, and (3) decreases complex IV maximum respiratory capacity. Finally, (4) in vivo hypoxic exposure decreases the magnitude of lactate-mediated inhibition of mitochondrial respiration. Taken together, our results suggest that lactate may retard electron transport system function in NMR cardiac mitochondria, particularly in normoxia, and that NMR hearts may be primed for anaerobic metabolism.
Collapse
Affiliation(s)
- Kenny W Huynh
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt., Ottawa, ON, K1N 6N5, Canada. .,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Lamptey DI, Sparks RW, De Oca RM, Skolik R, Menze MA, Martinez E. Seasonal changes in mitochondrial bioenergetics and physiological performance of the bluegill sunfish, Lepomis macrochirus, from a shallow, Midwest river. J Therm Biol 2022; 104:103186. [DOI: 10.1016/j.jtherbio.2021.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022]
|
8
|
Adzigbli L, Sokolov EP, Ponsuksili S, Sokolova IM. Tissue- and substrate-dependent mitochondrial responses to acute hypoxia-reoxygenation stress in a marine bivalve Crassostrea gigas (Thunberg, 1793). J Exp Biol 2021; 225:273950. [PMID: 34904172 DOI: 10.1242/jeb.243304] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
Hypoxia is a major stressor for aquatic organisms, yet intertidal organisms like the oyster Crassostrea gigas are adapted to frequent oxygen fluctuations by metabolically adjusting to shifts in oxygen and substrate availability during hypoxia-reoxygenation (H/R). We investigated the effects of acute H/R stress (15 min at ∼0% O2, and 10 min reoxygenation) on isolated mitochondria from the gill and the digestive gland of C. gigas respiring on different substrates (pyruvate, glutamate, succinate, palmitate and their mixtures). Gill mitochondria showed better capacity for amino acid and fatty acid oxidation compared to the mitochondria from the digestive gland. Mitochondrial responses to H/R stress strongly depended on the substrate and the activity state of mitochondria. In mitochondria oxidizing NADH-linked substrates exposure to H/R stress suppressed oxygen consumption and ROS generation in the resting state, whereas in the ADP-stimulated state, ROS production increased despite little change in respiration. As a result, electron leak (measured as H2O2 to O2 ratio) increased after H/R stress in the ADP-stimulated mitochondria with NADH-linked substrates. In contrast, H/R exposure stimulated succinate-driven respiration without an increase in electron leak. Reverse electron transport (RET) did not significantly contribute to succinate-driven ROS production in oyster mitochondria except for a slight increase in the OXPHOS state during post-hypoxic recovery. A decrease in NADH-driven respiration and ROS production, enhanced capacity for succinate oxidation and resistance to RET might assist in post-hypoxic recovery of oysters mitigating oxidative stress and supporting rapid ATP re-synthesis during oxygen fluctuations such as commonly observed in estuaries and intertidal zones.
Collapse
Affiliation(s)
- Linda Adzigbli
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany.,Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Sea Research, Leibniz Science Campus Phosphorus Research, Warnemünde, Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Steffen JBM, Haider F, Sokolov EP, Bock C, Sokolova IM. Mitochondrial capacity and reactive oxygen species production during hypoxia and reoxygenation in the ocean quahog, Arctica islandica. J Exp Biol 2021; 224:272605. [PMID: 34697625 DOI: 10.1242/jeb.243082] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Oxygen fluctuations are common in marine waters, and hypoxia-reoxygenation (H-R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are not well understood. We used top-down metabolic control analysis (MCA) to determine aerobic capacity and control over oxygen flux in the mitochondria of quahogs exposed to short-term hypoxia (24 h <0.01% O2) and subsequent reoxygenation (1.5 h 21% O2) compared with normoxic control animals (21% O2). We demonstrated that flux capacity of the substrate oxidation and proton leak subsystems were not affected by hypoxia, while the capacity of the phosphorylation subsystem was enhanced during hypoxia associated with a depolarization of the mitochondrial membrane. Reoxygenation decreased the oxygen flux capacity of all three mitochondrial subsystems. Control over oxidative phosphorylation (OXPHOS) respiration was mostly exerted by substrate oxidation regardless of H-R stress, whereas control by the proton leak subsystem of LEAK respiration increased during hypoxia and returned to normoxic levels during reoxygenation. During hypoxia, reactive oxygen species (ROS) efflux was elevated in the LEAK state, whereas it was suppressed in the OXPHOS state. Mitochondrial ROS efflux returned to normoxic control levels during reoxygenation. Thus, mitochondria of A. islandica appear robust to hypoxia by maintaining stable substrate oxidation and upregulating phosphorylation capacity, but remain sensitive to reoxygenation. This mitochondrial phenotype might reflect adaptation of A. islandica to environments with unpredictable oxygen fluctuations and its behavioural preference for low oxygen levels.
Collapse
Affiliation(s)
- Jennifer B M Steffen
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, 18119 Rostock, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
10
|
Shu Y, He J, Zhang H, Liu G, Li S, Deng S, Wu H. Dynamic transcriptome and histomorphology analysis of developmental traits of hindlimb thigh muscle from Odorrana tormota and its adaptability to different life history stages. BMC Genomics 2021; 22:369. [PMID: 34016051 PMCID: PMC8138932 DOI: 10.1186/s12864-021-07677-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background Systematic studies on the development and adaptation of hindlimb muscles in anura amphibians are rare. Here, we integrated analysis of transcriptome and histomorphological data for the hindlimb thigh muscle of Odorrana tormota (concave-eared torrent frog) at different developmental stages, to uncover the developmental traits of hindlimb thigh muscle from O. tormota and its adaptability to different life history stages. Results The development of hindlimb thigh muscle from O. tormota has the following characteristics. Before metamorphosis, myogenous cells proliferate and differentiate into myotubes, and form 11 muscle groups at G41; Primary myofibers and secondary myofibers appeared during metamorphosis; 11 muscle groups differentiated continuously to form myofibers, accompanied by myofibers hypertrophy after metamorphosis; During the growth process of O. tormota from G42 to G46, there were differences between the sexes in the muscle groups that differentiate into muscle fibers, indicating that there was sexual dimorphism in the hindlimb thigh muscles of O. tormota at the metamorphosis stages. Some genes and pathways related to growth, development, and movement ability of O. tormota at different developmental stages were obtained. In addition, some pathways associated with adaptation to metamorphosis and hibernation also were enriched. Furthermore, integrated analysis of the number of myofibers and transcriptome data suggested that myofibers of specific muscle groups in the hindlimbs may be degraded through lysosome and ubiquitin pathways to transform into energy metabolism and other energy-related substances to meet the physiological needs of hibernation. Conclusions These results provide further understanding the hindlimb thigh muscle development pattern of frogs and their adaption to life history stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07677-0.
