1
|
Taylor GT, McQueen A, Eastwood JR, Dupoué A, Wong BBM, Verhulst S, Peters A. No effect of testosterone or sexual ornamentation on telomere dynamics: A case study and meta-analyses. Ecol Evol 2024; 14:e11088. [PMID: 38435019 PMCID: PMC10905238 DOI: 10.1002/ece3.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Life-history theory predicts that reproductive investments are traded-off against self-maintenance. Telomeres, the protective caps on the ends of chromosomes, offer a promising avenue for assessing life-history trade-offs, as they shorten in response to stressors and are predictive of the remaining lifespan. In males, testosterone frequently mediates life-history trade-offs, in part, through its effects on sexual ornamentation, which is an important aspect of reproductive investment. However, studies of within-individual associations between telomere dynamics and sexual ornamentation are limited in number and have produced mixed results. Furthermore, most such studies have been observational, making it difficult to discern the nature of any causal relationship. To address this, we used short-acting testosterone implants in free-living male superb fairy-wrens (Malurus cyaneus) to stimulate the production of a sexual ornament: early moult into a costly blue breeding plumage. We found no evidence that elevated testosterone, and the consequent earlier moult into breeding plumage, accelerated telomere shortening. We therefore followed up with a systematic review and two meta-analyses (28 studies, 54 effect sizes) exploring the associations between telomeres and (1) testosterone and (2) sexual ornamentation. In line with our experimental findings, neither meta-analysis showed an overall correlation of testosterone or sexual ornamentation with telomere length or telomere dynamics. However, meta-regression showed that experimental, compared to observational, studies reported greater evidence of trade-offs. Our meta-analyses highlight the need for further experimental studies to better understand potential responses of telomere length or telomere dynamics to testosterone or sexual ornamentation.
Collapse
Affiliation(s)
- Gregory T. Taylor
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Alexandra McQueen
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
Centre for Integrative EcologyDeakin UniversityBurwoodVictoriaAustralia
| | | | - Andréaz Dupoué
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
- Present address:
CNRS Sorbonne Université, UMR 7618, iEES ParisUniversité Pierre et Marie CurieParisFrance
| | - Bob B. M. Wong
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Anne Peters
- School of Biological SciencesMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
2
|
Virgin EE, Lewis EL, Lidgard AD, Kepas ME, Marchetti JR, Hudson SB, Smith GD, French SS. Egg viability and egg mass underlie immune tradeoffs and differences between urban and rural lizard egg yolk physiology. Gen Comp Endocrinol 2023; 337:114258. [PMID: 36870544 DOI: 10.1016/j.ygcen.2023.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Urbanization can cause innumerable abiotic and biotic changes that have the potential to influence the ecology, behavior, and physiology of native resident organisms. Relative to their rural conspecifics, urban Side-blotched Lizard (Uta stansburiana) populations in southern Utah have lower survival prospects and maximize reproductive investment via producing larger eggs and larger clutch sizes. While egg size is an important predictor of offspring quality, physiological factors within the egg yolk are reflective of the maternal environment and can alter offspring traits, especially during energetically costly processes, such as reproduction or immunity. Therefore, maternal effects may represent an adaptive mechanism by which urban-dwelling species can persist within a variable landscape. In this study, we assess urban and rural differences in egg yolk bacterial killing ability (BKA), corticosterone (CORT), oxidative status (d-ROMs), and energy metabolites (free glycerol and triglycerides), and their association with female immune status and egg quality. Within a laboratory setting, we immune challenged urban lizards via lipopolysaccharide injection (LPS) to test whether physiological changes associated with immune system activity impacted egg yolk investment. We found urban females had higher mite loads than rural females, however mite burden was related to yolk BKA in rural eggs, but not urban eggs. While yolk BKA differed between urban and rural sites, egg mass and egg viability (fertilized vs. unfertilized) were strong predictors of yolk physiology and may imply tradeoffs exist between maintenance and reproduction. LPS treatment caused a decrease in egg yolk d-ROMs relative to the control treatments, supporting results from previous research. Finally, urban lizards laid a higher proportion of unfertilized eggs, which differed in egg yolk BKA, CORT, and triglycerides in comparison to fertilized eggs. Because rural lizards laid only viable eggs during this study, these results suggest that reduced egg viability is a potential cost of living in an urban environment. Furthermore, these results help us better understand potential downstream impacts of urbanization on offspring survival, fitness, and overall population health.
Collapse
Affiliation(s)
- Emily E Virgin
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA.
| | - Erin L Lewis
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Audrey D Lidgard
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
| | - Megen E Kepas
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA; Department of Biological Sciences, Utah Tech University, St. George, UT 84770, USA
| | - Jack R Marchetti
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Spencer B Hudson
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| | - Geoffrey D Smith
- Department of Biological Sciences, Utah Tech University, St. George, UT 84770, USA
| | - Susannah S French
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA; Ecology Center, Utah State University, 5205 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
3
|
Pepke ML, Kvalnes T, Lundregan S, Boner W, Monaghan P, Saether BE, Jensen H, Ringsby TH. Genetic architecture and heritability of early-life telomere length in a wild passerine. Mol Ecol 2022; 31:6360-6381. [PMID: 34825754 DOI: 10.1111/mec.16288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 01/31/2023]
Abstract
Early-life telomere length (TL) is associated with fitness in a range of organisms. Little is known about the genetic basis of variation in TL in wild animal populations, but to understand the evolutionary and ecological significance of TL it is important to quantify the relative importance of genetic and environmental variation in TL. In this study, we measured TL in 2746 house sparrow nestlings sampled across 20 years and used an animal model to show that there is a small heritable component of early-life TL (h2 = 0.04). Variation in TL among individuals was mainly driven by environmental (annual) variance, but also brood and parental effects. Parent-offspring regressions showed a large maternal inheritance component in TL ( h maternal 2 = 0.44), but no paternal inheritance. We did not find evidence for a negative genetic correlation underlying the observed negative phenotypic correlation between TL and structural body size. Thus, TL may evolve independently of body size and the negative phenotypic correlation is likely to be caused by nongenetic environmental effects. We further used genome-wide association analysis to identify genomic regions associated with TL variation. We identified several putative genes underlying TL variation; these have been inferred to be involved in oxidative stress, cellular growth, skeletal development, cell differentiation and tumorigenesis in other species. Together, our results show that TL has a low heritability and is a polygenic trait strongly affected by environmental conditions in a free-living bird.
Collapse
Affiliation(s)
- Michael Le Pepke
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thomas Kvalnes
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sarah Lundregan
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine (IBAHCM), University of Glasgow, Glasgow, UK
| | - Bernt-Erik Saether
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Henrik Jensen
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Thor Harald Ringsby
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|