1
|
Amin MR, Khara L, Szaszkiewicz J, Kim AM, Hamilton TJ, Ali DW. Brief exposure to (-) THC affects zebrafish embryonic locomotion with effects that persist into the next generation. Sci Rep 2025; 15:2203. [PMID: 39820507 PMCID: PMC11739600 DOI: 10.1038/s41598-024-82353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025] Open
Abstract
Cannabis is one of the most widely used drugs, and yet an understanding of its impact on the human brain and body is inconclusive. Medicinal and recreational use of cannabis has increased in the last decade with a concomitant increase in use by pregnant women. The major psychoactive compound in cannabis, Δ9-tetrahydrocannabinol (THC), exists in different isomers, with the (-) trans isomer most common. Prenatal exposure to THC can alter neural and behavioral development, but it is unknown how exposure to (-) trans-THC ((-)THC) during very early stages of development impacts fetal growth and movement, and whether effects persist to adulthood, or into the next generation. Here we exposed zebrafish (Danio rerio) to a single exposure of (-)THC (0.001 mg/L (3.2 nM) to 20 mg/L (63.6 µM), for 5 h) during gastrulation (5.25 hpf to 10.75 hpf) when key neurons involved in locomotion such as the primary motor neurons and Mauthner cell first appear. We then examined the impact on embryo morphology and locomotion, adult behavior, and locomotion in the next (F1) generation. Embryos treated with (-)THC experienced changes in morphology, were shorter in length and experienced altered hatching and survival. Spontaneous coiling of 1 dpf embryos was reduced, swimming after touch-evoked responses was reduced and basal swimming in 5 dpf larvae was also reduced. Adult zebrafish tested in the open field test and novel object approach test demonstrated no differences in locomotion, anxiety-like behavior, nor boldness, compared to controls. The (-)THC F1 generation embryos at 1 dpf showed reduced coiling activity, while swimming after touch-evoked responses was reduced in 2 dpf animals but basal swimming at 5 dpf remained similar to controls. Taken together, exposure to (-)THC only once for 5 h during gastrulation has a significant impact on locomotion in embryos and larvae, a minimal impact on adult behavior, and effects that persist into the next generation.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Lakhan Khara
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | | | - Andrew M Kim
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada
| | - Trevor J Hamilton
- Department of Psychology, MacEwan University, T5J 4S2, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences CW-405 Biological Sciences Building, University of Alberta Edmonton, Edmonton, AB, T6G 2E9, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
2
|
Zarazúa-Guzmán S, Vicente-Martínez JG, Pinos-Rodríguez JM, Arevalo-Villalobos JI. An overview of major depression disorder: The endocannabinoid system as a potential target for therapy. Basic Clin Pharmacol Toxicol 2024; 135:669-684. [PMID: 39370369 DOI: 10.1111/bcpt.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/07/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Major depressive disorder is the psychiatric disease with the highest global prevalence, impacting social functioning and decreasing the quality of life. The partial pathophysiological knowledge of the disease, the economic burden and the low remission rates are sufficient justification to carry out an update on the subject in the search for new therapeutic approaches and targets. The endocannabinoid system has been linked to the development of depression, and its stimulation or antagonism is a promising approach in the treatment of major depressive disorder. Cannabidiol (CBD) and its properties have been widely studied recently; its analgesic, anti-inflammatory, antineoplastic and neuroprotective roles have even been reported in animal models and clinical trials, achieving its approved use for certain neurodegenerative pathologies. The use of CBD in depression biomodels and clinical trials has not been the exception, and here we contrast the current evidence of its administration and pharmacology against the pathological mechanisms of major depressive disorder.
