1
|
Kwon HK, Chang JW. Effects of shapes and kinematics of hovering flapping wings on aerodynamic forces and vortex structures. Sci Rep 2025; 15:5098. [PMID: 39948183 PMCID: PMC11825878 DOI: 10.1038/s41598-025-86113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 01/08/2025] [Indexed: 02/16/2025] Open
Abstract
The present study investigated the effects of wing shapes and flapping motions on the aerodynamic forces and vortex structures of insect flight. Aerodynamic force measurements and flow visualizations were performed in a water tank by cross-applying the wing shapes of bumblebee, hawkmoth, and hummingbird to their hovering flapping motions. When the three different wings were measured making the same motions, the average difference of lift-to-drag ratio was 2.7%. In the aspect ratio and wing area distribution range, where three wing shapes were distributed, aerodynamic performances were similar according to wing shape. However, the average difference of lift-to-drag ratio was 34.3% when flapping motion was differed within the same wing shape. The aerodynamic performances of three flapping motions varied significantly with changes in sweeping speed and wing rotation. The difference of average in aerodynamic efficiency was 4.9% among the three wings when making the same motion, and 43.7% when the motions were differed in the same wing. The results showed that flapping motions had significant effects on aerodynamic performance. Visualization results also showed that the vortex structure changes significantly when motions are different in the same wing shapes. These findings provide valuable data for designing flapping micro air vehicles and morphing aircraft.
Collapse
Affiliation(s)
- Hyun Ki Kwon
- Department of Aeronautical Science and Flight Operation, Korea Aerospace University, Goyang-Si, 10540, Republic of Korea
| | - Jo Won Chang
- Department of Aeronautical Science and Flight Operation, Korea Aerospace University, Goyang-Si, 10540, Republic of Korea.
| |
Collapse
|
2
|
Mongeau JM, Yang Y, Escalante I, Cowan N, Jayaram K. Moving in an Uncertain World: Robust and Adaptive Control of Locomotion from Organisms to Machine Intelligence. Integr Comp Biol 2024; 64:1390-1407. [PMID: 39090982 PMCID: PMC11579605 DOI: 10.1093/icb/icae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Whether walking, running, slithering, or flying, organisms display a remarkable ability to move through complex and uncertain environments. In particular, animals have evolved to cope with a host of uncertainties-both of internal and external origin-to maintain adequate performance in an ever-changing world. In this review, we present mathematical methods in engineering to highlight emerging principles of robust and adaptive control of organismal locomotion. Specifically, by drawing on the mathematical framework of control theory, we decompose the robust and adaptive hierarchical structure of locomotor control. We show how this decomposition along the robust-adaptive axis provides testable hypotheses to classify behavioral outcomes to perturbations. With a focus on studies in non-human animals, we contextualize recent findings along the robust-adaptive axis by emphasizing two broad classes of behaviors: (1) compensation to appendage loss and (2) image stabilization and fixation. Next, we attempt to map robust and adaptive control of locomotion across some animal groups and existing bio-inspired robots. Finally, we highlight exciting future directions and interdisciplinary collaborations that are needed to unravel principles of robust and adaptive locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, Pennsylvania State University, University Park, 16802 PA, USA
| | - Yu Yang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Ignacio Escalante
- Department of Biological Sciences, University of Illinois, Chicago, 845 W Taylor St, 60607 IL, USA
| | - Noah Cowan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, 21218 MD, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, UCB 427, 80309 CO, USA
| |
Collapse
|
3
|
Yang Y, Yared DG, Fortune ES, Cowan NJ. Sensorimotor adaptation to destabilizing dynamics in weakly electric fish. Curr Biol 2024; 34:2118-2131.e5. [PMID: 38692275 DOI: 10.1016/j.cub.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Humans and other animals can readily learn to compensate for changes in the dynamics of movement. Such changes can result from an injury or changes in the weight of carried objects. These changes in dynamics can lead not only to reduced performance but also to dramatic instabilities. We evaluated the impacts of compensatory changes in control policies in relation to stability and robustness in Eigenmannia virescens, a species of weakly electric fish. We discovered that these fish retune their sensorimotor control system in response to experimentally generated destabilizing dynamics. Specifically, we used an augmented reality system to manipulate sensory feedback during an image stabilization task in which a fish maintained its position within a refuge. The augmented reality system measured the fish's movements in real time. These movements were passed through a high-pass filter and multiplied by a gain factor before being fed back to the refuge motion. We adjusted the gain factor to gradually destabilize the fish's sensorimotor loop. The fish retuned their sensorimotor control system to compensate for the experimentally induced destabilizing dynamics. This retuning was partially maintained when the augmented reality feedback was abruptly removed. The compensatory changes in sensorimotor control improved tracking performance as well as control-theoretic measures of robustness, including reduced sensitivity to disturbances and improved phase margins.
