1
|
Taff CC, Baldan D, Mentesana L, Ouyang JQ, Vitousek MN, Hau M. Endocrine flexibility can facilitate or constrain the ability to cope with global change. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220502. [PMID: 38310929 PMCID: PMC10838644 DOI: 10.1098/rstb.2022.0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/21/2023] [Indexed: 02/06/2024] Open
Abstract
Global climate change has increased average environmental temperatures world-wide, simultaneously intensifying temperature variability and extremes. Growing numbers of studies have documented phenological, behavioural and morphological responses to climate change in wild populations. As systemic signals, hormones can contribute to orchestrating many of these phenotypic changes. Yet little is known about whether mechanisms like hormonal flexibility (reversible changes in hormone concentrations) facilitate or limit the ability of individuals, populations and species to cope with a changing climate. In this perspective, we discuss different mechanisms by which hormonal flexibility, primarily in glucocorticoids, could promote versus hinder evolutionary adaptation to changing temperature regimes. We focus on temperature because it is a key gradient influenced by climate change, it is easy to quantify, and its links to hormones are well established. We argue that reaction norm studies that connect individual responses to population-level and species-wide patterns will be critical for making progress in this field. We also develop a case study on urban heat islands, where several key questions regarding hormonal flexibility and adaptation to climate change can be addressed. Understanding the mechanisms that allow animals to cope when conditions become more challenging will help in predicting which populations are vulnerable to ongoing climate change. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Conor C. Taff
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Davide Baldan
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Lucia Mentesana
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Faculty of Sciences, Republic University, Montevideo, 11200, Uruguay
| | - Jenny Q. Ouyang
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Maren N. Vitousek
- Laboratory Ornithology and Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michaela Hau
- Evolutionary Physiology, Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
- Department of Biology, University of Konstanz, Konstanz, 78467, Germany
| |
Collapse
|
2
|
Zimmer C, Jimeno B, Martin LB. HPA flexibility and FKBP5: promising physiological targets for conservation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220512. [PMID: 38310934 PMCID: PMC10838639 DOI: 10.1098/rstb.2022.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/22/2023] [Indexed: 02/06/2024] Open
Abstract
Hypothalamic-pituitary-adrenal axis (HPA) flexibility is an emerging concept recognizing that individuals that will cope best with stressors will probably be those using their hormones in the most adaptive way. The HPA flexibility concept considers glucocorticoids as molecules that convey information about the environment from the brain to the body so that the organismal phenotype comes to complement prevailing conditions. In this context, FKBP5 protein appears to set the extent to which circulating glucocorticoid concentrations can vary within and across stressors. Thus, FKBP5 expression, and the HPA flexibility it causes, seem to represent an individual's ability to regulate its hormones to orchestrate organismal responses to stressors. As FKBP5 expression can also be easily measured in blood, it could be a worthy target of conservation-oriented research attention. We first review the known and likely roles of HPA flexibility and FKBP5 in wildlife. We then describe putative genetic, environmental and epigenetic causes of variation in HPA flexibility and FKBP5 expression among and within individuals. Finally, we hypothesize how HPA flexibility and FKBP5 expression should affect organismal fitness and hence population viability in response to human-induced rapid environmental changes, particularly urbanization. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.
