1
|
Kalka M, Bielak K, Ptak M, Stolarski J, Dobryszycki P, Wojtas M. Calcium carbonate polymorph selection in fish otoliths: A key role of phosphorylation of Starmaker-like protein. Acta Biomater 2024; 174:437-446. [PMID: 38061675 DOI: 10.1016/j.actbio.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.
Collapse
Affiliation(s)
- Marta Kalka
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Klaudia Bielak
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | | | - Piotr Dobryszycki
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Magdalena Wojtas
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland.
| |
Collapse
|
2
|
Murase I, Kawamoto T, Akizawa N, Irie T. Rearing in strontium-enriched water induces vaterite otoliths in the Japanese rice fish, Oryzias latipes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230410. [PMID: 37325597 PMCID: PMC10265005 DOI: 10.1098/rsos.230410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Sagittal otoliths, typically composed of aragonite, are frequently laid down rather as vaterite during growth in hatchery-reared fish populations. Sagittal vateritization is believed to impair individual hearing/balancing abilities, but the causal mechanism remains unclear. Here we experimentally demonstrated that rearing in Sr-rich water induces sagittal vateritization in the HdrR-II1 inbred strain of the Japanese rice fish, Oryzias latipes. Both sagittae were partly vateritized in 70% of individuals subjected to the Sr2+ treatment (n = 10), whereas fish reared in normal tap water showed no sagittal vateritization (n = 8). Our result is consistent with the theoretical prediction that vaterite becomes thermodynamically more stable than aragonite as the Sr2+ concentration in solution increases. A vateritic layer develops surrounding the original aragonitic sagitta in vateritized otoliths, some of which take on a comma-like shape. Electron probe microanalysis demonstrates that the vateritized phase is characterized by lower Sr2+ and higher Mg2+ concentrations than the aragonitic phase. It is unlikely that increased environmental Sr2+ is responsible for the sagittal vateritization in farmed fish. However, our findings likely help to establish an in vivo assay using O. latipes to understand the physiological process underlying the sagittal vateritization in farmed fish.
Collapse
Affiliation(s)
- Iki Murase
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Tatsuhiko Kawamoto
- Department of Geoscience, Faculty of Science, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Norikatsu Akizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Takahiro Irie
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
3
|
Quindazzi MJ, Gaffney LP, Polard E, Bohlender N, Duguid W, Juanes F. Otolith mineralogy affects otolith shape asymmetry: a comparison of hatchery and natural origin Coho salmon (Oncorhynchus kisutch). JOURNAL OF FISH BIOLOGY 2023; 102:870-882. [PMID: 36651303 DOI: 10.1111/jfb.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Many aspects of natural and hatchery origin salmonid genetics, physiology, behaviour, anatomy and life histories have been compared due to the concerns about what effects domestication and hatchery rearing conditions have on fitness. Genetic and environmental stressors associated with hatchery rearing could cause greater developmental instability (DI), and therefore a higher degree of fluctuating asymmetry (FA) in various bilaterally paired characters, such as otoliths. Nonetheless, to appropriately infer the effects of DI on otolith asymmetry, otolith mineralogy must be accounted for. Vateritic otoliths differ substantially from aragonitic otoliths in terms of mass and shape and can artificially inflate any measurement of FA if not properly accounted for. In this study, measurements of otolith asymmetry between hatchery and natural origin Coho salmon Oncorhynchus kisutch from three different river systems were compared to assess the overall differences in asymmetry when the calcium carbonate polymorph accounted for 59.3% of otoliths from hatchery origin O. kisutch was vateritic compared to 11.7% of otoliths from natural origin O. kisutch. Otolith mineralogy, rather than origin, was the most significant factor influencing the differences in asymmetry for each shape metric. When only aragonitic otoliths were compared, there was no difference in absolute asymmetry between hatchery and natural origin O. kisutch. The authors recommend other researchers to assess otolith mineralogy when conducting studies regarding otolith morphometrics and otolith FA.