Collapse
Affiliation(s)
- Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Guangxuan Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shikun Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Shuaitao Deng
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China.,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu, China. .,Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu, China.
| |
Collapse
|
11
|
Thoral E, Queiros Q, Roussel D, Dutto G, Gasset E, McKenzie DJ, Romestaing C, Fromentin JM, Saraux C, Teulier L. Changes in foraging mode caused by a decline in prey size have major bioenergetic consequences for a small pelagic fish. J Anim Ecol 2021; 90:2289-2301. [PMID: 34013518 DOI: 10.1111/1365-2656.13535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Global warming is causing profound modifications of aquatic ecosystems and one major outcome appears to be a decline in adult size of many fish species. Over the last decade, sardine populations in the Gulf of Lions (NW Mediterranean Sea) have shown severe declines in body size and condition as well as disappearance of the oldest individuals, which could not be related to overfishing, predation pressure or epizootic diseases. In this study, we investigated whether this situation reflects a bottom-up phenomenon caused by reduced size and availability of prey that could lead to energetic constraints. We fed captive sardines with food items of two different sizes eliciting a change in feeding mode (filter-feeding on small items and directly capturing larger ones) at two different rations for several months, and then assessed their muscle bioenergetics to test for changes in cellular function. Feeding on smaller items was associated with a decline in body condition, even at high ration, and almost completely inhibited growth by comparison to sardines fed large items at high ration. Sardines fed on small items presented specific mitochondrial adjustments for energy sparing, indicating a major bioenergetic challenge. Moreover, mitochondria from sardines in poor condition had low basal oxidative activity but high efficiency of ATP production. Notably, when body condition was below a threshold value of 1.07, close to the mean observed in the wild, it was directly correlated with basal mitochondrial activity in muscle. The results show a link between whole-animal condition and cellular bioenergetics in the sardine, and reveal physiological consequences of a shift in feeding mode. They demonstrate that filter-feeding on small prey leads to poor growth, even under abundant food and an increase in the efficiency of ATP production. These findings may partially explain the declines in sardine size and condition observed in the wild.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Gilbert Dutto
- Ifremer (Institut Français de Recherche pour l'Exploitation de la MER), Laboratoire SEA, Palavas-Les-Flots, France
| | - Eric Gasset
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Palavas-Les-Flots, France
| | - David J McKenzie
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Caroline Romestaing
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Claire Saraux
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France.,IPHC, UMR7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
12
|
Capraro A, O'Meally D, Waters SA, Patel HR, Georges A, Waters PD. Waking the sleeping dragon: gene expression profiling reveals adaptive strategies of the hibernating reptile Pogona vitticeps. BMC Genomics 2019; 20:460. [PMID: 31170930 PMCID: PMC6555745 DOI: 10.1186/s12864-019-5750-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. Results We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. Conclusions These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression. Electronic supplementary material The online version of this article (10.1186/s12864-019-5750-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Capraro
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present address: Center for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Shafagh A Waters
- School of Women's & Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hardip R Patel
- John Curtin School of Medical Research, Australian National University, Canberra, 2601, ACT, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Cadiz L, Bundgaard A, Malte H, Fago A. Hypoxia enhances blood O 2 affinity and depresses skeletal muscle O 2 consumption in zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:18-25. [PMID: 31075501 DOI: 10.1016/j.cbpb.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022]
Abstract
Zebrafish (Danio rerio) are widely used animal models. Nevertheless, the mechanisms underlying hypoxia tolerance in this species have remained poorly understood. In the present study, we have determined the effects of hypoxia on blood-O2 transport properties and mitochondrial respiration rate in permeabilized muscle fibres of adult zebrafish exposed to either 1) a gradual decrease in O2 levels until fish lost equilibrium (~1 h, acute hypoxia), or 2) severe hypoxia (PO2 ∼ 15 Torr) for 48 h (prolonged hypoxia). Acute, short-term hypoxia caused an increase in hemoglobin (Hb) O2 affinity (decrease in P50), due to a decrease in erythrocyte ATP after erythrocyte swelling. No changes in isoHb expression patterns were observed between hypoxic and normoxic treatments. Prolonged hypoxia elicited additional reponses on O2 consumption: lactate accumulated in the blood, indicating that zebrafish relied on glycolysis for ATP production, and mitochondrial respiration of skeletal muscle was overall significantly inhibited. In addition, male zebrafish had higher hypoxia tolerance (measured as time to loss of equilibrium) than females. The present study contributes to our understanding of the adaptive mechanisms that allow zebrafish, and by inference other fish species, to cope with low O2 levels.
Collapse
Affiliation(s)
- Laura Cadiz
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Amanda Bundgaard
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Hans Malte
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Angela Fago
- Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
14
|
Effect of hypothermia on the functional activity of liver mitochondria of grass snake (Natrix natrix): inhibition of succinate-fueled respiration and K + transport, ROS-induced activation of mitochondrial permeability transition. J Bioenerg Biomembr 2019; 51:219-229. [PMID: 30982206 DOI: 10.1007/s10863-019-09796-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022]
Abstract
The article considers the comparative analysis of the functional activity of mitochondria isolated from the liver of grass snakes, Natrix natrix (Linnaeus, 1758) that were kept at different temperatures (23-26 °C and 4-5 °C). It was found that liver mitochondria of hypothermia-exposed grass snakes are characterized by weak coupling of oxidative phosphorylation as compared to mitochondria of active animals which is caused by inhibition of succinate-fuelled respiration in ADP-stimulated state, as well as by activation of basal non-phosphorylating rate. Inhibition of mitochondrial respiration in hibernating animals is associated with a decrease in the activity of the respiratory chain complexes of organelles. A significant decrease in the rate of K+ transport in the liver mitochondria of hibernating animals has been established. Under these conditions, a decrease in the calcium capacity of the organelles was also revealed, which indicates a decrease in the resistance of the mitochondria of hibernating animals to the induction of the Ca2+-dependent mitochondrial pore. All these changes in the functional activity of mitochondria are observed on the background of increasing H2O2 production as well as increasing the proportion of polyunsaturated fatty acids in phospholipid composition of mitochondrial membranes, which are the targets of reactive oxygen species. It can lead to increased formation of lipid peroxides and activation of destructive processes associated with the induction of Ca2+-dependent mitochondrial pore.
Collapse
|
15
|
Gomez CR, Richards JG. Mitochondrial responses to anoxia exposure in red eared sliders (Trachemys scripta). Comp Biochem Physiol B Biochem Mol Biol 2018; 224:71-78. [PMID: 29402754 DOI: 10.1016/j.cbpb.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 11/29/2022]
Abstract
When deprived oxygen, mitochondria from most vertebrates transform from the main site of ATP production to the dominant site of cellular ATP use due to the reverse functioning of the F1FO-ATPase (complex V). The anoxia-tolerant freshwater turtle Trachemys scripta however, has previously been shown to inhibit complex V activity in heart and brain in response to anoxia exposure, but the regulatory mechanism is unknown. To gain insight into the putative regulatory mechanisms underlying the anoxia-induced inhibition of complex V in T. scripta, we examined the effects of two weeks anoxia exposure at 4 °C on the mitochondrial proteome and candidate mechanisms that have been shown to regulate complex V in other organisms. In T. scripta, we confirmed that anoxia exposure resulted in a >80% inhibition of complex V in heart, brain and liver. Incubation of mitochondria with the nitric oxide donor, s-nitrosoglutathione, did not affect complex V activity despite showing the expected inhibition in mice. Proteomics analysis showed anoxia-induced decreases in three peripheral stalk subunits of complex V, possibly pointing to a unique site of regulation. Proteomics analysis also revealed differential expression of numerous enzymes involved with the electron transport system, the tricarboxylic acid cycle, as well as lipid and amino acid metabolism in response to anoxia exposure.