Collapse
Affiliation(s)
- Cédric Zimmer
- Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, Université Sorbonne Paris Nord, UR 4443, 93430 Villetaneuse, France
| | - Blanca Jimeno
- Instituto Pirenaico de Ecologia (IPE), CSIC, Avenida Nuestra Señora de la Victoria, 16, 22700 Jaca, Spain
| | - Lynn B. Martin
- Center for Global Health and Infectious Disease Research and Center for Genomics, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Jennifer T, Emily F, Neuman-Lee LA. Assessment of glucocorticoids, sex steroids, and innate immunity in wild red-eared slider turtles (Trachemys scripta elegans). Gen Comp Endocrinol 2023; 339:114288. [PMID: 37060930 DOI: 10.1016/j.ygcen.2023.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
When access to resources is limited, organisms must shift energy investment among physiological processes to survive, reproduce, and respond to unpredictable events. The shifting of these limited resources among processes may result in physiological tradeoffs, often mediated by glucocorticoids. We assessed relationships among the physiological processes of immunity, reproduction, and the stress response in wild adult red-eared slider turtles (Trachemys scripta elegans). Red-eared sliders exhibit a multi-clutching reproductive strategy that requires high energetic investment in reproduction at the beginning of the nesting season in females. Males mate in spring and undergo spermatogenesis and mating in late summer/early fall. We expected to observe tradeoffs when investment toward reproductive processes was particularly demanding. To test this, we subjected 123 individuals to a standardized acute stressor and collected blood to measure innate immunocompetence and circulating steroid hormone concentrations. Tradeoffs between female reproduction and immunocompetence occurred early in the nesting season. This high reproductive investment was evident by heightened circulating progesterone and reduced baseline innate immunity. Corticosterone (CORT) was also high during this period, indicating a role in facilitating allocation of energy. Tradeoffs were not as evident in males, though males upregulated innate immune function, baseline CORT, and testosterone prior to fall spermatogenesis and mating. Throughout the entire sampling period, both males and females increased CORT and immunocompetence following the acute standardized stressor. Taken together, we concluded that reproduction requires shifts in energy allocation in during the highest reproductive period for females but all individuals in this population remain able to respond to the standardized stressor even during increased reproductive investment. These findings reinforce the continuing evidence that physiological relationships are context-dependent and resource demands are dynamic across the reproductive season.
Collapse
Affiliation(s)
- Terry Jennifer
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA.
| | - Field Emily
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA; Mississippi Department of Wildlife, Fisheries, and Parks, Mississippi Museum of Natural Science, 2148 Riverside Drive Jackson, MS 39202
| | - Lorin A Neuman-Lee
- Arkansas State University, PO Box 599, State University, Arkansas, 72467, USA
| |
Collapse
|
4
|
Newediuk L, Bath DR. Meta-analysis reveals between-population differences affect the link between glucocorticoids and population health. CONSERVATION PHYSIOLOGY 2023; 11:coad005. [PMID: 36845329 PMCID: PMC9945071 DOI: 10.1093/conphys/coad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Glucocorticoids are a popular tool for monitoring health of animal populations because they can increase with environmental stressors and can indicate chronic stress. However, individual responses to stressors create variation in the glucocorticoid-fitness relationship within populations. The inconsistency in this relationship calls into question the widespread use of glucocorticoids in conservation. We investigated the sources of variation in the glucocorticoid-fitness relationship by conducting a meta-analysis across a diverse set of species exposed to conservation-relevant stressors. We first quantified the extent to which studies inferred population health from glucocorticoids without first validating the glucocorticoid-fitness relationship in their own populations. We also tested whether population-level information like life history stage, sex and species longevity influenced the relationship between glucocorticoids and fitness. Finally, we tested for a universally consistent relationship between glucocorticoids and fitness across studies. We found more than half of peer-reviewed studies published between 2008 and 2022 inferred population health solely based on glucocorticoid levels. While life history stage explained some variation in the relationship between glucocorticoids and fitness, we found no consistent relationship between them. Much of the variation in the relationship could be the result of idiosyncratic characteristics of declining populations, such as unstable demographic structure, that coincided with large amounts of variation in glucocorticoid production. We suggest that conservation biologists capitalize on this variation in glucocorticoid production by declining populations by using the variance in glucocorticoid production as an early warning for declines in population health.
Collapse
Affiliation(s)
- Levi Newediuk
- Corresponding author: Department of Biology, Memorial University, 45 Arctic Avenue, St. John's, Newfoundland A1B 3X9, Canada.
