1
|
Grace J, Duran E, Ann Ottinger M, Maness T. Sublethal effects of early-life exposure to common and emerging contaminants in birds. Curr Res Toxicol 2024; 7:100190. [PMID: 39220619 PMCID: PMC11365322 DOI: 10.1016/j.crtox.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The plight of wild birds is becoming critical due to exposure to environmental contaminants. Although laboratory studies have provided insights into the developmental effects of chemical exposures, less is known about the adverse effects of environmental chemicals in developing wild birds. Early life stages are critical windows during which long-term organization of physiological, behavioral, and neurological systems can occur. Thus, contaminant exposure at early life stages can directly influence survival and reproductive success, with consequences for population stability and resilience in wild species. This review synthesizes existing knowledge regarding both short- and long-term effects of early-life exposure to widespread contaminants in birds. We focus especially on wild birds and on contaminants of concern within the Gulf of Mexico as an example of a habitat under anthropogenic stress from exposure to a complex mixture of chemicals and changing land uses that exacerbate existing vulnerabilities of wildlife in this region. Chemical contaminants for discussion in this review are based on avian mortality records from the Wildlife Health Information Sharing Partnership (WHISPers) database and on additional review of the literature regarding avian contaminants of concern for the northern Gulf of Mexico, and include oil and associated polycyclic aromatic hydrocarbons, dioxin and dioxin-like compounds, flame retardants, pesticides, heavy metals, and plastics. We provide an overview of effects in bird species at both the pre-hatching and post-hatching early life stages, discuss differences in sensitivities by route of exposure, life stage, and life history, and provide recommendations for future research. We find that additional research is needed on altricial species, post-hatching early-life exposure, long-term effects, and on ecologically relevant contaminant concentrations and routes of exposure. Given the increasing frequency and intensity of anthropogenic stressors encountered by wild animals, understanding both lethal and sublethal impacts of contaminants on the health of individuals and populations will be critical to inform restoration, management, and mitigation efforts.
Collapse
Affiliation(s)
- Jacquelyn Grace
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77840-2258, USA
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Elena Duran
- Ecology and Evolutionary Biology Interdisciplinary Doctoral Program, Texas A&M University, College Station, TX 77840-2258, USA
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Terri Maness
- School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
2
|
McCue MD. CO 2 scrubbing, zero gases, Keeling plots, and a mathematical approach to ameliorate the deleterious effects of ambient CO 2 during 13 C breath testing in humans and animals. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9639. [PMID: 37817343 DOI: 10.1002/rcm.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/17/2023] [Accepted: 08/26/2023] [Indexed: 10/12/2023]
Abstract
13 C breath testing is increasingly used in physiology and ecology research because of what it reveals about the different fuels that animals oxidize to meet their energetic demands. Here I review the practice of 13 C breath testing in humans and other animals and describe the impact that contamination by ambient/background CO2 in the air can have on the accuracy of 13 C breath measurements. I briefly discuss physical methods to avoid sample contamination as well as the Keeling plot approach that researchers have been using for the past two decades to estimate δ13 C from breath samples mixed with ambient CO2 . Unfortunately, Keeling plots are not suited for 13 C breath testing in common situations where (1) a subject's VCO2 is dynamic, (2) ambient [CO2 ] may change, (3) a subject is sensitive to hypercapnia, or (4) in any flow-through indirect calorimetry system. As such, I present a mathematical solution that addresses these issues by using information about the instantaneous [CO2 ] and the δ13 CO2 of ambient air as well as the diluted breath sample to back-calculate the δ13 CO2 in the CO2 exhaled by the animal. I validate this approach by titrating a sample of 13 C-enriched gas into an air stream and demonstrate its ability to provide accurate values across a wide range of breath and air mixtures. This approach allows researchers to instantaneously calculate the δ13 C of exhaled gas of humans or other animals in real time without having to scrub ambient CO2 or rely on estimated values.
Collapse
|
3
|
Bellot P, Dupont SM, Brischoux F, Budzinski H, Chastel O, Fritsch C, Lourdais O, Prouteau L, Rocchi S, Angelier F. Experimental Exposure to Tebuconazole Affects Metabolism and Body Condition in a Passerine Bird, the House Sparrow (Passer domesticus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2500-2511. [PMID: 35899983 DOI: 10.1002/etc.5446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Triazole compounds are among the most widely used fungicides in agroecosystems to protect crops from potential fungal diseases. Triazoles are suspected to have an impact on nontarget species due to their interactions with nonfungal sterol synthesis, and wild birds are likely to be contaminated by triazole fungicides because many of them live in agroecosystems. We experimentally tested whether exposure to environmental concentrations of a triazole could alter key integrative traits (metabolic rates and body condition) of an agroecosystem sentinel species, the house sparrow (Passer domesticus). Wild-caught adult sparrows were maintained in captivity and exposed (exposed group) or not (control group) for 7 continuous months to tebuconazole through drinking water. The metabolic rates of exposed and control sparrows were then measured at two different temperatures (12 °C and 25 °C), which correspond, respectively, to the thermoregulation and thermoneutrality temperatures of this species. We found that exposed sparrows had lower resting metabolic rates (i.e., measured at thermoneutrality, 25 °C) than controls. However, the thermoregulatory metabolic rates (i.e., measured at 12 °C) did not differ between exposed and control sparrows. Although the body mass and condition were not measured at the beginning of the exposure, sparrows at the time of the metabolic measurements 7 months after the onset of such exposure had a higher body condition than controls, supporting further the idea that tebuconazole affects metabolic functions. Our study demonstrates for the first time that the use of tebuconazole can alter metabolism and could potentially lead to adverse effects in birds. Environ Toxicol Chem 2022;41:2500-2511. © 2022 SETAC.
