1
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
2
|
Liu D, Zhang X, Chiqin F, Nyamwasa I, Cao Y, Yin J, Zhang S, Feng H, Li K. Octopamine modulates insect mating and Oviposition. J Chem Ecol 2022; 48:628-640. [PMID: 35687218 DOI: 10.1007/s10886-022-01366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
The neuro-mechanisms that regulate insect reproduction are not fully understood. Biogenic amines, including octopamine, are neuromodulators that have been shown to modulate insect reproduction in various ways, e.g., promote or inhibit insect mating or oviposition. In this study, we examined the role of octopamine in regulating the reproduction behaviors of a devastating underground insect pest, the dark black chafer (Holotrichia parallela). We first measured the abundance of octopamine in different neural tissues of the adult chafer pre- and post-mating, demonstrating that octopamine decreased in the abdominal ganglia of females but increased in males post-mating. We then fed the adult H. parallela with a concentration gradient of octopamine to test the effects on insect reproductive behaviors. Compared with its antagonist mianserin, octopamine at the concentration of 2 µg/mL resulted in the highest increase in males' preference for sex pheromone and females' oviposition, whereas the mianserin-treatment increased the survival rate and prolonged the lifespan of H. parallela. In addition, we did not observe significant differences in egg hatchability between octopamine and mianserin-treated H. parallela. Our results demonstrated that octopamine promotes H. parallela mating and oviposition with a clear low dosage effect, illustrated how neural substrates modulate insect behaviors, and provided insights for applying octopamine in pest management.
Collapse
Affiliation(s)
- Dandan Liu
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Xinxin Zhang
- Northeast Agricultural University, 150030, Harbin, Heilongjiang, China
| | - Fang Chiqin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Yazhong Cao
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China
| | - Honglin Feng
- Boyce Thompson Institute, 14853, Ithaca, NewYork, USA.
| | - Kebin Li
- State Key Laboratory for Biology, Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193, Beijing, China.
| |
Collapse
|
3
|
Strachecka A, Migdał P, Kuszewska K, Skowronek P, Grabowski M, Paleolog J, Woyciechowski M. Humoral and Cellular Defense Mechanisms in Rebel Workers of Apis mellifera. BIOLOGY 2021; 10:1146. [PMID: 34827139 PMCID: PMC8615136 DOI: 10.3390/biology10111146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
The physiological state of an insect depends on efficiently functioning immune mechanisms such as cellular and humoral defenses. However, compounds participating in these mechanisms also regulate reproductive caste formation and are responsible for reproductive division of labor as well as for labor division in sterile workers. Divergent reaction of the same genotype yielding reproductive queens and worker castes led to shaping of the physiological and behavioral plasticity of sterile or reproductive workers. Rebels that can lay eggs while maintaining tasks inside and outside the colony exhibit both queen and worker traits. So, we expected that the phagocytic index, JH3 titer, and Vg concentration would be higher in rebels than in normal workers and would increase with their age. We also assumed that the numbers of oenocytes and their sizes would be greater in rebels than in normal workers. The rebels and the normal workers were collected at the age of 1, 7, 14, and 21 days, respectively. Hemolymph and fat bodies were collected for biochemical and morphological analyses. The high levels of JH, Vg, and the phagocytic index, as well as increased numbers and sizes of oenocytes in the fat body cells demonstrate the physiological and phenotypic adaptation of rebels to the eusocial life of honeybees.
Collapse
Affiliation(s)
- Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Paweł Migdał
- Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Karolina Kuszewska
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| | - Patrycja Skowronek
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Marcin Grabowski
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Jerzy Paleolog
- Department of Invertebrate Ecophysiology and Experimental Biology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (P.S.); (M.G.); (J.P.)
| | - Michał Woyciechowski
- Institute of Environmental Sciences, Jagiellonian University, 30-387 Krakow, Poland; (K.K.); (M.W.)
| |
Collapse
|
4
|
Akülkü İ, Ghanem S, Filiztekin E, Suwannapong G, Mayack C. Age-Dependent Honey Bee Appetite Regulation Is Mediated by Trehalose and Octopamine Baseline Levels. INSECTS 2021; 12:insects12100863. [PMID: 34680632 PMCID: PMC8539172 DOI: 10.3390/insects12100863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Appetite regulation is an important function necessary to maintain energetic balance, but how honey bees accomplish this could vary as they age because they go through a number of behavioral and physiological changes during development. Here, we determine if the amount of trehalose, which is a sugar found in the hemolymph of honey bees, influences appetite levels and if this interacts with the octopamine neurotransmitter in the bee brain. To accomplish this, we decreased trehalose levels in the hemolymph by injecting an inhibitor of trehalose synthesis. In addition, we increased octopamine levels in the brain by injecting it with a syringe. We found that octopamine and trehalose interact to increase appetite in the two older age classes of bees, beyond just treating the bees with octopamine. The youngest age class did not respond to either treatment. Our results suggest that older honey bees may have an alternative pathway for regulating appetite that uses sugar levels in their hemolymph to communicate to the brain how hungry they are and that octopamine is responsible for elevating appetite levels when the bee is hungry. This pathway is different from how vertebrates regulate their appetite levels based on glucose levels in the blood. Abstract There are multiple feedback mechanisms involved in appetite regulation, which is an integral part of maintaining energetic homeostasis. Older forager honey bees, in comparison to newly emerged bees and nurse bees, are known to have highly fluctuating hemolymph trehalose levels, higher appetite changes due to starvation, and higher octopamine levels in the brain. What remains unknown is if the hemolymph trehalose and octopamine levels interact with one another and how this varies as the bee ages. We manipulated trehalose and octopamine levels across age using physiological injections and found that nurse and forager bees increase their appetite levels due to increased octopamine levels in the brain. This is further enhanced by lower trehalose levels in the hemolymph. Moreover, nurse bees with high octopamine levels in the brain and low trehalose levels had the same appetite levels as untreated forager bees. Our findings suggest that the naturally higher levels of octopamine as the bee ages may result in higher sensitivity to fluctuating trehalose levels in the hemolymph that results in a more direct way of assessing the energetic state of the individual. Consequently, forager bees have a mechanism for more precise regulation of appetite in comparison to newly emerged and nurse bees.