Collapse
Affiliation(s)
- Crisostomo R Gomez
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver V6T 1Z4, British Columbia, Canada.
| |
Collapse
|
16
|
Ivanina AV, Nesmelova I, Leamy L, Sokolov EP, Sokolova IM. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. ACTA ACUST UNITED AC 2017; 219:1659-74. [PMID: 27252455 DOI: 10.1242/jeb.134700] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating that the H/R exposure did not lead to severe energy deficiency. Taken together, our findings suggest that mitochondrial reorganizations sustaining high oxidative phosphorylation flux during recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Irina Nesmelova
- Department of Physics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Larry Leamy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Eugene P Sokolov
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
17
|
Desprat JL, Teulier L, Puijalon S, Dumet A, Romestaing C, Tattersall GJ, Lengagne T, Mondy N. Doping for sex: Bad for mitochondrial performances? Case of testosterone supplemented Hyla arborea during the courtship period. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:74-83. [PMID: 28478209 DOI: 10.1016/j.cbpa.2017.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 11/25/2022]
Abstract
Sexual selection has been widely explored from numerous perspectives, including behavior, ecology, and to a lesser extent, energetics. Hormones, and specifically androgens such as testosterone, are known to trigger sexual behaviors. Their effects are therefore of interest during the breeding period. Our work investigates the effect of testosterone on the relationship between cellular bioenergetics and contractile properties of two skeletal muscles involved in sexual selection in tree frogs. Calling and locomotor abilities are considered evidence of good condition in Hyla males, and thus server as proxies for male quality and attractiveness. Therefore, how these behaviors are powered efficiently remains of both physiological and behavioral interest. Most previous research, however, has focused primarily on biomechanics, contractile properties or mitochondrial enzyme activities. Some have tried to establish a relationship between those parameters but to our knowledge, there is no study examining muscle fiber bioenergetics in Hyla arborea. Using chronic testosterone supplementation and through an integrative study combining fiber bioenergetics and contractile properties, we compared sexually dimorphic trunk muscles directly linked to chronic sound production to a hindlimb muscle (i.e. gastrocnemius) that is particularly adapted for explosive movement. As expected, trunk muscle bioenergetics were more affected by testosterone than gastrocnemius muscle. Our study also underlines contrasted energetic capacities between muscles, in line with contractile properties of these two different muscle phenotypes. The discrepancy of both substrate utilization and contractile properties is consistent with the specific role of each muscle and our results are elucidating another integrative example of a muscle force-endurance trade-off.
Collapse
Affiliation(s)
- Julia L Desprat
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Loïc Teulier
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France.
| | - Sara Puijalon
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Adeline Dumet
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Caroline Romestaing
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Thierry Lengagne
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Nathalie Mondy
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| |
Collapse
|
18
|
Geisler CE, Kentch KP, Renquist BJ. Non-Mammalian Vertebrates: Distinct Models to Assess the Role of Ion Gradients in Energy Expenditure. Front Endocrinol (Lausanne) 2017; 8:224. [PMID: 28919880 PMCID: PMC5585156 DOI: 10.3389/fendo.2017.00224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/18/2017] [Indexed: 12/21/2022] Open
Abstract
Animals store metabolic energy as electrochemical gradients. At least 50% of mammalian energy is expended to maintain electrochemical gradients across the inner mitochondrial membrane (H+), the sarcoplasmic reticulum (Ca++), and the plasma membrane (Na+/K+). The potential energy of these gradients can be used to perform work (e.g., transport molecules, stimulate contraction, and release hormones) or can be released as heat. Because ectothermic species adapt their body temperature to the environment, they are not constrained by energetic demands that are required to maintain a constant body temperature. In fact, ectothermic species expend seven to eight times less energy than similarly sized homeotherms. Accordingly, ectotherms adopt low metabolic rates to survive cold, hypoxia, and extreme bouts of fasting that would result in energy wasting, lactic acidosis and apoptosis, or starvation in homeotherms, respectively. Ectotherms have also evolved unique applications of ion gradients to allow for localized endothermy. Endothermic avian species, which lack brown adipose tissue, have been integral in assessing the role of H+ and Ca++ cycling in skeletal muscle thermogenesis. Accordingly, the diversity of non-mammalian vertebrate species allows them to serve as unique models to better understand the role of ion gradients in heat production, metabolic flux, and adaptation to stressors, including obesity, starvation, cold, and hypoxia.
Collapse
Affiliation(s)
- Caroline E. Geisler
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
| | - Kyle P. Kentch
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
| | - Benjamin J. Renquist
- School of Animal and Comparative Biomedical Science, University of Arizona, Tucson, AZ, United States
- *Correspondence: Benjamin J. Renquist,
| |
Collapse
|
19
|
Belyaeva EA, Emelyanova LV, Korotkov SM, Brailovskaya IV, Savina MV. On the mechanism(s) of membrane permeability transition in liver mitochondria of lamprey, Lampetra fluviatilis L.: insights from cadmium. BIOMED RESEARCH INTERNATIONAL 2014; 2014:691724. [PMID: 24995321 PMCID: PMC4065708 DOI: 10.1155/2014/691724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 02/05/2023]
Abstract
Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L.) during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring). To further elucidate the mechanism(s) of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd(2+) and Ca(2+) plus Pi as the pore inducers. We found that Ca(2+) plus Pi induced the high-amplitude swelling of the isolated "winter" mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd(2+) did not produce the mitochondrial swelling in these media. Low Cd(2+) enhanced the inhibition of basal respiration rate of the "winter" mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd(2+) or Ca(2+) plus Pi in the "winter" mitochondria were only weakly (if so) sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore) added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent). Under monitoring of the transmembrane potential of the "spring" lamprey liver mitochondria, we revealed that Cd(2+) produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.