Collapse
Affiliation(s)
- Yu Yang
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | - Dominic G Yared
- Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Eric S Fortune
- Federated Department of Biological Sciences, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr. Boulevard, Newark, NJ 07102, USA
| | - Noah J Cowan
- Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Wold ES, Lynch J, Gravish N, Sponberg S. Structural damping renders the hawkmoth exoskeleton mechanically insensitive to non-sinusoidal deformations. J R Soc Interface 2023; 20:20230141. [PMID: 37194272 PMCID: PMC10189308 DOI: 10.1098/rsif.2023.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
Muscles act through elastic and dissipative elements to mediate movement, which can introduce dissipation and filtering which are important for energetics and control. The high power requirements of flapping flight can be reduced by an insect's exoskeleton, which acts as a spring with frequency-independent material properties under purely sinusoidal deformation. However, this purely sinusoidal dynamic regime does not encompass the asymmetric wing strokes of many insects or non-periodic deformations induced by external perturbations. As such, it remains unknown whether a frequency-independent model applies broadly and what implications it has for control. We used a vibration testing system to measure the mechanical properties of isolated Manduca sexta thoraces under symmetric, asymmetric and band-limited white noise deformations. The asymmetric and white noise conditions represent two types of generalized, multi-frequency deformations that may be encountered during steady-state and perturbed flight. Power savings and dissipation were indistinguishable between symmetric and asymmetric conditions, demonstrating that no additional energy is required to deform the thorax non-sinusoidally. Under white noise conditions, stiffness and damping were invariant with frequency, suggesting that the thorax has no frequency-dependent filtering properties. A simple flat frequency response function fits our measured frequency response. This work demonstrates the potential of materials with frequency-independent damping to simplify motor control by eliminating any velocity-dependent filtering that viscoelastic elements usually impose between muscle and wing.
Collapse
Affiliation(s)
- Ethan S. Wold
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Lynch
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Simon Sponberg
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Salem W, Cellini B, Kabutz H, Hari Prasad HK, Cheng B, Jayaram K, Mongeau JM. Flies trade off stability and performance via adaptive compensation to wing damage. SCIENCE ADVANCES 2022; 8:eabo0719. [PMID: 36399568 PMCID: PMC9674276 DOI: 10.1126/sciadv.abo0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Physical injury often impairs mobility, which can have dire consequences for survival in animals. Revealing mechanisms of robust biological intelligence to prevent system failure can provide critical insights into how complex brains generate adaptive movement and inspiration to design fault-tolerant robots. For flying animals, physical injury to a wing can have severe consequences, as flight is inherently unstable. Using a virtual reality flight arena, we studied how flying fruit flies compensate for damage to one wing. By combining experimental and mathematical methods, we show that flies compensate for wing damage by corrective wing movement modulated by closed-loop sensing and robust mechanics. Injured flies actively increase damping and, in doing so, modestly decrease flight performance but fly as stably as uninjured flies. Quantifying responses to injury can uncover the flexibility and robustness of biological systems while informing the development of bio-inspired fault-tolerant strategies.
Collapse
Affiliation(s)
- Wael Salem
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin Cellini
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Heiko Kabutz
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Bo Cheng
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Deora T, Sane SS, Sane SP. Wings and halteres act as coupled dual oscillators in flies. eLife 2021; 10:53824. [PMID: 34783648 PMCID: PMC8629423 DOI: 10.7554/elife.53824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
The mechanics of Dipteran thorax is dictated by a network of exoskeletal linkages that, when deformed by the flight muscles, generate coordinated wing movements. In Diptera, the forewings power flight, whereas the hindwings have evolved into specialized structures called halteres, which provide rapid mechanosensory feedback for flight stabilization. Although actuated by independent muscles, wing and haltere motion is precisely phase-coordinated at high frequencies. Because wingbeat frequency is a product of wing-thorax resonance, any wear-and-tear of wings or thorax should impair flight ability. How robust is the Dipteran flight system against such perturbations? Here, we show that wings and halteres are independently driven, coupled oscillators. We systematically reduced the wing length in flies and observed how wing-haltere synchronization was affected. The wing-wing system is a strongly coupled oscillator, whereas the wing-haltere system is weakly coupled through mechanical linkages that synchronize phase and frequency. Wing-haltere link acts in a unidirectional manner; altering wingbeat frequency affects haltere frequency, but not vice versa. Exoskeletal linkages are thus key morphological features of the Dipteran thorax that ensure wing-haltere synchrony, despite severe wing damage.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, Washington, United States
| | | | - Sanjay P Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
7
|
