1
|
Tabh JKR, Persson E, Correia M, Cuív CÓ, Thoral E, Nord A. Limited evidence that body size shrinking and shape-shifting alleviate thermoregulatory pressures in a warmer world. Commun Biol 2025; 8:707. [PMID: 40335683 PMCID: PMC12059039 DOI: 10.1038/s42003-025-08131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Amassing evidence indicates that vertebrates across the globe are shrinking and changing shape concurrent with rising temperatures. Ecogeographical theories assert that these changes should provide thermoregulatory benefits by easing heat dissipation, however, thermophysical models underpinning such theories are highly simplified and lack empirical validation. Using data from three temperature-manipulation experiments, we quantified the contributions of body size and appendage lengths toward thermoregulatory performance in Japanese quail, while simultaneously querying neutral plasticity as an alternative driver of avian shape-shifts. In the cold, body mass and leg length (here, tarsus length) influenced energy costs of warming, but only among juveniles. In the warmth, smaller body sizes, longer legs and longer bills independently reduced energy and water costs of cooling across ages, but whole-body phenotypes necessary to provide even moderate thermoregulatory benefits were rare (2.5%) and required large departures from allometry. Last, rearing in the warmth reduced body sizes and increased appendage lengths comparable to recent changes observed in nature, but emergent morphologies provided no clear thermoregulatory benefit. Our findings question whether shrinking and shape-shifting are indeed easing thermoregulation in birds or reflect selection for such. Neutral plasticity, or relaxed selection against small body size in juveniles, may better explain recent avian shape-shifting.
Collapse
Affiliation(s)
| | - Elin Persson
- Department of Biology, Lund University, Lund, Sweden
| | - Maria Correia
- Department of Biology, Lund University, Lund, Sweden
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Ciarán Ó Cuív
- Department of Biology, Lund University, Lund, Sweden
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Elisa Thoral
- Department of Biology, Lund University, Lund, Sweden
- Département de Biologie, LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université, La Rochelle, France
| | - Andreas Nord
- Department of Biology, Lund University, Lund, Sweden
- Swedish Centre for Impacts of Climate Extremes (climes), Lund University, Lund, Sweden
| |
Collapse
|
2
|
Crandell KE, Powers DR, Tobalske BW. The role of plumage and heat dissipation areas in thermoregulation in doves. J Exp Biol 2025; 228:JEB248200. [PMID: 39976466 PMCID: PMC12000677 DOI: 10.1242/jeb.248200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/20/2024] [Indexed: 04/18/2025]
Abstract
Avian plumage contributes to the regulation of body temperature. In most climates, avian heat dissipation occurs passively via radiation, conduction and convection owing to the thermal gradient between the environment and the animal. The muscles that power flight also produce significant heat that must be dissipated. How plumage and areas with sparse or no feathers (termed 'heat dissipation areas', HDAs) interact with these mechanisms is unclear. We examined the role of plumage as an insulator, or dissipator, of heat in ringed turtle-doves (Streptopelia risoria) under four thermal regimes: resting, post-flight, heating via radiative lamps, and cooling via wind. We measured internal body temperature and skin-level temperature (under the plumage) using thermal PIT tags alongside surface temperature using a thermal imaging camera. Flight increased internal temperature by 0.6°C compared with resting, but the other treatments did not have significant effects. The skin-level temperature during wind exposure was 1.6°C cooler than in other conditions. HDAs changed in surface area above 35°C but not maximum temperature among treatments. Post-flight and during radiant heating, birds increased HDA surface area - most notably at the wing. During simulated wind produced using a fan, the HDAs of the beak and wing were eliminated, and areas of other HDAs were reduced. Our results demonstrate that birds modulate active HDAs to maintain consistent core body temperatures under induced temperature challenges. They also promote caution for extrapolating from thermal images of surface temperature to infer core temperature in birds.