Collapse
Affiliation(s)
- Sergio Zarazúa-Guzmán
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | | | |
Collapse
|
3
|
Carruthers ER, Grimsey NL. Cannabinoid CB 2 receptor orthologues; in vitro function and perspectives for preclinical to clinical translation. Br J Pharmacol 2024; 181:2247-2269. [PMID: 37349984 DOI: 10.1111/bph.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Cannabinoid CB2 receptor agonists are in development as therapeutic agents, including for immune modulation and pain relief. Despite promising results in rodent preclinical studies, efficacy in human clinical trials has been marginal to date. Fundamental differences in ligand engagement and signalling responses between the human CB2 receptor and preclinical model species orthologues may contribute to mismatches in functional outcomes. This is a tangible possibility for the CB2 receptor in that there is a relatively large degree of primary amino acid sequence divergence between human and rodent. Here, we summarise CB2 receptor gene and protein structure, assess comparative molecular pharmacology between CB2 receptor orthologues, and review the current status of preclinical to clinical translation for drugs targeted at the CB2 receptor, focusing on comparisons between human, mouse and rat receptors. We hope that raising wider awareness of, and proposing strategies to address, this additional challenge in drug development will assist in ongoing efforts toward successful therapeutic translation of drugs targeted at the CB2 receptor. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Emma R Carruthers
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Natasha L Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
4
|
Lachowicz J, Szopa A, Ignatiuk K, Świąder K, Serefko A. Zebrafish as an Animal Model in Cannabinoid Research. Int J Mol Sci 2023; 24:10455. [PMID: 37445631 DOI: 10.3390/ijms241310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cannabinoids are active substances present in plants of the Cannabis genus. Both the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved several medicinal products containing natural cannabinoids or their synthetic derivatives for the treatment of drug-resistant epilepsy, nausea and vomiting associated with cancer chemotherapy, anorexia in AIDS patients, and the alleviation of symptoms in patients with multiple sclerosis. In fact, cannabinoids constitute a broad group of molecules with a possible therapeutic potential that could be used in the management of much more diseases than mentioned above; therefore, multiple preclinical and clinical studies on cannabinoids have been carried out in recent years. Danio rerio (zebrafish) is an animal model that has gained more attention lately due to its numerous advantages, including easy and fast reproduction, the significant similarity of the zebrafish genome to the human one, simplicity of genetic modifications, and body transparency during the early stages of development. A number of studies have confirmed the usefulness of this model in toxicological research, experiments related to the impact of early life exposure to xenobiotics, modeling various diseases, and screening tests to detect active substances with promising biological activity. The present paper focuses on the current knowledge of the endocannabinoid system in the zebrafish model, and it summarizes the results and observations from studies investigating the pharmacological effects of natural and synthetic cannabinoids that were carried out in Danio rerio. The presented data support the notion that the zebrafish model is a suitable animal model for use in cannabinoid research.
Collapse
Affiliation(s)
- Joanna Lachowicz
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Scientific Circle, Department of Clincal Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
5
|
Khara LS, Ali DW. The endocannabinoid system's involvement in motor development relies on cannabinoid receptors, TRP channels, and Sonic Hedgehog signaling. Physiol Rep 2023; 11:e15565. [PMID: 36636759 PMCID: PMC9837476 DOI: 10.14814/phy2.15565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023] Open
Abstract
The endocannabinoid system (eCS) plays critical roles in locomotor function and motor development; however, the roles of non-canonical cannabinoid receptor systems such as transient receptor potential (TRP) channels and the Sonic Hedgehog (SHH) signaling pathway in conjunction with the eCS in sensorimotor development remains enigmatic. To investigate the involvement of canonical and non-canonical cannabinoid receptors, TRP channels, and the SHH pathway in the development of sensorimotor function in zebrafish, we treated developing animals with pharmacological inhibitors of the CB1R, CB2R, TRPA1/TRPV1/TRPM8, and a smoothened (SMO) agonist, along with inhibitors of the eCS catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) during the first ~24 h of zebrafish embryogenesis. Locomotor function was examined by assessing touch-evoked escape swimming at 2 days post-fertilization. We report that FAAH inhibition had no effect on swimming while MAGL inhibition using JZL 184 reduced swimming distance and the dual FAAH/MAGL inhibitor JZL 195 impaired swimming distance and mean swimming velocity. The CB1R antagonist AM 251 prevented locomotor deficits caused by eCS perturbation but the CB2R antagonist AM 630 did not. Inhibition of TRPA1/TRPV1/TRPM8 using AMG 9090 rescued the locomotor reductions caused by FAAH/MAGL inhibition, but not by MAGL inhibition alone. The SMO agonist purmorphamine attenuated the effects of JZL 184 and JZL 195 on swimming distance, but not mean velocity. Together, these findings provide one of the first investigations examining the interactions between the eCS and its non-canonical receptor systems in vertebrate motor development.
