1
|
Estravis-Barcala MC, Palottini F, Verellen F, González A, Farina WM. Sugar-conditioned honey bees can be biased towards a nectarless dioecious crop. Sci Rep 2024; 14:18263. [PMID: 39107328 PMCID: PMC11303517 DOI: 10.1038/s41598-024-67917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
The targeted pollination strategy has shown positive results in directing honey bees to crop flowers offering nectar along with pollen as reward. Kiwifruit is a functionally dioecious species, which relies on bees to transport pollen from staminate to pistillate nectarless flowers. Following the targeted pollination procedures recently validated, we first developed a mimic odor (KM) based on kiwifruit floral volatiles for which bees showed the highest level of generalization to the natural floral scent, although the response towards pistillate flowers was higher than towards staminate flowers. Then, in the field, feeding colonies KM-scented sucrose solution resulted in higher amounts of kiwifruit pollen collected by honey bees compared to control colonies fed unscented sucrose solution. Our results support the hypothesis that olfactory conditioning bees biases their foraging preferences in a nectarless crop, given the higher visitation to target flowers despite having provided the mimic odor paired with a sugar reward.
Collapse
Affiliation(s)
- M Cecilia Estravis-Barcala
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Florencia Palottini
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-UBA, Buenos Aires, Argentina
| | - Facundo Verellen
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de La República, Montevideo, Uruguay
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Moreno E, Arenas A. Foraging task specialization in honey bees (Apis mellifera): the contribution of floral rewards to the learning performance of pollen and nectar foragers. J Exp Biol 2024; 227:jeb246979. [PMID: 38873739 DOI: 10.1242/jeb.246979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Social insects live in communities where cooperative actions heavily rely on the individual cognitive abilities of their members. In the honey bee (Apis mellifera), the specialization in nectar or pollen collection is associated with variations in gustatory sensitivity, affecting both associative and non-associative learning. Gustatory sensitivity fluctuates as a function of changes in motivation for the specific floral resource throughout the foraging cycle, yet differences in learning between nectar and pollen foragers at the onset of food collection remain unexplored. Here, we examined nectar and pollen foragers captured upon arrival at food sources. We subjected them to an olfactory proboscis extension reflex (PER) conditioning using a 10% sucrose solution paired (S10%+P) or unpaired (S10%) with pollen as a co-reinforcement. For non-associative learning, we habituated foragers with S10%+P or S10%, followed by dishabituation tests with either a 50% sucrose solution paired (S50%+P) or unpaired (S50%) with pollen. Our results indicate that pollen foragers show lower performance than nectar foragers when conditioned with S10%. Interestingly, performance improves to levels similar to those of nectar foragers when pollen is included as a rewarding stimulus (S10%+P). In non-associative learning, pollen foragers tested with S10%+P displayed a lower degree of habituation than nectar foragers and a higher degree of dishabituation when pollen was used as the dishabituating stimulus (S10%+P). Altogether, our results support the idea that pollen and nectar honey bee foragers differ in their responsiveness to rewards, leading to inter-individual differences in learning that contribute to foraging specialization.
Collapse
Affiliation(s)
- Emilia Moreno
- Grupo de Fisiología del Comportamiento y Sociobiología de Abejas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| | - Andrés Arenas
- Grupo de Fisiología del Comportamiento y Sociobiología de Abejas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
| |
Collapse
|
3
|
Mattiacci A, Goñalons CM, Masciocchi M, Corley JC. Gustatory responsiveness in Vespula germanica workers: exploring the interplay between sensory perception and task specialization. INSECT SCIENCE 2024; 31:587-598. [PMID: 37534855 DOI: 10.1111/1744-7917.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/15/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Workers' task specialization and division of labor are critical features of social insects' ecological success. It has been proposed that the division of labor relies on response threshold models: individuals varying their sensitivity (and responsiveness) to biologically relevant stimuli and performing a specific task when a stimulus exceeds an internal threshold. In this work, we study carbohydrate and protein responsiveness and their relation to worker task specialization in Vespula germanica, an invasive social wasp. The sucrose and peptone responsiveness of two different subcastes, preforagers and foragers, was determined by stimulating the antenna of the wasps with increasing concentrations of the solution and quantifying whether each concentration elicited a licking response. We studied responsiveness in five different ways: (1) response threshold, (2) concentration 50 (concentration to which at least 50% of wasps responded), (3) maximum response, (4) mean scores and (5) median scores. Our results suggest that V. germanica foragers are more sensitive to sucrose (lower thresholds) than preforager workers. However, we found no differences for peptone thresholds (i.e., a protein resource). Nonetheless, this is the first study to investigate response thresholds for protein resources. The intercaste variation in sucrose responsiveness shown in our work contributes to the existing knowledge about response threshold theory as a mechanism for task specialization observed in V. germanica.