Collapse
Affiliation(s)
- Kristen E. Crandell
- School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Donald R. Powers
- Biology Department, George Fox University, Newberg, OR 97132, USA
| | - Bret W. Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Hawkshaw DM, Wijmenga JJ, Mathot KJ. Individual variation in diurnal body temperature and foraging activity in overwintering black-capped chickadees (Poecile atricapillus). J Therm Biol 2025; 127:104059. [PMID: 39892080 DOI: 10.1016/j.jtherbio.2025.104059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Small birds in winter can mitigate energetic shortfalls via increases in foraging and/or via controlled reductions in metabolic rate and body temperature (torpor). The ability to both increase foraging and use torpor during the day could have profound implications for an individual's daily energy budget and overwinter survival. Trade-offs between foraging efficiency and daytime torpor use may exist but have not been explicitly investigated. Here, we investigated the presence of within- and among-individual correlations between daytime body temperature (Tb, a proxy for torpor use) and foraging in overwintering black-capped chickadees (Poecile atricapillus). Using temperature-sensing passive integrated transponder tags, we measured daytime Tb and foraging in 20 free-living chickadees over 49 days in a single winter (January-February). Chickadees generally exhibited Tb around normothermic levels with an average Tb during visits to the feeder of 41.7 °C, though Tb ranged between 25.0 and 44.9 °C. Chickadees exhibited moderately lower daytime Tb, shorter time intervals between successive feeder visits (IVI), and increased feeder visits as ambient temperature decreased. However, within individuals there was only evidence of a weak positive correlation between visit Tb and IVI, and no correlation between daily feeder visits and daily mean visit Tb. We found that visit Tb, daily mean visit Tb, and daily feeder visits were repeatable, while IVI was not. Sex did not explain a significant amount of variation in total daily feeder visits or daytime Tb, nor was there evidence of among-individual correlations between daily mean visit Tb and daily feeder visits. Our results suggests that chickadees may independently regulate foraging and diurnal Tb. Overall, our study provides insights into how small birds in winter can use multiple strategies to overcome energetic challenges. Future studies investigating diurnal torpor and its integration with other strategies are needed to further elucidate how small birds survive harsh winter conditions.
Collapse
Affiliation(s)
- Deborah M Hawkshaw
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada.
| | - Jan J Wijmenga
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada; Integrative Ecology, Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
4
|
Lewden A, Halna du Fretay T, Stier A. Changes in body surface temperature reveal the thermal challenge associated with catastrophic moult in captive gentoo penguins. J Exp Biol 2024; 227:jeb247332. [PMID: 38826104 PMCID: PMC11213523 DOI: 10.1242/jeb.247332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/12/2024] [Indexed: 06/04/2024]
Abstract
Once a year, penguins undergo a catastrophic moult, replacing their entire plumage during a fasting period on land or on sea-ice during which time individuals can lose 45% of their body mass. In penguins, new feather synthesis precedes the loss of old feathers, leading to an accumulation of two feather layers (double coat) before the old plumage is shed. We hypothesized that the combination of the high metabolism required for new feather synthesis and the potentially high thermal insulation linked to the double coat could lead to a thermal challenge requiring additional peripheral circulation to thermal windows to dissipate the extra heat. To test this hypothesis, we measured the surface temperature of different body regions of captive gentoo penguins (Pygoscelis papua) throughout the moult under constant environmental conditions. The surface temperature of the main body trunk decreased during the initial stages of the moult, suggesting greater thermal insulation. In contrast, the periorbital region, a potential proxy of core temperature in birds, increased during these same early moulting stages. The surface temperature of the bill, flipper and foot (thermal windows) tended to initially increase during the moult, highlighting the likely need for extra heat dissipation in moulting penguins. These results raise questions regarding the thermoregulatory capacities of penguins in the wild during the challenging period of moulting on land in the current context of global warming.