Collapse
Affiliation(s)
- Lakhan S. Khara
- Department of Biological SciencesUniversity of Alberta EdmontonEdmontonAlbertaCanada
| | - Declan W. Ali
- Department of Biological SciencesUniversity of Alberta EdmontonEdmontonAlbertaCanada
- Department of PhysiologyUniversity of Alberta EdmontonEdmontonAlbertaCanada
- The Neuroscience and Mental Health InstituteUniversity of Alberta EdmontonEdmontonAlbertaCanada
| |
Collapse
|
6
|
Cannabinoid receptor 2 (Cb2r) mediates cannabinol (CBN) induced developmental defects in zebrafish. Sci Rep 2022; 12:20251. [PMID: 36424484 PMCID: PMC9691751 DOI: 10.1038/s41598-022-23495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022] Open
Abstract
Of the three primary cannabinoids in cannabis: Δ9-Tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD) and cannabinol (CBN), very little is known about the actions of CBN, the primary oxidative metabolite of THC. Our goal was to determine if CBN exposure during gastrulation alters embryonic development, and if so, does it act via the canonical cannabinoid receptors. Zebrafish embryos were exposed to CBN during gastrulation and exhibited dose-dependent malformations, increased mortality, decreased locomotion and a reduction in motor neuron branching. Moreover, larva showed a significant reduction in the response to sound stimuli. CBN exposure altered the development of hair cells associated with otic vesicles and the lateral line. Pharmacological block of Cb2rs with AM 630 or JTE 907 prevented many of the CBN-induced developmental defects, while block of Cb1rs with AM 251 or CP 945598 had little or no effect. Altogether we show that embryonic exposure to CBN results in alterations in embryonic growth, neuronal and hair cell development, physiology and behavior via Cb2r-mediated mechanisms.
Collapse
|
7
|
Khara LS, Amin MR, Ali DW. Inhibiting the endocannabinoid degrading enzymes FAAH and MAGL during zebrafish embryogenesis alters sensorimotor function. J Exp Biol 2022; 225:275080. [PMID: 35438163 DOI: 10.1242/jeb.244146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022]
Abstract
The endocannabinoid system (eCS) plays a critical role in a variety of homeostatic and developmental processes. Although the eCS is known to be involved in motor and sensory function, the role of endocannabinoid (eCB) signaling in sensorimotor development remains to be fully understood. In this study, the catabolic enzymes fatty acid amide hydrolase (FAAH), and monoacylglycerol lipase (MAGL) were inhibited either simultaneously, or individually during the first ∼24 hours of zebrafish embryogenesis, and the properties of contractile events and escape responses were studied in animals ranging in age from 1 day post fertilization (dpf) to 10 weeks. This perturbation of the eCS resulted in alterations to contractile activity at 1 dpf. Inhibition of MAGL using JZL 184 and dual inhibition of FAAH/MAGL using JZL 195 decreased escape swimming activity at 2 dpf. Treatment with JZL 195 also produced alterations in the properties of the 2 dpf short latency C-start escape response. Animals treated with JZL 195 exhibited deficits in escape responses elicited by auditory/vibrational (A/V) stimuli at 5 and 6 dpf. These deficits were also present during the juvenile developmental stage (8-10-week-old fish), demonstrating a prolonged impact to sensory systems. These findings demonstrate that eCS perturbation affects sensorimotor function, and underscores the importance of eCB signaling in the development of motor and sensory processes.