Collapse
Affiliation(s)
- Analía Mattiacci
- Grupo de Ecología de Poblaciones de Insectos, IFAB (CONICET, INTA EEA Bariloche), Bariloche, Argentina
| | - Carolina Mengoni Goñalons
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maité Masciocchi
- Grupo de Ecología de Poblaciones de Insectos, IFAB (CONICET, INTA EEA Bariloche), Bariloche, Argentina
| | - Juan C Corley
- Grupo de Ecología de Poblaciones de Insectos, IFAB (CONICET, INTA EEA Bariloche), Bariloche, Argentina
- Departamento de Ecología, Centro Regional Universitario Bariloche, Universidad Nacional Del Comahue, Bariloche, Argentina
| |
Collapse
|
4
|
Lajad R, Arenas A. Honey bee colonies change their foraging decisions after in-hive experiences with unsuitable pollen. J Exp Biol 2024; 227:jeb246233. [PMID: 38044836 DOI: 10.1242/jeb.246233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Pollen is the protein resource for Apis mellifera and its selection affects colony development and productivity. Honey bee foragers mainly lose their capacity to digest pollen, so we expect that those pollen constituents that can only be evaluated after ingestion will not influence their initial foraging preferences at food sources. We predicted that pollen composition may be evaluated in a delayed manner within the nest, for example, through the effects that the pollen causes on the colony according to its suitability after being used by in-hive bees. To address whether pollen foraging is mediated by in-hive experiences, we conducted dual-choice experiments to test the avoidance of pollen adulterated with amygdalin, a deterrent that causes post-ingestion malaise. In addition, we recorded pollen selection in colonies foraging in the field after being supplied or not with amygdalin-adulterated pollen from one of the dominant flowering plants (Diplotaxis tenuifolia). Dual-choice experiments revealed that foragers did not avoid adulterated pollens at the foraging site; however, they avoided pollen that had been offered adulterated within the nest on the previous days. In field experiments, pollen samples from colonies supplied with amygdalin-adulterated pollen were more diverse than controls, suggesting that pollen foraging was biased towards novel sources. Our findings support the hypothesis that pollen assessment relies on in-hive experiences mediated by pollen that causes post-ingestive malaise.
Collapse
Affiliation(s)
- Rocío Lajad
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Andrés Arenas
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET - Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| |
Collapse
|
5
|
Moreno E, José Corriale M, Arenas A. Differences in olfactory sensitivity and odor detection correlate with foraging task specialization in honeybees Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2022; 141:104416. [PMID: 35780906 DOI: 10.1016/j.jinsphys.2022.104416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Division of labor is central to the ecological success of social insects. Among honeybees foragers, specialization for collecting nectar or pollen correlates with their sensitivity to gustatory stimuli (e.g. sugars). We hypothesize that pollen and nectar foragers also differ in their sensitivity to odors, and therefore in their likelihood to show odor-mediated responses. To assess foragerś sensitivity to natural odors, we quantified the conditioning of the proboscis extension reflex (PER) to increasing concentrations (0.001; 0.01; 0.1; 1 M) of linalool or nonanal. Furthermore, we compared electroantennogram (EAG) recordings to correlate bees' conditioned responses with the electrophysiological responses of their antennae. To further explore differences of the antennal response of foragers in relation to task-related odors, we registered EAG signals for two behaviorally ''meaningful'' odors that mediate pollen collection: fresh pollen odors and the brood pheromone (E)-β-ocimene. Pollen foragers performed better than nectar foragers in PER conditioning trials when linalool and nonanal were presented at low concentrations (0.001, 0.01 M). Consistently, their antennae showed stronger EAG signals (higher amplitudes) to these odors, suggesting that differences in sensitivity can be explained at the periphery of the olfactory system. Pollen and nectar foragers detect pollen odors differently, but not (E)-β-ocimene. Pollen volatiles evoked EAG signals with hyper and depolarization components. In pollen foragers, the contribution of the hyperpolarization component was higher than in nectar foragers. We discuss our findings in terms of adaptive advantages to learn subtle olfactory cues that influence the ability to better identify/discriminate food sources.