Collapse
Affiliation(s)
- Elena A. Belyaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, Saint Petersburg 194223, Russia
| | - Larisa V. Emelyanova
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, Saint Petersburg 194223, Russia
| | - Sergey M. Korotkov
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, Saint Petersburg 194223, Russia
| | - Irina V. Brailovskaya
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, Saint Petersburg 194223, Russia
| | - Margarita V. Savina
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, Saint Petersburg 194223, Russia
| |
Collapse
|
20
|
Zolfaghari PS, Pinto BB, Dyson A, Singer M. The metabolic phenotype of rodent sepsis: cause for concern? Intensive Care Med Exp 2013; 1:25. [PMID: 26266794 PMCID: PMC4797805 DOI: 10.1186/2197-425x-1-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Rodent models of sepsis are frequently used to investigate pathophysiological mechanisms and to evaluate putative therapeutic strategies. However, preclinical efficacy in these models has failed to translate to the clinical setting. We thus questioned the representativeness of such models and herein report a detailed comparison of the metabolic and cardiovascular phenotypes of long-term faecal peritonitis in fluid-resuscitated rats and mice with similar mortality profiles. METHODS We conducted prospective laboratory-controlled studies in adult male Wistar rats and C57 black mice. Animals were made septic by intraperitoneal injection of faecal slurry. Rats received continuous intravenous fluid resuscitation, whereas mice received intermittent fluid boluses subcutaneously. Sham-treated animals served as controls. Survival was assessed over 72 h. In separate studies, whole body metabolism (O2 consumption, CO2 production) was measured over 24 h with echocardiography performed at early (6 h) and established (24 h) phases of sepsis. Blood gas analysis was performed at 6 h (rats) and 24 h (rats, mice). RESULTS Similar survival curves were seen in both rodent models with approximately 75% mortality at 72 h. In mice, sepsis caused severity-dependent falls in core temperature and global metabolism. Oxygen consumption in severely septic mice fell by 38% within 2 h, and 80% at 22 h compared with baseline values. This was only partially restored by external warming. By contrast, septic rats maintained core temperature; only severely affected animals showed a pre-mortem decline in oxygen consumption. Significant myocardial dysfunction was seen in mice during early and established sepsis, whereas peak velocity and other hemodynamic variables in rats were similar at 6 h and significantly worse by 24 h in severely septic animals only. CONCLUSIONS Markedly differing metabolic and cardiovascular profiles were seen in long-term fluid-resuscitated rat and mouse models of bacterial sepsis despite similar mortality. The mouse model, in particular, does not represent the human condition. We urge caution in applying findings in murine models to septic patients, both with regard to our understanding of pathophysiology and the failure to translate preclinical efficacy into successful clinical trials.
Collapse
Affiliation(s)
- Parjam S Zolfaghari
- Bloomsbury Institute of Intensive Care Medicine, University College London, Cruciform Building, Gower St, London, WC1E 6BT, UK,
| | | | | | | |
Collapse
|
21
|
Tang X, Xin Y, Wang H, Li W, Zhang Y, Liang S, He J, Wang N, Ma M, Chen Q. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One 2013; 8:e71976. [PMID: 23951275 PMCID: PMC3737200 DOI: 10.1371/journal.pone.0071976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.
Collapse
Affiliation(s)
- Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Weixin Li
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Shiwei Liang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Jianzheng He
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ming Ma
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
22
|
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:384-404. [PMID: 23587877 DOI: 10.1016/j.cbpa.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 12/14/2022]
Abstract
Large changes in oxygen availability in aquatic environments, ranging from anoxia through to hyperoxia, can lead to corresponding wide variation in the production of reactive oxygen species (ROS) by animals with aquatic respiration. Therefore, animals living in marine, estuarine and freshwater environments have developed efficient antioxidant defenses to minimize oxidative stress and to regulate the cellular actions of ROS. Changes in oxygen levels may lead to bursts of ROS generation that can be particularly harmful. This situation is commonly experienced by aquatic animals during abrupt transitions from periods of hypoxia/anoxia back to oxygenated conditions (e.g. intertidal cycles). The strategies developed differ significantly among aquatic species and are (i) improvement of their endogenous antioxidant system under hyperoxia (that leads to increased ROS formation) or other similar ROS-related stresses, (ii) increase in antioxidant levels when displaying higher metabolic rates, (iii) presence of constitutively high levels of antioxidants, that attenuates oxidative stress derived from fluctuations in oxygen availability, or (iv) increase in the activity of antioxidant enzymes (and/or the levels of their mRNAs) during hypometabolic states associated with anoxia/hypoxia. This enhancement of the antioxidant system - coined over a decade ago as "preparation for oxidative stress" - controls the possible harmful effects of increased ROS formation during hypoxia/reoxygenation. The present article proposes a novel explanation for the biochemical and molecular mechanisms involved in this phenomenon that could be triggered by hypoxia-induced ROS formation. We also discuss the connections among oxygen sensing, oxidative damage and regulation of the endogenous antioxidant defense apparatus in animals adapted to many natural or man-made challenges of the aquatic environment.
Collapse
Affiliation(s)
- Alexis F Welker
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasília, 70910-900 DF, Brazil
| | | | | | | |
Collapse
|
23
|
Patil YN, Marden B, Brand MD, Hand SC. Metabolic downregulation and inhibition of carbohydrate catabolism during diapause in embryos of Artemia franciscana. Physiol Biochem Zool 2012; 86:106-18. [PMID: 23303325 DOI: 10.1086/667808] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Diapause embryos were collected from ovigerous females of Artemia franciscana at the Great Salt Lake, Utah, and were synchronized to within 4 h of release. Respiration rate for these freshly released embryos across a subsequent 26-d time course showed a rapid decrease during the first several days followed thereafter by a much slower decline. The overall metabolic depression was estimated to be greater than 99%. However, proton conductance of mitochondria isolated from diapause and postdiapause embryos was identical. Because proton leak is apparently not downregulated during diapause, mitochondrial membrane potential is likely compromised because of the very low metabolic rate observed for diapause embryos. Given that trehalose is the primary fuel used by these embryos, we measured metabolic intermediates along the catabolic pathway from trehalose to acetyl-CoA for both diapause and postdiapause (active) embryos in order to identify sites of metabolic inhibition. Comparison of product-to-substrate ratios for sequential enzymatic steps revealed inhibition during diapause at trehalase, hexokinase, pyruvate kinase, and pyruvate dehydrogenase. Measurements of ATP, ADP, and AMP allowed calculations of substantial decreases in ATP:ADP ratio and in adenylate energy charge during diapause. The phosphorylation of site 1 for pyruvate dehydrogenase (PDH) subunit E1α was higher in diapause embryos than in postdiapause embryos, which is consistent with PDH inhibition during diapause. Taken together, our findings indicate that restricted substrate availability to mitochondria for oxidative phosphorylation contributes to downregulating metabolic rate during diapause.
Collapse
Affiliation(s)
- Yuvraj N Patil
- Division of Cellular, Developmental, and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
24
|
Seliverstova EV, Prutskova NP. Morphofunctional changes in the small intestine epithelium of the frog Rana temporaria in the course of hibernation. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012030061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Oxygen dependence of metabolism and cellular adaptation in vertebrate muscles: a review. J Comp Physiol B 2011; 182:177-88. [DOI: 10.1007/s00360-011-0616-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/30/2011] [Accepted: 09/03/2011] [Indexed: 01/23/2023]
|
26
|
Loh KP, Qi J, Tan BKH, Liu XH, Wei BG, Zhu YZ. Leonurine protects middle cerebral artery occluded rats through antioxidant effect and regulation of mitochondrial function. Stroke 2010; 41:2661-8. [PMID: 20947850 DOI: 10.1161/strokeaha.110.589895] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Oxidative stress is known to be involved in ischemic stroke. Intense interest is drawn to the therapeutic potential of Chinese herbs on ischemic stroke because many of them contain antioxidant properties. Leonurine, 1 of the active compounds from purified Herba Leonuri, was studied to evaluate its possible therapeutic effects on ischemic stroke. Method-Middle cerebral artery occlusion was selected as our model of study. The animals were pretreated with Leonurine orally for 7 days and the surgery was done. One day after surgery, 2,3,5-triphenyltetrazolium chloride staining and neurological deficit score were carried out to evaluate the functional outcome of animals, whereas levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde were analyzed for oxidative stress analysis. For mitochondrial studies, 3 hours after surgery, mitochondria were isolated for analysis of reactive oxygen species production, adenosine triphosphate biosynthesis, oxygen consumption, and respiratory control ratio value. Result-In in vivo experiments, Leonurine pretreatment reduced infarct volume, improved neurological deficit in stroke groups, increased activities of antioxidant enzymes superoxide dismutase and glutathione peroxidase, and decreased levels from the lipid peroxidation marker malondialdehyde. In terms of mitochondrial modulation, Leonurine inhibited mitochondrial reactive oxygen species production and adenosine triphosphate biosynthesis. Animal studies also demonstrated that the mitochondrial function and redox state were restored by Leonurine treatment. CONCLUSIONS Leonurine has neuroprotective effects and carries a therapeutic potential of stroke prevention.