Collapse
Affiliation(s)
- Agnès Lewden
- Université de Brest - UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l'environnement marin – IUEM, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Tristan Halna du Fretay
- Université de Brest - UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l'environnement marin – IUEM, Rue Dumont D'Urville, 29280 Plouzané, France
| | - Antoine Stier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
5
|
Lewden A, Ward C, Noiret A, Avril S, Abolivier L, Gérard C, Hammer TL, Raymond É, Robin JP, Viblanc VA, Bize P, Stier A. Surface temperatures are influenced by handling stress independently of corticosterone levels in wild king penguins (Aptenodytes patagonicus). J Therm Biol 2024; 121:103850. [PMID: 38608548 DOI: 10.1016/j.jtherbio.2024.103850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/14/2024]
Abstract
Assessing the physiological stress responses of wild animals opens a window for understanding how organisms cope with environmental challenges. Since stress response is associated with changes in body temperature, the use of body surface temperature through thermal imaging could help to measure acute and chronic stress responses non-invasively. We used thermal imaging, acute handling-stress protocol and an experimental manipulation of corticosterone (the main glucocorticoid hormone in birds) levels in breeding king penguins (Aptenodytes patagonicus), to assess: 1. The potential contribution of the Hypothalamo-Pituitary-Adrenal (HPA) axis in mediating chronic and acute stress-induced changes in adult surface temperature, 2. The influence of HPA axis manipulation on parental investment through thermal imaging of eggs and brooded chicks, and 3. The impact of parental treatment on offspring thermal's response to acute handling. Maximum eye temperature (Teye) increased and minimum beak temperature (Tbeak) decreased in response to handling stress in adults, but neither basal nor stress-induced surface temperatures were significantly affected by corticosterone implant. While egg temperature was not significantly influenced by parental treatment, we found a surprising pattern for chicks: chicks brooded by the (non-implanted) partner of corticosterone-implanted individuals exhibited higher surface temperature (both Teye and Tbeak) than those brooded by glucocorticoid-implanted or control parents. Chick's response to handling in terms of surface temperature was characterized by a drop in both Teye and Tbeak independently of parental treatment. We conclude that the HPA axis seems unlikely to play a major role in determining chronic or acute changes in surface temperature in king penguins. Changes in surface temperature may primarily be mediated by the Sympathetic-Adrenal-Medullary (SAM) axis in response to stressful situations. Our experiment did not reveal a direct impact of parental HPA axis manipulation on parental investment (egg or chick temperature), but a potential influence on the partner's brooding behaviour.
Collapse
Affiliation(s)
- Agnès Lewden
- Faculty of Biological Sciences, University of Leeds, Leeds, UK; Université de Brest - UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des Sciences de l'environnement Marin - IUEM, Rue Dumont D'Urville, 29280, Plouzané, France.
| | - Chelsea Ward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Aude Noiret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Sandra Avril
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Lucie Abolivier
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Caroline Gérard
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Tracey L Hammer
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Émilie Raymond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Jean-Patrice Robin
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Ornithological Institute, CH-6204, Sempach, Switzerland
| | - Antoine Stier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France; Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000, Strasbourg, France; Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
6
|
Jerem P, Romero LM. It's cool to be stressed: body surface temperatures track sympathetic nervous system activation during acute stress. J Exp Biol 2023; 226:jeb246552. [PMID: 37767773 PMCID: PMC10629684 DOI: 10.1242/jeb.246552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
The acute stress response can be considered the primary evolutionary adaptation to maximise fitness in the face of unpredictable environmental challenges. However, the difficulties of assessing physiology in natural environments mean that comparatively little is known about how response variation influences fitness in free-living animals. Currently, determining acute stress physiology typically involves blood sampling or cardiac monitoring. Both require trapping and handling, interrupting natural behaviour, and potentially biasing our understanding toward trappable species/individuals. Importantly, limits on repeated sampling also restrict response phenotype characterisation, vital for linking stress with fitness. Surface temperature dynamics resulting from peripheral vasomotor activity during acute stress are increasingly promoted as alternative physiological stress indicators, which can be measured non-invasively using infrared thermal imaging, overcoming many limitations of current methods. Nonetheless, which aspects of stress physiology they represent remains unclear, as the underlying mechanisms are unknown. To date, validations have primarily targeted the hypothalamic-pituitary-adrenal axis, when the sympathetic-adrenal-medullary (SAM) system is likely the primary driver of vasomotor activity during acute stress. To address this deficit, we compared eye and bill region surface temperatures (measured using thermal imaging) with SAM system activity (measured as heart rate variability via electrocardiogram telemetry) in wild-caught captive house sparrows (Passer domesticus) during capture and handling. We found that lower body surface temperatures were associated with increased sympathetic nervous system activation. Consequently, our data confirm that body surface temperatures can act as a proxy for sympathetic activation during acute stress, providing potentially transformative opportunities for linking the acute stress response with fitness in the wild.