Collapse
Affiliation(s)
- Pauline Bellot
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Sophie Marie Dupont
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Hélène Budzinski
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Louise Prouteau
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
- University of Bordeaux, CNRS-EPOC, UMR 5805, LPTC Research Group, Talence, France
| | - Steffi Rocchi
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté, Besançon, France
- Service de Parasitologie-Mycologie, CHU Jean Minjoz, Besançon, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle Université, UMR 7372, Villiers en Bois, France
| |
Collapse
|
4
|
Hope SF, Schmitt L, Lourdais O, Angelier F. Nature vs. Nurture: Disentangling the Influence of Inheritance, Incubation Temperature, and Post-Natal Care on Offspring Heart Rate and Metabolism in Zebra Finches. Front Physiol 2022; 13:892154. [PMID: 35620597 PMCID: PMC9127084 DOI: 10.3389/fphys.2022.892154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
A historic debate in biology is the question of nature vs. nurture. Although it is now known that most traits are a product of both heredity (“nature”) and the environment (“nurture”), these two driving forces of trait development are rarely examined together. In birds, one important aspect of the early developmental environment is egg incubation temperature. Small changes (<1°C) in incubation temperature can have large effects on a wide-array of offspring traits. One important trait is metabolism, because it is related to life-history traits and strategies, organismal performance, and energetic and behavioral strategies. Although it has been shown that embryonic and post-hatch metabolism are related to egg incubation temperature, little is known about how this may vary as a function of genetic differences or post-hatching environmental conditions. Here, we investigated this question in zebra finches (Taeniopygia guttata). We experimentally incubated eggs at two different temperatures: 37.5°C (control), which is optimal for this species and 36.3°C (low), which is suboptimal. We first measured embryonic heart rate as a proxy of embryonic metabolic rate. Then, at hatch, we cross-fostered nestlings to differentiate genetic and pre-hatching factors from post-hatching environmental conditions. When offspring were 30 days-old, we measured their resting metabolic rate (RMR; within the thermoneutral zone) and thermoregulatory metabolic rate (TMR; 12°C; birds must actively thermoregulate). We also measured RMR and TMR of all genetic and foster parents. We found that embryonic heart rate was greater in eggs incubated at the control temperature than those at the low temperature. Further, embryonic heart rate was positively related to genetic father RMR, suggesting that it is both heritable and affected by the pre-natal environment. In addition, we found that post-hatch metabolic rates were positively related to genetic parent metabolic rate, and interactively related to incubation temperature and foster mother metabolic rate. Altogether, this suggests that metabolism and the energetic cost of thermoregulation can be influenced by genetics, the pre-natal environment, and the post-natal environment. Our study sheds light on how environmental changes and parental care may affect avian physiology, as well as which traits may be susceptible to natural selection.
Collapse
|
5
|
Dezetter M, Le Galliard JF, Leroux-Coyau M, Brischoux F, Angelier F, Lourdais O. Two stressors are worse than one: combined heatwave and drought affect hydration state and glucocorticoid levels in a temperate ectotherm. J Exp Biol 2022; 225:274818. [PMID: 35319758 DOI: 10.1242/jeb.243777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Heatwaves and droughts are becoming more intense and frequent with climate change. These extreme weather events often occur simultaneously and may alter organismal physiology, yet their combined impacts remain largely unknown. Here, we experimentally investigated physiological responses of a temperate ectotherm, the asp viper (Vipera aspis), to a simulated heatwave and drought. We applied a two-by-two factorial design by manipulating the daily temperature cycle (control vs. heatwave) and the water availability (water available vs. water-deprived) over a month followed by exposure to standard thermal conditions with ad libium access to water. Simulated heatwave and water deprivation additively increased mass loss, while water deprivation led to greater plasma osmolality (dehydration). Mass gain from drinking after the treatment period was higher in vipers from the heatwave and water-deprived group suggesting that thirst was synergistically influenced by thermal and water constraints. Heatwave conditions and water deprivation also additively increased baseline corticosterone levels but did not influence basal metabolic rates and plasma markers of oxidative stress. Our results demonstrate that a short-term exposure to combined heatwave and drought can exacerbate physiological stress through additive effects, and interactively impact behavioral responses to dehydration. Considering combined effects of temperature and water availability is thus crucial to assess organismal responses to climate change.
Collapse
Affiliation(s)
- Mathias Dezetter
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Jean-François Le Galliard
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Mathieu Leroux-Coyau
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - François Brischoux
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Fréderic Angelier
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Olivier Lourdais
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
6
|
No trans-generational maternal effects of early-life corticosterone exposure on neophobia and antipredator behaviour in the house sparrow. J ETHOL 2021. [DOI: 10.1007/s10164-021-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Knight K. Early stress reprograms adult sparrows’ metabolism. J Exp Biol 2019. [DOI: 10.1242/jeb.217497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|