Collapse
Affiliation(s)
- Micah J Quindazzi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Leigh P Gaffney
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Emma Polard
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Nick Bohlender
- Department of Fisheries and Oceans Canada, Campbell River, British Columbia, Canada
| | - Will Duguid
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
4
|
Yedier S, Bostanci D, Türker D. Morphological and morphometric features of the abnormal and normal saccular otoliths in flatfishes. Anat Rec (Hoboken) 2023; 306:672-687. [PMID: 36250249 DOI: 10.1002/ar.25106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022]
Abstract
The fish's inner ear consists of three interconnected semicircular canals and otolith organs located in these canals, which are responsible for balance and hearing. Abnormalities in these organs can affect the vital activities of the fish. The main purpose of this study was to determine the morphological and morphometric characteristics of abnormal and normal sagittal otoliths in the four flatfish species (Lepidorhombus boscii, Platichthys flesus, Solea solea, and Pegusa lascaris) sampled from three seas (Aegean Sea, Mediterranean Sea, and Black Sea). Abnormalities in otoliths are investigated using light microscopy, scanning electron microscopy, and Raman spectroscopy. The otolith morphometric measurements and morphology are recorded for abnormal and normal otoliths for each species. It was determined that the four flatfish species examined in the present study showed differences in the morphological features of normal and abnormal otoliths in the blind and eyed sides. In addition, statistical differences were observed when the weight, length, width, perimeter, and area values of normal and abnormal otoliths of all species were compared (p < .05). The four types of saccular otoliths were defined, one normal (type 0) and three abnormal (type 1, type 2, and type 4) for four flatfish species. The current study presents for the first-time abnormal otolith morphology information on blind and eyed side sagittal otoliths in these flatfish species. Abnormalities in the anatomical structures of bony parts such as otoliths in fish may be caused by pollution, nutritional problems, stress, and environmental factors as well as a combination of these.
Collapse
Affiliation(s)
- Serdar Yedier
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey
| | - Derya Bostanci
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ordu University, Ordu, Turkey
| | - Dilek Türker
- Department of Biology, Faculty of Arts and Sciences, Balıkesir University, Balıkesir, Turkey
| |
Collapse
|
5
|
Visual, spectral, and microchemical quantification of crystalline anomalies in otoliths of wild and cultured delta smelt. Sci Rep 2022; 12:20751. [PMID: 36456583 PMCID: PMC9715569 DOI: 10.1038/s41598-022-22813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Developmental abnormalities in otoliths can impact growth and survival in teleost fishes. Here, we quantified the frequency and severity of developmental anomalies in otoliths of delta smelt (Hypomesus transpacificus), a critically endangered estuarine fish that is endemic to the San Francisco Estuary. Left-right asymmetry and anomalous crystalline polymorphs (i.e., vaterite) were quantified and compared between wild and cultured populations using digital image analysis. Visual estimates of vaterite were validated using X-ray diffraction, Raman spectroscopy, laser ablation ICPMS, and electron probe microanalysis. Results indicated that cultured delta smelt were 80 times more likely to contain a vateritic otolith and 18 times more likely to contain relatively large (≥ 15%) amounts of vaterite. Similarly, cultured fish exhibited 30% greater asymmetry than wild fish. These results indicate that cultured delta smelt exhibit a significantly higher frequency of vestibular abnormalities which are known to reduce fitness and survival. Such hatchery effects on otolith development could have important implications for captive culture practices and the supplementation of wild fish populations with cultured individuals.
Collapse
|
6
|
Mäkinen K, Rajasilta M, Mäkilä E, Jokinen S, Hänninen J. Varying frequency of vateritic otoliths in the Baltic herring Clupea harengus membras. JOURNAL OF FISH BIOLOGY 2022; 101:741-744. [PMID: 35678592 PMCID: PMC9541912 DOI: 10.1111/jfb.15127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
We report observations of vateritic crystallization in the sagittal otoliths of the Baltic herring Clupea harengus membras in the northern Baltic Sea. While the existence of vaterite in the calcium carbonate matrix of sagittal otoliths has been observed in various species globally, reports from the brackish Baltic Sea are few in number. Large variation in the frequency of vaterite in 1984, 1988, 1997, 2010 and 2017 was observed, suggesting that the phenomenon is not static and more long-term studies should be conducted in search of the ultimate causing factors.