Collapse
Affiliation(s)
- Paul Jerem
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
7
|
Soravia C, Ashton BJ, Ridley AR. Periorbital temperature responses to natural air temperature variation in wild birds. J Therm Biol 2022; 109:103323. [DOI: 10.1016/j.jtherbio.2022.103323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
|
8
|
Eye Region Surface Temperature and Corticosterone Response to Acute Stress in a High-Arctic Seabird, the Little Auk. Animals (Basel) 2022; 12:ani12040499. [PMID: 35203208 PMCID: PMC8868316 DOI: 10.3390/ani12040499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Measuring changes in surface body temperature (specifically in eye-region) in vertebrates using infrared thermography is increasingly applied for detection of the stress reaction. Here we investigated the relationship between the eye-region temperature (TEYE; measured with infrared thermography), the corticosterone level in blood (CORT; stress indicator in birds), and some covariates (ambient temperature, humidity, and sex/body size) in a High-Arctic seabird, the Little Auk Alle alle. The birds responded to the capture-restrain protocol (blood sampling at the moment of capturing, and after 30 min of restrain) by a significant TEYE and CORT increase. However, the strength of the TEYE and CORT response to acute stress were not correlated. It confirms the results of a recent study on other species and all together indicates that infrared thermography is a useful, non-invasive measure of hypothalamic-pituitary-adrenal (HPA) axis reactivity under acute activation, but it might not be a suitable proxy for natural variation of circulating glucocorticoid levels.
Collapse
|
9
|
Tabh JKR, Mastromonaco GF, Burness G. Stress-induced changes in body surface temperature are repeatable, but do not differ between urban and rural birds. Oecologia 2022; 198:663-677. [PMID: 35138449 DOI: 10.1007/s00442-022-05120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/18/2022] [Indexed: 11/29/2022]
Abstract
Urbanisation can alter local microclimates, thus creating new thermal challenges for resident species. However, urban environments also present residents with frequent, novel stressors (e.g., noise, human interaction) which may demand investment in costly, self-preserving responses (e.g., the fight-or-flight response). One way that urban residents might cope with this combination of demands is by using regional heterothermy to reduce costs of thermoregulation during the stress response. In this study, we used black-capped chickadees (nurban = 9; nrural = 10) to test whether known heterothermic responses to stress exposure (here, at the bare skin around the eye): (1) varied consistently among individuals (i.e., were repeatable), and (2) were most pronounced among urban individuals compared with rural individuals. Further, to gather evidence for selection on stress-induced heterothermic responses in urban settings, we tested: (3) whether repeatability of this response was lower among birds sampled from urban environments compared with those sampled from rural environments. For the first time, we show that heterothermic responses to stress exposures (i.e. changes in body surface temperature) were highly repeatable across chronic time periods (R = 0.58) but not acute time periods (R = 0.13). However, we also show that these responses did not differ between urban and rural birds, nor were our repeatability estimates any lower in our urban sample. Thus, while regional heterothermy during stress exposure may provide energetic benefits to some, but not all, individuals, enhanced use of this response to cope with urban pressures appears unlikely in our study species.
Collapse
Affiliation(s)
- Joshua K R Tabh
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, K9L 0G2, Canada. .,Department of Wildlife and Science, Toronto Zoo, Scarborough, ON, M1B 5K7, Canada.
| | | | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
10
|
do Amaral-Silva L, da Silva WC, Gargaglioni LH, Bícego KC. Metabolic trade-offs favor regulated hypothermia and inhibit fever in immune-challenged chicks. J Exp Biol 2022; 225:274497. [DOI: 10.1242/jeb.243115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
The febrile response to resist a pathogen is energetically expensive while regulated hypothermia seems to preserve energy for vital functions. We hypothesized here that immune challenged birds under metabolic trade-offs (reduced energy supply / increased energy demand) favor a regulated hypothermic response at the expense of fever. To test this hypothesis, we compared 5-days old broiler chicks exposed to fasting, cold (25oC), and fasting combined with cold to a control group fed at thermoneutral condition (30oC). The chicks were injected with saline or with a high dose of endotoxin known to induce a biphasic thermal response composed of body temperature (Tb) drop followed by fever. Then Tb, oxygen consumption (metabolic rate), peripheral vasomotion (cutaneous heat exchange), breathing frequency (respiratory heat exchange), and huddling behavior (heat conservation indicator) were analyzed. Irrespective of metabolic trade-offs, chicks presented a transient regulated hypothermia in the first hour, which relied on a suppressed metabolic rate for all groups, increased breathing frequency for chicks fed/fasted at 30oC, and peripheral vasodilation in fed/fasted chicks at 25oC. Fever was observed only in chicks kept at thermoneutrality and was supported by peripheral vasoconstriction and huddling behavior. Fed and fasted chicks at 25oC completely eliminated fever despite the ability to increase metabolic rate for thermogenesis in the phase correspondent to fever when it was pharmacologically induced by 2.4-Dinitrophenol. Our data suggest that increased competing demands affect chicks’ response to an immune challenge favoring regulated hypothermia to preserve energy while the high costs of fever to resist a pathogen are avoided.
