1
|
Waring AL, Hill J, Allen BM, Bretz NM, Le N, Kr P, Fuss D, Mortimer NT. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. INSECTS 2022; 13:insects13050490. [PMID: 35621824 PMCID: PMC9147463 DOI: 10.3390/insects13050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Organisms can be infected by a wide range of pathogens, including bacteria, viruses, and parasites. Following infection, the host mounts an immune response to attempt to eliminate the pathogen. These responses are often specific to the type of pathogen and mediated by the expression of specialized genes. We have characterized the expression changes induced in host Drosophila fruit flies following infection by multiple types of pathogens, and identified a small number of genes that show expression changes in each infection. This includes genes that are known to be involved in pathogen resistance, and others that have not been previously studied as immune response genes. These findings provide new insight into transcriptional changes that accompany Drosophila immunity. They may suggest possible roles for the differentially expressed genes in innate immune responses to diverse classes of pathogens, and serve to identify candidate genes for further empirical study of these processes. Abstract Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from Drosophila melanogaster following infection with a wide array of pathogens. We identified 62 genes that are significantly induced by infection. While many of these infection-induced genes encode known immune response factors, we also identified 21 genes that have not been previously associated with host immunity. Examination of the upstream flanking sequences of the infection-induced genes lead to the identification of two conserved enhancer sites. These sites correspond to conserved binding sites for GATA and nuclear factor κB (NFκB) family transcription factors and are associated with higher levels of transcript induction. We further identified 31 genes with predicted functions in metabolism and organismal development that are significantly downregulated following infection by diverse pathogens. Our study identifies conserved gene expression changes in Drosophila melanogaster following infection with varied pathogens, and transcription factor families that may regulate this immune induction.
Collapse
|
2
|
Ryan SM, Almassey M, Burch AM, Ngo G, Martin JM, Myers D, Compton D, Archie S, Cross M, Naeger L, Salzman A, Virola‐Iarussi A, Barbee SA, Mortimer NT, Sanyal S, Vrailas‐Mortimer AD. Drosophila p38 MAPK interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. Aging Cell 2021; 20:e13481. [PMID: 34674371 PMCID: PMC8590102 DOI: 10.1111/acel.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
Collapse
Affiliation(s)
- Sarah M. Ryan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Michael Almassey
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Gia Ngo
- Department of Biological Sciences University of Denver Denver CO USA
| | - Julia M. Martin
- School of Biological Sciences Illinois State University Normal IL USA
| | - David Myers
- School of Biological Sciences Illinois State University Normal IL USA
| | - Devin Compton
- School of Biological Sciences Illinois State University Normal IL USA
| | - Shira Archie
- School of Biological Sciences Illinois State University Normal IL USA
| | - Megan Cross
- School of Biological Sciences Illinois State University Normal IL USA
| | - Lauren Naeger
- School of Biological Sciences Illinois State University Normal IL USA
| | - Ashley Salzman
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Scott A. Barbee
- Department of Biological Sciences University of Denver Denver CO USA
| | | | - Subhabrata Sanyal
- Department of Cell Biology Emory University Atlanta GA USA
- Calico San Francisco CA USA
| | - Alysia D. Vrailas‐Mortimer
- Department of Biological Sciences University of Denver Denver CO USA
- School of Biological Sciences Illinois State University Normal IL USA
- Department of Cell Biology Emory University Atlanta GA USA
| |
Collapse
|
3
|
Jeong J, Yun K, Mun S, Chung WH, Choi SY, Nam YD, Lim MY, Hong CP, Park C, Ahn YJ, Han K. The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Sci Rep 2021; 11:1727. [PMID: 33462291 PMCID: PMC7814050 DOI: 10.1038/s41598-020-80826-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Characterizing the microbial communities inhabiting specimens is one of the primary objectives of microbiome studies. A short-read sequencing platform for reading partial regions of the 16S rRNA gene is most commonly used by reducing the cost burden of next-generation sequencing (NGS), but misclassification at the species level due to its length being too short to consider sequence similarity remains a challenge. Loop Genomics recently proposed a new 16S full-length-based synthetic long-read sequencing technology (sFL16S). We compared a 16S full-length-based synthetic long-read (sFL16S) and V3-V4 short-read (V3V4) methods using 24 human GUT microbiota samples. Our comparison analyses of sFL16S and V3V4 sequencing data showed that they were highly similar at all classification resolutions except the species level. At the species level, we confirmed that sFL16S showed better resolutions than V3V4 in analyses of alpha-diversity, relative abundance frequency and identification accuracy. Furthermore, we demonstrated that sFL16S could overcome the microbial misidentification caused by different sequence similarity in each 16S variable region through comparison the identification accuracy of Bifidobacterium, Bacteroides, and Alistipes strains classified from both methods. Therefore, this study suggests that the new sFL16S method is a suitable tool to overcome the weakness of the V3V4 method.