Collapse
Affiliation(s)
- Emilia Moreno
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María José Corriale
- Grupo de Estudios sobre Biodiversidad en Agroecosistemas, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés Arenas
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Young honeybees show learned preferences after experiencing adulterated pollen. Sci Rep 2021; 11:23327. [PMID: 34857828 PMCID: PMC8640054 DOI: 10.1038/s41598-021-02700-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 12/04/2022] Open
Abstract
Pollen selection affects honeybee colony development and productivity. Considering that pollen is consumed by young in-hive bees, and not by foragers, we hypothesized that young bees learn pollen cues and adjust their preferences to the most suitable pollens. To assess whether young bees show preferences based on learning for highly or poorly suitable pollens, we measured consumption preferences for two pure monofloral pollens after the bees had experienced one of them adulterated with a deterrent (amygdalin or quinine) or a phagostimulant (linoleic acid). Preferences were obtained from nurse-aged bees confined in cages and from nurse bees in open colonies. Furthermore, we tested the bees' orientation in a Y-maze using a neutral odour (Linalool or Nonanal) that had been previously associated with an amygdalin-adulterated pollen. Consumption preferences of bees, both in cages and in colonies, were reduced for pollens that had been adulterated with deterrents and increased for pollens that had been supplemented with linoleic acid. In the Y-maze, individuals consistently avoided the odours that they had previously experienced paired with the deterrent-adulterated pollen. Results show that nurse-aged bees associate pollen-based or pollen-related cues with either a distasteful/malaise experience or a tasty/nutritious event, leading to memories that bias their pollen-mediated response.
Collapse
|
7
|
Arenas A, Lajad R, Peng T, Grüter C, Farina W. Correlation between octopaminergic signalling and foraging task specialisation in honeybees. GENES BRAIN AND BEHAVIOR 2020; 20:e12718. [PMID: 33251675 DOI: 10.1111/gbb.12718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 01/12/2023]
Abstract
Regulation of pollen and nectar foraging in honeybees is linked to differences in the sensitivity to the reward. Octopamine (OA) participates in the processing of reward-related information in the bee brain, being a candidate to mediate and modulate the division of labour among pollen and nectar foragers. Here we tested the hypothesis that OA affects the resource preferences of foragers. We first investigated whether oral administration of OA is involved in the transition from nectar to pollen foraging. We quantified the percentage of OA-treated bees that switched from a sucrose solution to a pollen feeder when the sugar concentration was decreased experimentally. We also evaluated if feeding the colonies sucrose solution containing OA increases the rate of bees collecting pollen. Finally, we quantified OA and tyramine (TYR) receptor genes expression of pollen and nectar foragers in different parts of the brain, as a putative mechanism that affects the decision-making process regarding the resource type collected. Adding OA in the food modified the probability that foragers switch from nectar to pollen collection. The proportion of pollen foragers also increased after feeding colonies with OA-containing food. Furthermore, the expression level of the AmoctαR1 was upregulated in foragers arriving at pollen sources compared with those arriving at sugar-water feeders. Using age-matched pollen and nectar foragers that returned to the hive, we detected an upregulated expression of a TYR receptor gene in the suboesophageal ganglia. These findings support our prediction that OA signalling affects the decision in honeybee foragers to collect pollen or nectar.
Collapse
Affiliation(s)
- Andrés Arenas
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocío Lajad
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tianfei Peng
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Christoph Grüter
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Walter Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|