Neil TR, Kennedy EE, Harris BJ, Holderied MW. Wingtip folds and ripples on saturniid moths create decoy echoes against bat biosonar. Curr Biol 2021; 31:4824-4830.e3. [PMID: 34506731 DOI: 10.1016/j.cub.2021.08.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Sensory coevolution has equipped certain moth species with passive acoustic defenses to counter predation by echolocating bats.1,2 Some large silkmoths (Saturniidae) possess curved and twisted biosonar decoys at the tip of elongated hindwing tails.3,4 These are thought to create strong echoes that deflect biosonar-guided bat attacks away from the moth's body to less essential parts of their anatomy. We found that closely related silkmoths lacking such hindwing decoys instead often possess intriguing ripples and folds on the conspicuously lobed tips of their forewings. The striking analogy of twisted shapes displayed far from the body suggests these forewing structures might function as alternative acoustic decoys. Here we reveal that acoustic reflectivity and hence detectability of such wingtips is higher than that of the body at ultrasonic frequencies used by hunting bats. Wingtip reflectivity is higher the more elaborate the structure and the further from the body. Importantly, wingtip reflectivity is often considerably higher than in a well-studied functional hindwing decoy. Such increased reflectivity would misdirect the bat's sonar-guided attack toward the wingtip, resulting in similar fitness benefits to hindwing acoustic decoys. Structurally, folded wingtips present echo-generating surfaces to many directions, and folds and ripples can act as retroreflectors that together create conspicuous targets. Phylogenetically, folds and ripples at wingtips have evolved multiple times independently within silkmoths and always as alternatives to hindwing decoys. We conclude that they function as acoustic wingtip decoys against bat biosonar. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Thomas R Neil
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ella E Kennedy
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Brogan J Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
8
|
Leonte MB, Leonhardt A, Borst A, Mauss AS. Aerial course stabilization is impaired in motion-blind flies. J Exp Biol 2021; 224:271038. [PMID: 34297111 DOI: 10.1242/jeb.242219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023]
Abstract
Visual motion detection is among the best understood neuronal computations. As extensively investigated in tethered flies, visual motion signals are assumed to be crucial to detect and counteract involuntary course deviations. During free flight, however, course changes are also signalled by other sensory systems. Therefore, it is as yet unclear to what extent motion vision contributes to course control. To address this question, we genetically rendered flies motion-blind by blocking their primary motion-sensitive neurons and quantified their free-flight performance. We found that such flies have difficulty maintaining a straight flight trajectory, much like unimpaired flies in the dark. By unilateral wing clipping, we generated an asymmetry in propulsive force and tested the ability of flies to compensate for this perturbation. While wild-type flies showed a remarkable level of compensation, motion-blind animals exhibited pronounced circling behaviour. Our results therefore directly confirm that motion vision is necessary to fly straight under realistic conditions.
Collapse
Affiliation(s)
- Maria-Bianca Leonte
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University, Großhadernerstr. 2, Planegg-Martinsried 82152, Germany
| | - Aljoscha Leonhardt
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alexander Borst
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Alex S Mauss
- Circuits - Computation - Models, Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| |
Collapse
|
9
|
Gau J, Gemilere R, Fm Subteam LV, Lynch J, Gravish N, Sponberg S. Rapid frequency modulation in a resonant system: aerial perturbation recovery in hawkmoths. Proc Biol Sci 2021; 288:20210352. [PMID: 34034520 DOI: 10.1098/rspb.2021.0352] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Centimetre-scale fliers must contend with the high power requirements of flapping flight. Insects have elastic elements in their thoraxes which may reduce the inertial costs of their flapping wings. Matching wingbeat frequency to a mechanical resonance can be energetically favourable, but also poses control challenges. Many insects use frequency modulation on long timescales, but wingstroke-to-wingstroke modulation of wingbeat frequencies in a resonant spring-wing system is potentially costly because muscles must work against the elastic flight system. Nonetheless, rapid frequency and amplitude modulation may be a useful control modality. The hawkmoth Manduca sexta has an elastic thorax capable of storing and returning significant energy. However, its nervous system also has the potential to modulate the driving frequency of flapping because its flight muscles are synchronous. We tested whether hovering hawkmoths rapidly alter frequency during perturbations with vortex rings. We observed both frequency modulation (32% around mean) and amplitude modulation (37%) occurring over several wingstrokes. Instantaneous phase analysis of wing kinematics revealed that more than 85% of perturbation responses required active changes in neurogenic driving frequency. Unlike their robotic counterparts that abdicate frequency modulation for energy efficiency, synchronous insects use wingstroke-to-wingstroke frequency modulation despite the power demands required for deviating from resonance.
Collapse
Affiliation(s)
- Jeff Gau
- Interdisciplinary Bioengineering Graduate Program and Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ryan Gemilere
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lds-Vip Fm Subteam
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - James Lynch
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA 92161, USA
| | - Simon Sponberg
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
10
|
Knight K. Wing damage no obstacle for hummingbird hawkmoths. J Exp Biol 2021. [DOI: 10.1242/jeb.242392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|