1
|
Liu C, Tian N, Chang P, Zhang W. Mating reconciles fitness and fecundity by switching diet preference in flies. Nat Commun 2024; 15:9912. [PMID: 39548088 PMCID: PMC11568147 DOI: 10.1038/s41467-024-54369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-rich diets shorten lifespan but increase fecundity in many organisms. Animals actively adjust their feeding behavior to meet their nutritional requirements. However, the neural mechanisms underlying the dynamic regulation of protein consumption remain unclear. Here we find that both sexes of fruit flies exhibit a preference for protein food before mating to prepare for reproduction. Mated female flies display an increased appetite for yeast to benefit their offspring, albeit at the cost of stress resistance and lifespan. In contrast, males show a momentarily reduced yeast appetite after mating likely to restore their fitness. This mating state-dependent switch between sexes is mediated by a sexually dimorphic neural circuit labeled with leucokinin in the anterior brain. Furthermore, intermittent yeast consumption benefits both the lifespan and fecundity of males, while maximizing female fecundity without compromising lifespan.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Ning Tian
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Rahman S, Terao K, Hashimoto K, Mizunami M. Independent operations of appetitive and aversive conditioning systems lead to simultaneous production of conflicting memories in an insect. Proc Biol Sci 2024; 291:20241273. [PMID: 39317316 PMCID: PMC11421932 DOI: 10.1098/rspb.2024.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024] Open
Abstract
Pavlovian conditioning is a ubiquitous form of associative learning that enables animals to remember appetitive and aversive experiences. Animals possess appetitive and aversive conditioning systems that memorize and retrieve appetitive and aversive experiences. Here, we addressed a question of whether integration of competing appetitive and aversive information takes place during the encoding of the experience or during memory retrieval. We developed novel experimental procedures to address this question using crickets (Gryllus bimaculatus), which allowed selective blockade of the expression of appetitive and aversive memories by injecting octopamine and dopamine receptor antagonists. We conditioned an odour (conditioned stimulus 1, CS1) with water and then with sodium chloride solution. At 24 h after conditioning, crickets retained both appetitive and aversive memories, and the memories were integrated to produce a conditioned response (CR). Importantly, when a visual pattern (CS2) was conditioned with CS1, appetitive and aversive memories formed simultaneously. This indicates that appetitive and aversive second-order conditionings are achieved at the same time. The memories were integrated for producing a conditioned response. We conclude that appetitive and aversive conditioning systems operate independently to form parallel appetitive and aversive memories, which compete to produce learned behaviour in crickets.
Collapse
Affiliation(s)
- Sadniman Rahman
- Graduate School of Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Kanta Terao
- Academic Assembly Institute of Science and Engineering, Shimane University , Matsue, Shimane 690-8504, Japan
| | - Kohei Hashimoto
- Graduate School of Life Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Makoto Mizunami
- Research Institute for Electric Science, Hokkaido University , Sapporo 060-0812, Japan
- Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Toshima N, Schleyer M. IR76b-expressing neurons in Drosophila melanogaster are necessary for associative reward learning of an amino acid mixture. Biol Lett 2024; 20:20230519. [PMID: 38351746 PMCID: PMC10865000 DOI: 10.1098/rsbl.2023.0519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Learning where to find nutrients while at the same time avoiding toxic food is essential for survival of any animal. Using Drosophila melanogaster larvae as a study case, we investigate the role of gustatory sensory neurons expressing IR76b for associative learning of amino acids, the building blocks of proteins. We found surprising complexity in the neuronal underpinnings of sensing amino acids, and a functional division of sensory neurons. We found that the IR76b receptor is dispensable for amino acid learning, whereas the neurons expressing IR76b are specifically required for the rewarding but not the punishing effect of amino acids. This unexpected dissociation in neuronal processing of amino acids for different behavioural functions provides a study case for functional divisions of labour in gustatory systems.
Collapse
Affiliation(s)
- Naoko Toshima
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| | - Michael Schleyer
- Department Genetics of Learning and Memory, Leibniz-Institute for Neurobiology, Magdeburg 39118, Germany
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Thoener J, Weiglein A, Gerber B, Schleyer M. Optogenetically induced reward and 'frustration' memory in larval Drosophila. J Exp Biol 2022; 225:276423. [PMID: 35924545 DOI: 10.1242/jeb.244565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022]
Abstract
Humans and animals alike form oppositely valenced memories for stimuli that predict the occurrence versus the termination of a reward: appetitive 'reward' memory for stimuli associated with the occurrence of a reward and aversive 'frustration' memory for stimuli that are associated with its termination. We characterize these memories in larval Drosophila using a combination of Pavlovian conditioning, optogenetic activation of the dopaminergic central-brain DAN-i1864 neuron, and high-resolution video-tracking. This reveals their dependency on the number of training trials and the duration of DAN-i1864 activation, their temporal stability, and the parameters of locomotion that are modulated during memory expression. Together with previous results on 'punishment' versus 'relief' learning by DAN-f1 neuron activation, this reveals a 2x2 matrix of timing-dependent memory valence for the occurrence/ termination of reward/ punishment. These findings should aid the understanding and modelling of how brains decipher the predictive, causal structure of events around a target reinforcing occurrence.
Collapse
Affiliation(s)
- Juliane Thoener
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Aliće Weiglein
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| | - Bertram Gerber
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany.,Institute of Biology, Otto von Guericke University Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Michael Schleyer
- Leibniz Institute for Neurobiology, Department of Genetics, Magdeburg, Germany
| |
Collapse
|
5
|
Schumann I, Berger M, Nowag N, Schäfer Y, Saumweber J, Scholz H, Thum AS. Ethanol-guided behavior in Drosophila larvae. Sci Rep 2021; 11:12307. [PMID: 34112872 PMCID: PMC8192949 DOI: 10.1038/s41598-021-91677-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022] Open
Abstract
Chemosensory signals allow vertebrates and invertebrates not only to orient in its environment toward energy-rich food sources to maintain nutrition but also to avoid unpleasant or even poisonous substrates. Ethanol is a substance found in the natural environment of Drosophila melanogaster. Accordingly, D. melanogaster has evolved specific sensory systems, physiological adaptations, and associated behaviors at its larval and adult stage to perceive and process ethanol. To systematically analyze how D. melanogaster larvae respond to naturally occurring ethanol, we examined ethanol-induced behavior in great detail by reevaluating existing approaches and comparing them with new experiments. Using behavioral assays, we confirm that larvae are attracted to different concentrations of ethanol in their environment. This behavior is controlled by olfactory and other environmental cues. It is independent of previous exposure to ethanol in their food. Moreover, moderate, naturally occurring ethanol concentration of 4% results in increased larval fitness. On the contrary, higher concentrations of 10% and 20% ethanol, which rarely or never appear in nature, increase larval mortality. Finally, ethanol also serves as a positive teaching signal in learning and memory and updates valence associated with simultaneously processed odor information. Since information on how larvae perceive and process ethanol at the genetic and neuronal level is limited, the establishment of standardized assays described here is an important step towards their discovery.
Collapse
Affiliation(s)
- Isabell Schumann
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Michael Berger
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Nadine Nowag
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany
| | - Yannick Schäfer
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | | | - Henrike Scholz
- Department of Biology, University of Cologne, 50674, Cologne, Germany
| | - Andreas S Thum
- Department of Genetics, Leipzig University, 04103, Leipzig, Germany. .,Department of Genetics, Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103, Leipzig, Germany.
| |
Collapse
|