Collapse
Affiliation(s)
- Lara do Amaral-Silva
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
- Department of Biology, University of North Carolina at Greensboro (UNCG), Greensboro, NC, USA
| | - Welex Cândido da Silva
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Luciane Helena Gargaglioni
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| | - Kênia Cardoso Bícego
- Department of Animal Morphology and Physiology, São Paulo State University (FCAV-UNESP), Jaboticabal, SP, Brazil
| |
Collapse
|
11
|
Playà‐Montmany N, González‐Medina E, Cabello‐Vergel J, Parejo M, Abad‐Gómez JM, Sánchez‐Guzmán JM, Villegas A, Masero JA. The thermoregulatory role of relative bill and leg surface areas in a Mediterranean population of Great tit ( Parus major). Ecol Evol 2021; 11:15936-15946. [PMID: 34824801 PMCID: PMC8601919 DOI: 10.1002/ece3.8263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 11/07/2022] Open
Abstract
There is growing evidence on the role of legs and bill as 'thermal windows' in birds coping with heat stress. However, there is a lack of empirical work examining the relationship between the relative bill and/or leg surface areas and key thermoregulatory traits such as the limits of the thermoneutral zone (TNZ) or the cooling efficiency at high temperatures. Here, we explored this relationship in a Mediterranean population of Great tit (Parus major) facing increasing thermal stress in its environment. The lower and upper critical limits of the TNZ were found to be 17.7 ± 1.6ºC and 34.5 ± 0.7°C, respectively, and the basal metabolic rate was 0.96 ± 0.12 ml O2 min-1 on average. The evaporative water loss (EWL) inflection point was established at 31.85 ± 0.27°C and was not significantly different from the value of the upper critical limit. No significant relationship was observed between the relative bill or tarsi size and TNZ critical limits, breadth, mass-independent VO2, or mass-independent EWL at any environmental temperature (from 10 to 40°C). However, Great tit males (but not females) with larger tarsi areas (a proxy of leg surface area) showed higher cooling efficiencies at 40°C. We found no support for the hypothesis that the bill surface area plays a significant role as a thermal window in Great tits, but the leg surface areas may play a role in males' physiological responses to high temperatures. On the one hand, we argue that the studied population occupies habitats with available microclimates and fresh water for drinking during summer, so active heat dissipation by EWL might be favored instead of dry heat loss through the bill surface. Conversely, male dominance behaviors could imply a greater dependence on cutaneous EWL through the upper leg surfaces as a consequence of higher exposure to harsh environmental conditions than faced by females.