Collapse
Affiliation(s)
- Kok Poh Loh
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
27
|
Duerr JM, Podrabsky JE. Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 2010; 180:991-1003. [PMID: 20473761 DOI: 10.1007/s00360-010-0478-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/11/2010] [Accepted: 04/24/2010] [Indexed: 02/03/2023]
Abstract
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO(2), respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb's cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.
Collapse
Affiliation(s)
- Jeffrey M Duerr
- Department of Biology, George Fox University, Newberg, OR 97132, USA.
| | | |
Collapse
|
28
|
Enzyme activity in the aestivating Green-striped burrowing frog (Cyclorana alboguttata). J Comp Physiol B 2010; 180:1033-43. [DOI: 10.1007/s00360-010-0471-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 03/11/2010] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
|
29
|
Jackson DC, Ultsch GR. Physiology of hibernation under the ice by turtles and frogs. ACTA ACUST UNITED AC 2010; 313:311-27. [DOI: 10.1002/jez.603] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Forgan LG, Forster ME. Oxygen-dependence of metabolic rate in the muscles of craniates. J Comp Physiol B 2010; 180:715-29. [DOI: 10.1007/s00360-010-0455-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 02/04/2010] [Accepted: 02/07/2010] [Indexed: 10/19/2022]
|
31
|
|
32
|
Forgan LG, Forster ME. Oxygen consumption, ventilation frequency and cytochrome c oxidase activity in blue cod (Parapercis colias) exposed to hydrogen sulphide or isoeugenol. Comp Biochem Physiol C Toxicol Pharmacol 2010; 151:57-65. [PMID: 19720158 DOI: 10.1016/j.cbpc.2009.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
The effects of hydrogen sulphide (H(2)S) and isoeugenol exposure on activity, oxygen consumption (VO(2)), ventilation frequency (Vf) and cytochrome c oxidase activity in a teleost fish are reported. In H(2)S (200 microM Na(2)S) exposed animals VO(2) and Vf decreased significantly (both to 40% of resting) after 30 min, concurrent with a loss of equilibrium and narcosis. Post-flushing, VO(2) increased to resting values, but Vf remained depressed (P<0.05) until 30 min of recovery. Subsequently, equilibrium and mobility were regained accompanied by increases in VO(2) (66%) and Vf (15%) between 60-70 min of recovery. Isoeugenol (0.011 g L(-1)) exposed fish reached stage 4-5 of anaesthesia accompanied by decreases (P<0.05) in VO(2) (64%) and Vf (38%) by 35 min. Post-flushing, VO(2) and Vf recovered to resting values, followed by a rise (P<0.05) in VO(2) (45%) and Vf (25%). Overall, VO(2) in relation to the resting rate was reduced in isoeugenol treated animals. Conversely, VO(2) was increased (P<0.05) relative to the resting rate in H(2)S exposed fish. 20 and 200 microM Na(2)S reduced cytochrome c oxidase activity (P<0.05) in skeletal muscle and gill lamellae by between 69 and 97%, while isoeugenol had no effect in any tissue.
Collapse
Affiliation(s)
- Leonard G Forgan
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | | |
Collapse
|
33
|
Kayes SM, Cramp RL, Hudson NJ, Franklin CE. Surviving the drought: burrowing frogs save energy by increasing mitochondrial coupling. ACTA ACUST UNITED AC 2009; 212:2248-53. [PMID: 19561214 DOI: 10.1242/jeb.028233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During dormancy energy conservation is a key priority and as such dormant animals undergo a major metabolic depression to conserve their limited endogenous fuel supplies. Mitochondrial coupling efficiency, the efficiency with which mitochondria convert oxygen into ATP, significantly affects aerobic metabolism and thus to maximise energy savings during dormancy it has been hypothesised that coupling efficiency should increase. However, previous studies have shown coupling efficiency to be maintained or even to decrease. In this study we measured state 3 and state 4 mitochondrial respiration in the muscle of the burrowing frog, Cyclorana alboguttata and calculated the respiratory control ratio as a measure of coupling efficiency. After 7 months in aestivation, C. alboguttata significantly reduced oxygen consumption of isolated mitochondria by 83% and, unlike other dormant animals, the frogs appeared to decrease rates of proton leak to a greater extent than ATP synthesis, consistent with an increase in mitochondrial coupling efficiency. The significant energy savings observed at the mitochondrial level were reflected at higher levels of biological organisation, with tissue oxygen consumption depressed by as much as 81% and whole animal metabolic rate by 82%. Cyclorana alboguttata can survive in a dormant state for several years and we propose the hypothesis that energy efficiency is increased during aestivation.
Collapse
Affiliation(s)
- Sara M Kayes
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
34
|
Van Voorhies WA. Metabolic function in Drosophila melanogaster in response to hypoxia and pure oxygen. J Exp Biol 2009; 212:3132-41. [PMID: 19749106 PMCID: PMC2742449 DOI: 10.1242/jeb.031179] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2009] [Indexed: 12/29/2022]
Abstract
This study examined the metabolic response of Drosophila melanogaster exposed to O(2) concentrations ranging from 0 to 21% and at 100%. The metabolic rate of flies exposed to graded hypoxia remained nearly constant as O(2) tensions were reduced from normoxia to approximately 3 kPa. There was a rapid, approximately linear reduction in fly metabolic rate at P(O(2))s between 3 and 0.5 kPa. The reduction in metabolic rate was especially pronounced at P(O(2)) levels <0.5 kPa, and at a P(O(2)) of 0.1 kPa fly metabolic rate was reduced approximately 10-fold relative to normoxic levels. The metabolic rate of flies exposed to anoxia and then returned to normoxia recovered to pre-anoxic levels within 30 min with no apparent payment of a hypoxia-induced oxygen debt. Flies tolerated exposure to hypoxia and/or anoxia for 40 min with nearly 100% survival. Fly mortality increased rapidly after 2 h of anoxia and >16 h exposure was uniformly lethal. Flies exposed to pure O(2) for 24 h showed no apparent alteration of metabolic rate, even though such O(2) tensions should damage respiratory enzymes critical to mitochondria function. Within a few hours the metabolic rate of flies recovering from exposure to repeated short bouts of anoxia was the same as flies exposed to a single anoxia exposure.