Collapse
Affiliation(s)
- Katja Mäkinen
- Archipelago Research Institute, Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Marjut Rajasilta
- Archipelago Research Institute, Biodiversity UnitUniversity of TurkuTurkuFinland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland
| | - Sami Jokinen
- Department of Geography and GeologyUniversity of TurkuTurkuFinland
- Marine Geology, Geological Survey of Finland (GTK)EspooFinland
| | - Jari Hänninen
- Archipelago Research Institute, Biodiversity UnitUniversity of TurkuTurkuFinland
| |
Collapse
|
7
|
Delaval A, Solås MR, Skoglund H, Salvanes AGV. Does Vaterite Otolith Deformation Affect Post-Release Survival and Predation Susceptibility of Hatchery-Reared Juvenile Atlantic Salmon? Front Vet Sci 2021; 8:709850. [PMID: 34646876 PMCID: PMC8503516 DOI: 10.3389/fvets.2021.709850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Sagittal otoliths are calcareous structures in the inner ear of fishes involved in hearing and balance. They are usually composed of aragonite; however, aragonite can be replaced by vaterite, a deformity which is more common in hatchery-reared than in wild fish. Vaterite growth may impair hearing and balance and affect important fitness-related behaviours such as predator avoidance. Captive rearing techniques that prevent hearing loss may have the potential to improve fish welfare and the success of restocking programmes. The aim of this study was to test the effect of structural tank enrichment on vaterite development in the otoliths of hatchery-reared juvenile Atlantic salmon Salmo salar, and to assess the effects of vaterite on immediate predation mortality and long-term survival after release into the wild. Fry were reared in a structurally enriched or in a conventional rearing environment and given otolith marks using alizarin during the egg stage to distinguish between the treatment groups. Otoliths were scrutinised for the presence and coverage of vaterite at 6, 13, and 16 weeks after start feeding, and the growth traits were measured for enriched and control fry when housed in tanks. In a subsequent field experiment, juveniles were released in the Rasdalen river (western Norway), and otoliths of enriched reared and control reared fry were scrutinised from samples collected immediately prior to release, from predator (trout Salmo trutta) stomachs 48 h after release and from recaptures from the river 2–3 months after release. Vaterite otoliths occurred as early as 6 weeks after start feeding in hatchery-reared S. salar. Vaterite occurrence and coverage increased with fish length. Enriched rearing had no direct effect on vaterite formation, but enriched reared fry grew slower than control fry. After release into the wild, fewer salmon fry with vaterite otoliths had been eaten by predators, and a higher proportion of fry with vaterite otoliths than those lacking vaterite were recaptured in the river 2–3 months after release. Contrary to expectations, this suggests that vaterite does not increase predation mortality nor reduce survival rates in the wild during the early life stages.
Collapse
Affiliation(s)
- Aurélien Delaval
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Helge Skoglund
- Laboratory of Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | | |
Collapse
|
8
|
Sapozhnikova YP, Koroleva AG, Yakhnenko VM, Tyagun ML, Glyzina OY, Coffin AB, Makarov MM, Shagun AN, Kulikov VA, Gasarov PV, Kirilchik SV, Klimenkov IV, Sudakov NP, Anoshko PN, Kurashova NA, Sukhanova LV. Molecular and cellular responses to long-term sound exposure in peled (Coregonus peled). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:895. [PMID: 32873010 DOI: 10.1121/10.0001674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
This research examined the impacts of acoustic stress in peled (Coregonus peled Gmelin, 1788), a species commonly cultivated in Russia. This study presents a comparative analysis of the macula sacculi and otoliths, as well as primary hematological and secondary telomere stress responses, in control and sound-exposed peled. The authors measured the effects of long-term (up to 18 days) exposure to a 300 Hz tone at mean sound pressure levels of 176-186 dB re 1 μPa (SPLpk-pk); the frequency and intensity were selected to approximate loud acoustic environments associated with cleaning equipment in aquaculture settings. Acoustic exposure resulted in ultrastructure changes to otoliths, morphological damage to sensory hair cells of the macula sacculi, and a gradual decrease in the number of functionally active mitochondria in the red blood cells but no changes to telomeres. Changes were apparent following at least ten days of acoustic exposure. These data suggest that acoustic exposure found in some aquaculture settings could cause stress responses and auditory damage to peled and, potentially, other commercially important species. Reducing sound levels in fish rearing facilities could contribute to the formation of effective aquaculture practices that mitigate noise-induced stress in fishes.
Collapse
Affiliation(s)
- Yulia P Sapozhnikova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Anastasia G Koroleva
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Vera M Yakhnenko
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Marina L Tyagun
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Olga Yu Glyzina
- Experimental Hydrobiology Group, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, 14204 Northeast Salmon Creek Avenue, Vancouver, Washington 98686, USA
| | - Mikhail M Makarov
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Artem N Shagun
- Laboratory of General and Engineering Seismology and Seismogeology, Institute of the Earth's Crust Siberian Branch of the Russian Academy of Sciences, 128 Lermontova Street, Irkutsk 664033, Russia
| | - Viktor A Kulikov
- Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, 1 Nobel Street, Moscow 143026, Russia
| | - Polikarp V Gasarov
- Department of Plant Physiology, Cell Biology, and Genetics, Irkutsk State University, 1 K. Marksa Street, Irkutsk 664003, Russia
| | - Sergey V Kirilchik
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Igor V Klimenkov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nikolay P Sudakov
- Department of Cell Ultrastructure, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Pavel N Anoshko
- Laboratory of Interdisciplinary Environmental and Economic Research and Technology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| | - Nadezhda A Kurashova
- Scientific Center of Family Health Problems and Human Reproduction, Irkutsk 664003, Russia
| | - Lyubov V Sukhanova
- Laboratory of Ichthyology, Limnological Institute Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya, Irkutsk 664033, Russia
| |
Collapse
|