Collapse
Affiliation(s)
- Núria Playà‐Montmany
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Erick González‐Medina
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Julián Cabello‐Vergel
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Manuel Parejo
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - José M. Abad‐Gómez
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Juan M. Sánchez‐Guzmán
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
- Ecology in the AnthropoceneAssociated Unit CSIC‐UEXFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - Auxiliadora Villegas
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
- Ecology in the AnthropoceneAssociated Unit CSIC‐UEXFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| | - José A. Masero
- Conservation Biology Research GroupFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
- Ecology in the AnthropoceneAssociated Unit CSIC‐UEXFacultad de CienciasUniversidad de ExtremaduraBadajozSpain
| |
Collapse
|
12
|
Trondrud LM, Pigeon G, Albon S, Arnold W, Evans AL, Irvine RJ, Król E, Ropstad E, Stien A, Veiberg V, Speakman JR, Loe LE. Determinants of heart rate in Svalbard reindeer reveal mechanisms of seasonal energy management. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200215. [PMID: 34176322 PMCID: PMC8237166 DOI: 10.1098/rstb.2020.0215] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Seasonal energetic challenges may constrain an animal's ability to respond to changing individual and environmental conditions. Here, we investigated variation in heart rate, a well-established proxy for metabolic rate, in Svalbard reindeer (Rangifer tarandus platyrhynchus), a species with strong seasonal changes in foraging and metabolic activity. In 19 adult females, we recorded heart rate, subcutaneous temperature and activity using biologgers. Mean heart rate more than doubled from winter to summer. Typical drivers of energy expenditure, such as reproduction and activity, explained a relatively limited amount of variation (2-6% in winter and 16-24% in summer) compared to seasonality, which explained 75% of annual variation in heart rate. The relationship between heart rate and subcutaneous temperature depended on individual state via body mass, age and reproductive status, and the results suggested that peripheral heterothermy is an important pathway of energy management in both winter and summer. While the seasonal plasticity in energetics makes Svalbard reindeer well-adapted to their highly seasonal environment, intraseasonal constraints on modulation of their heart rate may limit their ability to respond to severe environmental change. This study emphasizes the importance of encompassing individual state and seasonal context when studying energetics in free-living animals. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- L. Monica Trondrud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| | - Gabriel Pigeon
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Québec, Canada, J1 K 2R1
| | - Steve Albon
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
| | - Walter Arnold
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstr. 1, 1160 Vienna, Austria
| | - Alina L. Evans
- Department of Forestry and Wildlife Management, Inland Norway University of Applied Sciences, Campus Evenstad, 2418 Elverum, Norway
| | - R. Justin Irvine
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
- Frankfurt Zoological Society, PO Box 100003, South Africa Street, Addis Ababa, Ethiopia
| | - Elżbieta Król
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Erik Ropstad
- Faculty of Veterinary Science, Norwegian University of Life Sciences, PO Box 8146, NO-0033 Oslo, Norway
| | - Audun Stien
- Department of Arctic and Marine Biology, The Arctic University of Norway, PO Box 6050 Langnes, NO-9037 Tromsø, Norway
| | - Vebjørn Veiberg
- Norwegian Institute for Nature Research, PO Box 5685 Torgarden, NO-7485 Trondheim, Norway
| | - John R. Speakman
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming 650223, People's Republic of China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Leif Egil Loe
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway
| |
Collapse
|
13
|
Tabh JKR, Burness G, Wearing OH, Tattersall GJ, Mastromonaco GF. Infrared thermography as a technique to measure physiological stress in birds: Body region and image angle matter. Physiol Rep 2021; 9:e14865. [PMID: 34057300 PMCID: PMC8165734 DOI: 10.14814/phy2.14865] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
In vertebrates, changes in surface temperature following exposure to an acute stressor are thought to be promising indicators of the physiological stress response that may be captured noninvasively by infrared thermography. However, the efficacy of using stress-induced changes in surface temperature as indicators of physiological stress-responsiveness requires: (1) an understanding of how such responses vary across the body, (2) a magnitude of local, stress-induced thermal responses that is large enough to discriminate and quantify differences among individuals with conventional technologies, and (3) knowledge of how susceptible measurements across different body regions are to systematic error. In birds, temperature of the bare tissues surrounding the eye (the periorbital, or "eye," region) and covering the bill have each been speculated as possible predictors of stress physiological state. Using the domestic pigeon (Columba livia domestica; n = 9), we show that stress-induced changes in surface temperature are most pronounced at the bill and that thermal responses at only the bill have sufficient resolution to detect and quantify differences in responsiveness among individuals. More importantly, we show that surface temperature estimates at the eye region experience greater error due to changes in bird orientation than those at the bill. Such error concealed detection of stress-induced thermal responses at the eye region. Our results highlight that: (1) in some species, bill temperature may serve as a more robust indicator of autonomic stress-responsiveness than eye region temperature, and (2) future studies should account for spatial orientation of study individuals if inference is to be drawn from infrared thermographic images.