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kyeongeui Yun
- Microbiome Division, Theragen Bio Co., Ltd, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.,Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
| | - Won-Hyong Chung
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Song-Yi Choi
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Young-do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Mi Young Lim
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Chang Pyo Hong
- Microbiome Division, Theragen Bio Co., Ltd, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - ChanHyeok Park
- Microbiome Division, Theragen Bio Co., Ltd, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Yong Ju Ahn
- Microbiome Division, Theragen Bio Co., Ltd, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| | - Kyudong Han
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea. .,Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
4
|
Macedo GE, de Brum Vieira P, Rodrigues NR, Gomes KK, Martins IK, Franco JL, Posser T. Fungal compound 1-octen-3-ol induces mitochondrial morphological alterations and respiration dysfunctions in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111232. [PMID: 32890927 DOI: 10.1016/j.ecoenv.2020.111232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Fungal volatile organic compounds (VOCs) comprise a group of compounds commonly found in damp or water-damaged indoor places affecting air quality. Indoor fungal pollution is a severe threat to human health, contributing to the onset of allergic diseases. The compound 1-octen-3-ol, known as "mushroom alcohol", is the most abundant VOC and confers the characteristic mold odor. Exposure to 1-octen-3-ol induces inflammatory markers and episodes of allergic rhinitis and conjunctivitis; however, the effects of this compound towards mitochondria are fairly known. The present study aimed to evaluate the effects of 1-octen-3-ol on inflammatory targets and on mitochondrial morphology and bioenergetic rate in D. melanogaster. Drosophilas were exposed by inhalation to 2.5 μL/L and 5 μL/L of 1-octen-3-ol for 24 h. Observation showed a decreasing in the survival and locomotor ability of flies. Superoxide dismutase (SOD) activity was induced whereas Catalase (CAT) activity was inhibited. Analysis of the mitochondria respiration, detected inhibition of complex I and II in the electron transport chain and a decreased bioenergetic rate. Electronic microscopy provided morphological insights of the mitochondrial status in which a disarrangement in mitochondrial cristae profile was observed. 1-Octen-3-ol induced increased activity of caspase 3/7 and ERK phosphorylation. The mRNA relative steady-state levels of p38MAPK and JNK were down-regulated, whereas NF-κB and p53 were up-regulated. In parallel, nitrite levels were induced in relation to the non-exposed group. These findings point to the mitochondria as a crucial target for the toxicity of 1-octen-3-ol in parallel with activation of pro-inflammatory factors and apoptotic signaling pathway cascade.
Collapse
Affiliation(s)
- Giulianna Echeverria Macedo
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Patrícia de Brum Vieira
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Nathane Rosa Rodrigues
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | - Karen Kich Gomes
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Illana Kemmerich Martins
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| | - Jeferson Luis Franco
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil; Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.
| | - Thaís Posser
- Oxidative Stress and Cell Signaling Research Group, Centro Interdisciplinar Em Biotecnologia - CIPBIOTEC, Universidade Federal Do Pampa, Campus São Gabriel, 97307-020, São Gabriel, RS, Brazil.
| |
Collapse
|