Collapse
Affiliation(s)
- Wayne A Van Voorhies
- Molecular Biology Program, MSC 3MLS, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
35
|
Hand SC, Menze MA. Mitochondria in energy-limited states: mechanisms that blunt the signaling of cell death. ACTA ACUST UNITED AC 2008; 211:1829-40. [PMID: 18515712 DOI: 10.1242/jeb.000299] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cellular conditions experienced during energy-limited states--elevated calcium, shifts in cellular adenylate status, compromised mitochondrial membrane potential--are precisely those that trigger, at least in mammals, the mitochondrion to initiate opening of the permeability transition pore, to assemble additional protein release channels, and to release pro-apoptotic factors. These pro-apototic factors in turn activate initiator and executer caspases. How is activation of mitochondria-based pathways for the signaling of apoptotic and necrotic cell death avoided under conditions of hypoxia, anoxia, diapause, estivation and anhydrobiosis? Functional trade-offs in environmental tolerance may have occurred in parallel with the evolution of diversified pathways for the signaling of cell death in eukaryotic organisms. Embryos of the brine shrimp, Artemia franciscana, survive extended periods of anoxia and diapause, and evidence indicates that opening of the mitochondrial permeability transition pore and release of cytochrome c (cyt-c) do not occur. Further, caspase activation in this crustacean is not dependent on cyt-c. Its caspases display regulation by nucleotides that is consistent with ;applying the brakes' to cell death during energy limitation. Unraveling the mechanisms by which organisms in extreme environments avoid cell death may suggest possible interventions during disease states and biostabilization of mammalian cells.
Collapse
Affiliation(s)
- Steven C Hand
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
36
|
Trzcionka M, Withers KW, Klingenspor M, Jastroch M. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol 2008; 211:1911-8. [DOI: 10.1242/jeb.016519] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level,we exposed male cane toads to either 10°C or 30°C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25°C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.
Collapse
Affiliation(s)
- M. Trzcionka
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - K. W. Withers
- Centre for Systems Biology, University of Southern Queensland, Toowoomba,Queensland, Australia
| | - M. Klingenspor
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - M. Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| |
Collapse
|
37
|
Tattersall GJ, Ultsch GR. Physiological Ecology of Aquatic Overwintering in Ranid Frogs. Biol Rev Camb Philos Soc 2008; 83:119-40. [DOI: 10.1111/j.1469-185x.2008.00035.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 2007; 69:145-70. [PMID: 17037980 DOI: 10.1146/annurev.physiol.69.031905.162529] [Citation(s) in RCA: 464] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability of fishes, amphibians, and reptiles to survive extremes of oxygen availability derives from a core triad of adaptations: profound metabolic suppression, tolerance of ionic and pH disturbances, and mechanisms for avoiding free-radical injury during reoxygenation. For long-term anoxic survival, enhanced storage of glycogen in critical tissues is also necessary. The diversity of body morphologies and habitats and the utilization of dormancy have resulted in a broad array of adaptations to hypoxia in lower vertebrates. For example, the most anoxia-tolerant vertebrates, painted turtles and crucian carp, meet the challenge of variable oxygen in fundamentally different ways: Turtles undergo near-suspended animation, whereas carp remain active and responsive in the absence of oxygen. Although the mechanisms of survival in both of these cases include large stores of glycogen and drastically decreased metabolism, other mechanisms, such as regulation of ion channels in excitable membranes, are apparently divergent. Common themes in the regulatory adjustments to hypoxia involve control of metabolism and ion channel conductance by protein phosphorylation. Tolerance of decreased energy charge and accumulating anaerobic end products as well as enhanced antioxidant defenses and regenerative capacities are also key to hypoxia survival in lower vertebrates.
Collapse
Affiliation(s)
- Philip E Bickler
- Department of Anesthesia, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
39
|
Buck LT, Pamenter ME. Adaptive responses of vertebrate neurons to anoxia--matching supply to demand. Respir Physiol Neurobiol 2006; 154:226-40. [PMID: 16621734 DOI: 10.1016/j.resp.2006.03.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 01/13/2023]
Abstract
Oxygen depleted environments are relatively common on earth and represent both a challenge and an opportunity to organisms that survive there. A commonly observed survival strategy to this kind of stress is a lowering of metabolic rate or metabolic depression. Whether metabolic rate is at a normal or a depressed level the supply of ATP (glycolysis and oxidative phosphorylation) must match the cellular demand for ATP (protein synthesis and ion pumping), a condition that must of course be met for long-term survival in hypoxic and anoxic environments. Underlying a decrease in metabolic rate is a corresponding decrease in both ATP supply and ATP demand pathways setting a new lower level for ATP turnover. Both sides of this equation can be actively regulated by second messenger pathways but it is less clear if they are regulated differentially or even sequentially with the onset of anoxia. The vertebrate brain is extremely sensitive to low oxygen levels yet some species can survive in oxygen depleted environments for extended periods and offer a working model of brain survival without oxygen. Hypoxia tolerant vertebrate brain will be the primary focus of this review; however, we will draw upon research involving hypoxia/ischemia tolerance mechanisms in liver and heart to offer clues to how brain can tolerate anoxia. The issue of regulating ATP supply or demand pathways will also be addressed with a focus on ion channel arrest being a significant mechanism to reduce ATP demand and therefore metabolic rate. Furthermore, mitochondria are ideally situated to serve as cellular oxygen sensors and mediator of protective mechanisms such as ion channel arrest. Therefore, we will also describe a mitochondria based mechanism of ion channel arrest involving ATP-sensitive mitochondrial K(+) channels, cytosolic calcium and reaction oxygen species concentrations.
Collapse
Affiliation(s)
- L T Buck
- University of Toronto, Department of Zoology, Toronto, Ont., Canada
| | | |
Collapse
|
40
|
Abstract
SUMMARYThe role of urea as a balancing osmolyte in osmotic adaptation is well known, but this `waste product' also has myriad other functions in diverse taxa. We report that urea plays an important, previously undocumented role in freezing tolerance of the wood frog (Rana sylvatica), a northern woodland species that hibernates terrestrially in sites where dehydration and freezing may occur. Wood frogs inhabiting an outdoor enclosure accumulated urea to 65 mmol l-1 in autumn and early winter, when soil moisture was scarce, but subsequently urea levels fell to ∼2 mmol l-1 as the availability of environmental water increased. Laboratory experiments showed that hibernating R. sylvatica can accumulate at least 90 mmol l-1 urea under relatively dry, warm conditions. During experimental freezing, frogs synthesized glucose but did not accumulate additional urea. Nevertheless, the concentrations of urea and glucose in some tissues were similar. We tested urea's efficacy as a cryoprotectant by measuring lysis and lactate dehydrogenase (LDH) leakage in samples of R. sylvaticaerythrocytes frozen/thawed in the presence of physiological levels of urea or other osmolytes. In conferring protection against freeze/thaw damage, urea was comparable to glycerol and as good as or better than glucose, cryoprotectants found in freeze-tolerant frogs and other animals. Urea treatment also improved the viability of intact tissues frozen in vitro, as demonstrated by post-thaw measures of metabolic activity and LDH leakage. Collectively, our findings suggest that urea functions both as an osmoprotectant and a cryoprotectant in terrestrially hibernating amphibians.