Collapse
Affiliation(s)
- Joshua K R Tabh
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.,Department of Wildlife and Science, Toronto Zoo, Scarborough, ON, Canada
| | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON, Canada
| | - Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, Canada
| | | |
Collapse
|
14
|
Stone DW, Gunn C, Nord A, Phillips RA, McCafferty DJ. Plumage development and environmental factors influence surface temperature gradients and heat loss in wandering albatross chicks. J Therm Biol 2020; 97:102777. [PMID: 33863421 DOI: 10.1016/j.jtherbio.2020.102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 10/23/2022]
Abstract
Young birds in cold environments face a range of age-specific thermal challenges. Studying the thermal biology of young birds throughout ontogeny may further our understanding of how such challenges are met. We investigated how age and environmental parameters influenced surface temperature gradients across various body regions of wandering albatross (Diomedea exulans) chicks on Bird Island, South Georgia. This study was carried out over a 200 d period during the austral winter, from the end of the brood-guard period until fledging, bridging a gap in knowledge of surface temperature variation and heat loss in developing birds with a long nestling stage in severe climatic conditions. We found that variation in surface temperature gradients (i.e. the difference between surface and environmental temperature) was strongly influenced by chick age effects for insulated body regions (trunk), with an increase in the surface temperature gradient that followed the progression of plumage development, from the second set of down (mesoptiles), to final chick feathers (teleoptiles). Environmental conditions (primarily wind speed and relative humidity) had a stronger influence on the gradients in uninsulated areas (eye, bill) than insulated regions, which we interpret as a reflection of the relative degree of homeothermy exhibited by chicks of a given age. Based on biophysical modelling, total heat loss of chicks was estimated to increase linearly with age. However, mass specific heat loss decreased during the early stages of growth and then subsequently increased. This was attributed to age-related changes in feather growth and activity that increased surface temperature and, hence, metabolic heat loss. These results provide a foundation for further work on the effects of environmental stressors on developing chicks, which are key to understanding the physiological responses of animals to changes in climate in polar regions.
Collapse
Affiliation(s)
- David W Stone
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Rowardennan, G63 OAW, UK.
| | - Carrie Gunn
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Andreas Nord
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Rowardennan, G63 OAW, UK; Department of Biology, Section for Evolutionary Ecology, Sölvegatan 37, Lund University, SE-223 62, Lund, Sweden
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Dominic J McCafferty
- Scottish Centre for Ecology and the Natural Environment, Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Rowardennan, G63 OAW, UK
| |
Collapse
|
15
|
Robertson JK, Mastromonaco GF, Burness G. Social hierarchy reveals thermoregulatory trade-offs in response to repeated stressors. J Exp Biol 2020; 223:jeb229047. [PMID: 32967999 DOI: 10.1242/jeb.229047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022]
Abstract
Coping with stressors can require substantial energetic investment, and when resources are limited, such investment can preclude simultaneous expenditure on other biological processes. Among endotherms, energetic demands of thermoregulation can also be immense, yet our understanding of whether a stress response is sufficient to induce changes in thermoregulatory investment is limited. Using the black-capped chickadee as a model species, we tested a hypothesis that stress-induced changes in surface temperature (Ts), a well-documented phenomenon across vertebrates, stem from trade-offs between thermoregulation and stress responsiveness. Because social subordination is known to constrain access to resources in this species, we predicted that Ts and dry heat loss of social subordinates, but not social dominants, would fall under stress exposure at low ambient temperatures (Ta), and rise under stress exposure at high Ta, thus permitting a reduction in total energetic expenditure toward thermoregulation. To test our predictions, we exposed four social groups of chickadees to repeated stressors and control conditions across a Ta gradient (n=30 days/treatment/group), whilst remotely monitoring social interactions and Ts Supporting our hypothesis, we show that: (1) social subordinates (n=12), who fed less than social dominants and alone experienced stress-induced mass-loss, displayed significantly larger changes in Ts following stress exposure than social dominants (n=8), and (2) stress-induced changes in Ts significantly increased heat conservation at low Ta and heat dissipation at high Ta among social subordinates alone. These results suggest that chickadees adjust their thermoregulatory strategies during stress exposure when resources are limited by ecologically relevant processes.
Collapse
Affiliation(s)
- Joshua K Robertson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada K9L 0G2
- Department of Wildlife and Science, Toronto Zoo, Scarborough, ON, Canada M1B 5K7
| | | | - Gary Burness
- Department of Biology, Trent University, Peterborough, ON, Canada K9L 0G2
| |
Collapse
|