Collapse
Affiliation(s)
- İrem Akülkü
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Saleh Ghanem
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Elif Filiztekin
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| | - Guntima Suwannapong
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand
- Correspondence: ; Tel.: +66-3810-3088
| | - Christopher Mayack
- Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956 İstanbul, Turkey; (İ.A.); (S.G.); (E.F.); (C.M.)
| |
Collapse
|
5
|
Adipokinetic hormone (AKH), energy budget and their effect on feeding and gustatory processes of foraging honey bees. Sci Rep 2021; 11:18311. [PMID: 34526585 PMCID: PMC8443544 DOI: 10.1038/s41598-021-97851-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/31/2021] [Indexed: 02/08/2023] Open
Abstract
The adipokinetic hormone (AKH) of insects is considered an equivalent of the mammalian hormone glucagon as it induces fast mobilization of carbohydrates and lipids from the fat body upon starvation. Yet, in foraging honey bees, which lack fat body storage for carbohydrates, it was suggested that AKH may have lost its original function. Here we manipulated the energy budget of bee foragers to determine the effect of AKH on appetitive responses. As AKH participates in a cascade leading to acceptance of unpalatable substances in starved Drosophila, we also assessed its effect on foragers presented with sucrose solution spiked with salicin. Starved and partially-fed bees were topically exposed with different doses of AKH to determine if this hormone modifies food ingestion and sucrose responsiveness. We found a significant effect of the energy budget (i.e. starved vs. partially-fed) on the decision to ingest or respond to both pure sucrose solution and sucrose solution spiked with salicin, but no effect of AKH per se. These results are consistent with a loss of function of AKH in honey bee foragers, in accordance with a social life that implies storing energy resources in the hive, in amounts that exceed individual needs.
Collapse
|
6
|
Naree S, Ponkit R, Chotiaroonrat E, Mayack CL, Suwannapong G. Propolis Extract and Chitosan Improve Health of Nosema ceranae Infected Giant Honey Bees, Apis dorsata Fabricius, 1793. Pathogens 2021; 10:785. [PMID: 34206455 PMCID: PMC8308750 DOI: 10.3390/pathogens10070785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 01/18/2023] Open
Abstract
Nosema ceranae is a large contributing factor to the most recent decline in honey bee health worldwide. Developing new alternative treatments against N. ceranae is particularly pressing because there are few treatment options available and therefore the risk of increased antibiotic resistance is quite high. Recently, natural products have demonstrated to be a promising avenue for finding new effective treatments against N. ceranae. We evaluated the effects of propolis extract of stingless bee, Tetrigona apicalis and chito-oligosaccharide (COS) on giant honey bees, Apis dorsata, experimentally infected with N. ceranae to determine if these treatments could improve the health of the infected individuals. Newly emerged Nosema-free bees were individually inoculated with 106N. ceranae spores per bee. We fed infected and control bees the following treatments consisting of 0%, 50%, propolis extracts, 0 ppm and 0.5 ppm COS in honey solution (w/v). Propolis extracts and COS caused a significant increase in trehalose levels in hemolymph, protein contents, survival rates and acini diameters of the hypopharyngeal glands in infected bees. Our results suggest that propolis and COS could improve the health of infected bees. Further research is needed to determine the underlying mechanisms responsible for the improved health of the infected bees.
Collapse
Affiliation(s)
- Sanchai Naree
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand; (S.N.); (R.P.); (E.C.)
| | - Rujira Ponkit
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand; (S.N.); (R.P.); (E.C.)
| | - Evada Chotiaroonrat
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand; (S.N.); (R.P.); (E.C.)
| | - Christopher L. Mayack
- Molecular Biology, Genetics, and Bioengineering, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Guntima Suwannapong
- Biological Science Program, Faculty of Science, Burapha University, Chon Buri 20131, Thailand; (S.N.); (R.P.); (E.C.)
| |
Collapse
|
7
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|