Collapse
Affiliation(s)
- Jon P Costanzo
- Department of Zoology, Miami University, Oxford, OH 45056, USA.
| | | |
Collapse
|
41
|
Abstract
Acute renal failure is common in the intensive care unit; it is well recognised that patients who develop acute renal failure have a high mortality rate. While there have been improvements in the management of acute renal failure, the mortality remains high. Acute renal failure is easily diagnosed biochemically and clinically but it is not a single disease entity. It is a syndrome that affects a very heterogeneous population. Studies of acute renal failure and of the impact of renal replacement therapy in intensive care are usually inconclusive, which may be the natural consequence of studying a syndrome. This article focuses on the more uncertain features of acute renal failure, the problems of investigating acute renal failure as a disease and the difficulties of applying the results of a study of a heterogeneous population to the management of individuals.
Collapse
Affiliation(s)
- A Tillyard
- Department of Anaesthesia and Intensive Care, Chelsea and Westminster Hospital, London, SW10 9NH, UK.
| | | | | |
Collapse
|
42
|
Ziganshin AU, Kamaliev RR, Grishin SN, Ziganshina LE, Zefirov AL, Burnstock G. The influence of hypothermia on P2 receptor-mediated responses of frog skeletal muscle. Eur J Pharmacol 2005; 509:187-93. [PMID: 15733555 DOI: 10.1016/j.ejphar.2004.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 11/17/2022]
Abstract
The contractile responses of isolated Rana ridibunda frog sartorius muscle contractions evoked by electrical field stimulation (EFS) were studied at three temperature conditions of 17, 22 and 27 degrees C. Temperature-dependent increase of muscle contractility was found. ATP (10-100 microM) concentration dependently inhibited the electrical field stimulation-evoked contractions of sartorius muscle at all three temperatures; this effect was significantly more prominent at a temperature of 17 degrees C than at other two temperatures. Adenosine (100 microM) also caused inhibition of electrical field stimulation-evoked contractions which was statistically identical at all three temperature conditions tested. A P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 10 microM) reduced the inhibitory effect of ATP at all three temperatures but did not affect inhibitory action of adenosine. In contrast, 8-(p-sulfophenyl)theophylline (8-SPT, 100 microM), a nonselective P1 receptor antagonist, abolished inhibitory effects of adenosine at all three temperature conditions but did not antagonize inhibition caused by ATP. In electrophysiological experiments, ATP (100 microM) and adenosine (100 microM) temperature dependently reduced end-plate currents recorded in sartorius neuromuscular junction by voltage-clamp technique. The inhibitory effects of both agonists were enhanced with the decrease of temperature. 8-SPT (100 microM) abolished the inhibitory effect of adenosine but not ATP on end-plate currents. Suramin (100 microM), a nonselective P2 receptor antagonist, inhibited the action of ATP but not adenosine, while PPADS (10 microM) had no influence on the effects of either ATP or adenosine. It is concluded from this study that the effectiveness of P2 receptor-mediated inhibition of frog skeletal muscle contraction in contrast to that of adenosine is dependent on the temperature conditions.
Collapse
Affiliation(s)
- Airat U Ziganshin
- Department of Pharmacology, Kazan State Medical University, 49 Butlerov Street, Kazan 420012, Russia.
| | | | | | | | | | | |
Collapse
|
43
|
PÖrtner H, Lucassen M, Storch D. Metabolic Biochemistry: Its Role in Thermal Tolerance and in the Capacities of Physiological and Ecological Function. FISH PHYSIOLOGY 2005. [DOI: 10.1016/s1546-5098(04)22003-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
44
|
Abstract
For most fish, body temperature is very close to that of the habitat. The diversity of thermal habitats exploited by fish as well as their capacity to adapt to thermal change makes them excellent organisms in which to examine the evolutionary and phenotypic responses to temperature. An extensive literature links cold temperatures with enhanced oxidative capacities in fish tissues, particularly skeletal muscle. Closer examination of inter-species comparisons (i.e. the evolutionary perspective) indicates that the proportion of muscle fibres occupied by mitochondria increases at low temperatures, most clearly in moderately active demersal species. Isolated muscle mitochondria show no compensation of protein-specific rates of substrate oxidation during evolutionary adaptation to cold temperatures. During phenotypic cold acclimation, mitochondrial volume density increases in oxidative muscle of some species (striped bass Morone saxatilis, crucian carp Carassius carassius), but remains stable in others (rainbow trout Oncorhynchus mykiss). A role for the mitochondrial reticulum in distributing oxygen through the complex architecture of skeletal muscle fibres may explain mitochondrial proliferation. In rainbow trout, compensatory increases in the protein-specific rates of mitochondrial substrate oxidation maintain constant capacities except at winter extremes. Changes in mitochondrial properties (membrane phospholipids, enzymatic complement and cristae densities) can enhance the oxidative capacity of muscle in the absence of changes in mitochondrial volume density. Changes in the unsaturation of membrane phospholipids are a direct response to temperature and occur in isolated cells. This fundamental response maintains the dynamic phase behaviour of the membrane and adjusts the rates of membrane processes. However, these adjustments may have deleterious consequences. For fish living at low temperatures, the increased polyunsaturation of mitochondrial membranes should raise rates of mitochondrial respiration which would in turn enhance the formation of reactive oxygen species (ROS), increase proton leak and favour peroxidation of these membranes. Minimisation of mitochondrial oxidative capacities in organisms living at low temperatures would reduce such damage.
Collapse
Affiliation(s)
- Helga Guderley
- Département de biologie, Université Laval, Québec, P.Q. Canada G1K 7P4
| |
Collapse
|
45
|
Reynolds JA, Hand SC. Differences in Isolated Mitochondria Are Insufficient to Account for Respiratory Depression during Diapause inArtemia franciscanaEmbryos. Physiol Biochem Zool 2004; 77:366-77. [PMID: 15286911 DOI: 10.1086/420950] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2003] [Indexed: 11/03/2022]
Abstract
In response to cues signifying the approach of winter, adult Artemia franciscana produce encysted embryos that enter diapause. We show that respiration rates of diapause embryos collected from the field (Great Salt Lake, Utah) are reduced up to 92% compared with postdiapause embryos when measured under conditions of normoxia and full hydration. However, mitochondria isolated from diapause embryos exhibit rates of state 3 and state 4 respiration on pyruvate that are equivalent to those from postdiapause embryos with active metabolism; a reduction in these rates (15%-27%) is measured with succinate for two of three collection years. Respiratory control ratios for diapause mitochondria are comparable to or higher than those from postdiapause embryos. The P : O flux ratios are statistically identical. Our calculations suggest that respiration of intact, postdiapause embryos is operating close to the state 3 oxygen fluxes measured for isolated mitochondria. Cytochrome c oxidase (COX) activity is 53% lower in diapause mitochondria during one collection year; the minimal impact of this COX reduction on mitochondrial respiration appears to be due to the 31% excess COX capacity in A. franciscana mitochondria. Transmission electron micrographs of embryos reveal mitochondria that are well differentiated and structurally similar in both states. As inferred from the similar amounts of mitochondrial protein extractable, tissue contents of mitochondria in diapause and postdiapause embryos are equivalent. Thus, metabolic depression during diapause cannot be fully explained by altered properties of isolated mitochondria. Rather, mechanisms for active inhibition or substrate limitation of mitochondrial metabolism in vivo may be operative.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Biological Sciences, Louisiana State University, 107 Life Sciences Building, Baton Rouge, Louisiana 70803, USA.