Collapse
Affiliation(s)
- Lakhan S Khara
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Md Ruhul Amin
- Pharmacology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| | - Declan W Ali
- Departments of Biological Sciences, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Physiology, CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada.,Neuroscience and Mental Health Institute. CW-405 Biological Sciences Building, University of Alberta Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
8
|
Sufian MS, Amin MR, Ali DW. Early suppression of the endocannabinoid degrading enzymes FAAH and MAGL alters locomotor development in zebrafish. J Exp Biol 2021; 224:271961. [DOI: 10.1242/jeb.242635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) enzymes are the predominant catabolic regulators of the major endocannabinoids (eCBs) anadamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively. The expression and roles of eCBs during early embryogenesis remain to be fully investigated. Here, we inhibited FAAH and MAGL in zebrafish embryos during the first 24 h of life and examined motor neuron and locomotor development at 2 and 5 days post fertilization (dpf). Application of the dual FAAH/MAGL inhibitor, JZL195 (2 µmol l−1), resulted in a reduction in primary and secondary motor neuron axonal branching. JZL195 also reduced nicotinic acetylcholine receptor (nAChR) expression at neuromuscular junctions. Application of URB597 (5 µmol l−1), a specific inhibitor of the FAAH enzyme, also decreased primary motor neuron branching but did not affect secondary motor neuron branching and nAChR expression. Interestingly, JZL184 (5 µmol l−1), a specific inhibitor of MAGL, showed no effects on motor neuron branching or nAChR expression. Co-treatment of the enzyme inhibitors with the CB1R inhibitor AM251 confirmed the involvement of CB1R in motor neuron branching. Disruption of FAAH or MAGL reduced larval swimming activity, and AM251 attenuated the JZL195- and URB597-induced locomotor changes, but not the effects of JZL184. Together, these findings indicate that inhibition of FAAH, or augmentation of AEA acting through CB1R during early development, may be responsible for locomotor deficiencies.
Collapse
Affiliation(s)
- M. Shah Sufian
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - M. Ruhul Amin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Declan W. Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, 2-132 Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
9
|
Pandelides Z, Aluru N, Thornton C, Watts HE, Willett KL. Transcriptomic Changes and the Roles of Cannabinoid Receptors and PPARγ in Developmental Toxicities Following Exposure to Δ9-Tetrahydrocannabinol and Cannabidiol. Toxicol Sci 2021; 182:44-59. [PMID: 33892503 PMCID: PMC8285010 DOI: 10.1093/toxsci/kfab046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human consumption of cannabinoid-containing products during early life or pregnancy is rising. However, information about the molecular mechanisms involved in early life stage Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) toxicities is critically lacking. Here, larval zebrafish (Danio rerio) were used to measure THC- and CBD-mediated changes on transcriptome and the roles of cannabinoid receptors (Cnr) 1 and 2 and peroxisome proliferator activator receptor γ (PPARγ) in developmental toxicities. Transcriptomic profiling of 96-h postfertilization (hpf) cnr+/+ embryos exposed (6 - 96 hpf) to 4 μM THC or 0.5 μM CBD showed differential expression of 904 and 1095 genes for THC and CBD, respectively, with 360 in common. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the THC and CBD datasets included those related to drug, retinol, and steroid metabolism and PPAR signaling. The THC exposure caused increased mortality and deformities (pericardial and yolk sac edemas, reduction in length) in cnr1-/- and cnr2-/- fish compared with cnr+/+ suggesting Cnr receptors are involved in protective pathways. Conversely, the cnr1-/- larvae were more resistant to CBD-induced malformations, mortality, and behavioral alteration implicating Cnr1 in CBD-mediated toxicity. Behavior (decreased distance travelled) was the most sensitive endpoint to THC and CBD exposure. Coexposure to the PPARγ inhibitor GW9662 and CBD in cnr+/+ and cnr2-/- strains caused more adverse outcomes compared with CBD alone, but not in the cnr1-/- fish, suggesting that PPARγ plays a role in CBD metabolism downstream of Cnr1. Collectively, PPARγ, Cnr1, and Cnr2 play important roles in the developmental toxicity of cannabinoids with Cnr1 being the most critical.