| | | |
Collapse
|
46
|
Rogers KD, Seebacher F, Thompson MB. Biochemical acclimation of metabolic enzymes in response to lowered temperature in tadpoles of Limnodynastes peronii. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:731-8. [PMID: 15123181 DOI: 10.1016/j.cbpb.2004.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 01/14/2004] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
We measured the rate at which the metabolic enzymes lactate dehydrogenase (LDH), citrate synthase (CS), and cytochrome c oxidase (CCO) acclimate in the response to lowered temperature in the axial muscle of tadpoles of Limnodynastes peronii (Anura: Myobatrachidae) over 6 weeks. In addition, we measured growth rates of the tadpoles kept at both temperatures and examined the activities of these enzymes in the liver tissue of the control group and cold-acclimated group at the end of the experiment. We found that LDH acclimates in axial muscle; the differences between the control and cold-acclimated group became apparent after 21 days. After 42 days, the activity of LDH in axial muscle in the cold-acclimated group was 30% greater than the control group. Growth rates were maintained at 0.7 mm/week within both treatments despite the 10 degrees C difference in temperature between experimental groups. Both LDH and CS were increased in activity in the liver (5 and 1.3 times greater, respectively, in the cold-acclimated group). The thermal sensitivity (Q(10)) of LDH was between 20 and 30 degrees C in the cold-acclimated group (1.2+/-0.01) when compared to the control group (1.6+/-0.15). The rate at which acclimation in this species occurs is appropriate for seasonal changes in temperature, and these animals may not be able to respond to a rapid drop in temperature.
Collapse
Affiliation(s)
- Kris D Rogers
- School of Biological Sciences A08, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
47
|
Stewart ER, Reese SA, Ultsch GR. The Physiology of Hibernation in Canadian Leopard Frogs (Rana pipiens) and Bullfrogs (Rana catesbeiana). Physiol Biochem Zool 2004; 77:65-73. [PMID: 15057718 DOI: 10.1086/378921] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2003] [Indexed: 11/03/2022]
Abstract
Canadian northern leopard frogs (Rana pipiens) and bullfrogs (Rana catesbeiana) were acclimated to 3 degrees C and submerged in anoxic (0-5 mmHg) and normoxic (Po(2) approximately 158 mmHg) water. Periodic measurements of blood Po(2), Pco(2), and pH were made on samples taken anaerobically from subsets of each species. Blood plasma was analyzed for [Na(+)], [K(+)], [Cl(-)], [lactate], [glucose], total calcium, total magnesium, and osmolality. Blood hematocrit was determined, and plasma bicarbonate concentration was calculated. Both species died within 4 d of anoxic submergence. Anoxia intolerance would rule out hibernation in mud, which is anoxic. Both species survived long periods of normoxic submergence (R. pipiens, 125 d; R. catesbeiana, 150 d) with minimal changes in acid-base and ionic status. We conclude that ranid frogs require a hibernaculum where the water has a high enough Po(2) to drive cutaneous diffusion, allowing the frogs to extract enough O(2) to maintain aerobic metabolism, but that an ability to tolerate anoxia for several days may still be ecologically meaningful.
Collapse
Affiliation(s)
- E Ray Stewart
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | | | | |
Collapse
|
48
|
Ultsch GR, Reese SA, Stewart ER. Physiology of hibernation inRana pipiens: metabolic rate, critical oxygen tension, and the effects of hypoxia on several plasma variables. ACTA ACUST UNITED AC 2004; 301:169-76. [PMID: 14743516 DOI: 10.1002/jez.a.20014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rates of O(2) consumption (.VO(2)) were determined for adult northern leopard frogs (Rana pipiens) submerged at 3 degrees C at water PO(2)s (P(w)O(2)) ranging from 0-160 mmHg. The critical O(2) tension (P(c)) was 36.4 mmHg. Hematocrit and blood levels of PO(2), glucose, lactate, pH, [Na(+)], [K(+)], and osmolality were determined for frogs submerged for two days. Above a P(w)O(2) of 50 mmHg, blood PO(2) ranged from 1-7 mmHg, which was sufficient to allow the frogs to function entirely aerobically. Plasma [lactate] increased as P(w)O(2) fell below 50 mmHg, the increase preceding significant changes in any other variable, and apparently preceding a fall in .VO(2). Most other variables showed little or no change from those of air-breathing control animals, even during anoxia. We present an analysis of the importance of a large decrease in P(c) in permitting frogs to successfully overwinter in icebound ponds and of the factors that contribute to that decrease.
Collapse
Affiliation(s)
- Gordon R Ultsch
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | | | | |
Collapse
|
49
|
Gnaiger E. Oxygen Conformance of Cellular Respiration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 543:39-55. [PMID: 14713113 DOI: 10.1007/978-1-4419-8997-0_4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Oxygen pressure declines from normoxic air-level to the microenvironment of mitochondria where cytochrome c oxidase (COX) reduces oxygen to water at oxygen levels as low as 0.3 kPa (2 Torr; 3 microM; 1.5 % air saturation). Intracellular hypoxia is defined as (1) local oxygen pressure below normoxic reference states, or (2) limitation of mitochondrial respiration by oxygen levels below kinetic saturation, resulting in oxyconformance. High-resolution respirometry provides the methodology to measure mitochondrial and cellular oxygen kinetics in the relevant low oxygen range < 1 kPa (7.5 mmHg; 9-10 microM; 5% air saturation). Respiration of isolated heart mitochondria follows hyperbolic oxygen kinetics with half-saturating oxygen pressure, p50, of 0.04 kPa (0.3 Torr; 0.4 microM) in ADP-stimulated state 3. Thus mitochondrial respiration proceeds at 90% of its hyperbolic maximum at the p50 of myoglobin, suggesting the possibility of a small but significant oxygen limitation even under normoxia in active muscle. Any impairment of oxygen delivery, therefore, induces oxyconformance. In addition, a shift of mitochondrial oxygen kinetics to the right, particularly by competitive inhibition of COX by NO, causes a further depression of respiration and a compensatory increase of local oxygen pressure. Above 1 kPa, mitochondrial oxygen uptake increases above hyperbolic saturation, which is probably due to oxygen radical production rather than the kinetics of COX. In cultured cells, the pronounced oxygen uptake above mitochondrial saturation at air-level oxygen pressure cannot be inhibited by rotenone and antimycin A, amounting to > 20 % of routine respiration in fibroblasts. Biochemical models of oxyconformance of COX are evaluated relative to patterns of intracellular oxygen distribution in the tissue and enzyme turnover in vivo, considering the kinetic effects of COX excess capacity on flux through the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Erich Gnaiger
- Department of Transplant Surgery, University Hospital Innsbruck, Austria.
| |
Collapse
|