Collapse
Affiliation(s)
- Zacharias Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, Massachusetts 02543, USA
| | - Cammi Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Haley E Watts
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| | - Kristine L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
| |
Collapse
|
10
|
Medium-throughput zebrafish optogenetic platform identifies deficits in subsequent neural activity following brief early exposure to cannabidiol and Δ 9-tetrahydrocannabinol. Sci Rep 2021; 11:11515. [PMID: 34075141 PMCID: PMC8169761 DOI: 10.1038/s41598-021-90902-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 01/20/2023] Open
Abstract
In light of legislative changes and the widespread use of cannabis as a recreational and medicinal drug, delayed effects of cannabis upon brief exposure during embryonic development are of high interest as early pregnancies often go undetected. Here, zebrafish embryos were exposed to cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) until the end of gastrulation (1-10 h post-fertilization) and analyzed later in development (4-5 days post-fertilization). In order to measure neural activity, we implemented Calcium-Modulated Photoactivatable Ratiometric Integrator (CaMPARI) and optimized the protocol for a 96-well format complemented by locomotor analysis. Our results revealed that neural activity was decreased by CBD more than THC. At higher doses, both cannabinoids could dramatically reduce neural activity and locomotor activity. Interestingly, the decrease was more pronounced when CBD and THC were combined. At the receptor level, CBD-mediated reduction of locomotor activity was partially prevented using cannabinoid type 1 and 2 receptor inhibitors. Overall, we report that CBD toxicity occurs via two cannabinoid receptors and is synergistically enhanced by THC exposure to negatively impact neural activity late in larval development. Future studies are warranted to reveal other cannabinoids and their receptors to understand the implications of cannabis consumption on fetal development.
Collapse
|
11
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
12
|
Pagnamenta AT, Kaiyrzhanov R, Zou Y, Da'as SI, Maroofian R, Donkervoort S, Dominik N, Lauffer M, Ferla MP, Orioli A, Giess A, Tucci A, Beetz C, Sedghi M, Ansari B, Barresi R, Basiri K, Cortese A, Elgar G, Fernandez-Garcia MA, Yip J, Foley AR, Gutowski N, Jungbluth H, Lassche S, Lavin T, Marcelis C, Marks P, Marini-Bettolo C, Medne L, Moslemi AR, Sarkozy A, Reilly MM, Muntoni F, Millan F, Muraresku CC, Need AC, Nemeth AH, Neuhaus SB, Norwood F, O'Donnell M, O'Driscoll M, Rankin J, Yum SW, Zolkipli-Cunningham Z, Brusius I, Wunderlich G, Karakaya M, Wirth B, Fakhro KA, Tajsharghi H, Bönnemann CG, Taylor JC, Houlden H. An ancestral 10-bp repeat expansion in VWA1 causes recessive hereditary motor neuropathy. Brain 2021; 144:584-600. [PMID: 33559681 PMCID: PMC8263055 DOI: 10.1093/brain/awaa420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 01/26/2023] Open
Abstract
The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.
Collapse
Affiliation(s)
- Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Yaqun Zou
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Reza Maroofian
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Natalia Dominik
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Marlen Lauffer
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Matteo P Ferla
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Andrea Orioli
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Adam Giess
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | | | - Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rita Barresi
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrea Cortese
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Greg Elgar
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Miguel A Fernandez-Garcia
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Janice Yip
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas Gutowski
- Department of Neurology, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Heinz Jungbluth
- Department of Paediatric Neurology - Neuromuscular Service, Evelina Children's Hospital, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Randall Division of Cell and Molecular Biophysics Muscle Signalling Section, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Saskia Lassche
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tim Lavin
- Department of Neurology, Salford Royal NHS Foundation Trust, Manchester, UK
| | - Carlo Marcelis
- Department of Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter Marks
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle, UK
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Livija Medne
- Divisions of Neurology and Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Sweden
| | - Anna Sarkozy
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, and Great Ormond Street Hospital Trust, London, UK
| | | | - Colleen C Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
| | - Anna C Need
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Genomics England, London, UK
| | - Andrea H Nemeth
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sarah B Neuhaus
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Fiona Norwood
- Department of Neurology, King's College Hospital, London, UK
| | - Marie O'Donnell
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Mary O'Driscoll
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Julia Rankin
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Trust, Exeter, UK
| | - Sabrina W Yum
- Division of Pediatric Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Children's Hospital of Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabell Brusius
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Center for Rare Diseases Cologne, University Hospital Cologne, Cologne, Germany
| | - Mert Karakaya
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne (CMMC), Institute of Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Khalid A Fakhro
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, Doha, Qatar
| | - Homa Tajsharghi
- School of Health Science, Division Biomedicine and Translational Medicine, University of Skovde, Sweden
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, NINDS, National Institutes of Health, Bethesda, MD, USA
| | - Jenny C Taylor
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
13
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
14
|
Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos. Int J Mol Sci 2019; 21:ijms21010168. [PMID: 31881740 PMCID: PMC6982252 DOI: 10.3390/ijms21010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron’s axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake.
Collapse
|