| | - Devon R Bath
- Department of Ocean Sciences, Memorial University, 0 Marine Lab Road, St. John's, Newfoundland A1C 5S7, Canada
| |
Collapse
|
5
|
Hau M, Deimel C, Moiron M. Great tits differ in glucocorticoid plasticity in response to spring temperature. Proc Biol Sci 2022; 289:20221235. [PMID: 36350212 PMCID: PMC9653245 DOI: 10.1098/rspb.2022.1235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/14/2022] [Indexed: 09/05/2023] Open
Abstract
Fluctuations in environmental temperature affect energy metabolism and stimulate the expression of reversible phenotypic plasticity in vertebrate behavioural and physiological traits. Changes in circulating concentrations of glucocorticoid hormones often underpin environmentally induced phenotypic plasticity. Ongoing climate change is predicted to increase fluctuations in environmental temperature globally, making it imperative to determine the standing phenotypic variation in glucocorticoid responses of free-living populations to evaluate their potential for coping via plastic or evolutionary changes. Using a reaction norm approach, we repeatedly sampled wild great tit (Parus major) individuals for circulating glucocorticoid concentrations during reproduction across five years to quantify individual variation in glucocorticoid plasticity along an environmental temperature gradient. As expected, baseline and stress-induced glucocorticoid concentrations increased with lower environmental temperatures at the population and within-individual level. Moreover, we provide unique evidence that individuals differ significantly in their plastic responses to the temperature gradient for both glucocorticoid traits, with some displaying greater plasticity than others. Average concentrations and degree of plasticity covaried for baseline glucocorticoids, indicating that these two reaction norm components are linked. Hence, individual variation in glucocorticoid plasticity in response to a key environmental factor exists in a wild vertebrate population, representing a crucial step to assess their potential to endure temperature fluctuations.
Collapse
Affiliation(s)
- Michaela Hau
- Max Planck Institute for Ornithology, Seewiesen, Germany
- University of Konstanz, Konstanz, Germany
| | | | - Maria Moiron
- Institute of Avian Research, Wilhelmshaven, Germany
| |
Collapse
|
6
|
Cockrem JF. Individual variation, personality, and the ability of animals to cope with climate change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.897314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Sixth Assessment of the Intergovernmental Panel on Climate Change describes negative effects of climate change on animals occurring on a larger scale than previously appreciated. Animal species are increasingly experiencing more frequent and extreme weather in comparison with conditions in which the species evolved. Individual variation in behavioural and physiological responses of animals to stimuli from the environment is ubiquitous across all species. Populations with relatively high levels of individual variation are more likely to be able to survive in a range of environmental conditions and cope with climate change than populations with low levels of variation. Behavioural and physiological responses are linked in animals, and personality can be defined as consistent individual behavioural and physiological responses of animals to changes in their immediate environment. Glucocorticoids (cortisol and corticosterone) are hormones that, in addition to metabolic roles, are released when the neuroendocrine stress system is activated in response to stimuli from the environment perceived to be threatening. The size of a glucocorticoid response of an animal is an indication of the animal’s personality. Animals with reactive personalities have relatively high glucocorticoid responses, are relatively slow and thorough to explore new situations, and are more flexible and able to cope with changing or unpredictable conditions than animals with proactive personalities. Animals with reactive personalities are likely to be better able to cope with environmental changes due to climate change than animals with proactive personalities. A reaction norm shows the relationship between phenotype and environmental conditions, with the slope of a reaction norm for an individual animal a measure of phenotypic plasticity. If reaction norm slopes are not parallel, there is individual variation in plasticity. Populations with relatively high individual variation in plasticity of reaction norms will have more animals that can adjust to a new situation than populations with little variation in plasticity, so are more likely to persist as environments change due to climate change. Future studies of individual variation in plasticity of responses to changing environments will help understanding of how populations of animals may be able to cope with climate change.
Collapse
|
7
|
Mentesana L, Hau M. Glucocorticoids in a warming world: Do they help birds to cope with high environmental temperatures? Horm Behav 2022; 142:105178. [PMID: 35561643 DOI: 10.1016/j.yhbeh.2022.105178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Climate change is threatening biodiversity world-wide. One of its most prominent manifestations are rising global temperatures and higher frequencies of heat waves. High environmental temperatures may be particularly challenging for endotherms, which expend considerable parts of their energy budget and water resources on thermoregulation. Thermoregulation involves phenotypic plasticity in behavioral and physiological traits. Information on causal mechanisms that support plastic thermoregulatory strategies is key to understand how environmental information is transmitted and whether they impose trade-offs or constraints that determine how endotherms cope with climate warming. In this review, we focus on glucocorticoids, metabolic hormones that orchestrate plastic responses to various environmental stimuli including temperature. To evaluate how they may mediate behavioral and physiological responses to high environmental temperatures, we 1) briefly review the major thermoregulatory strategies in birds; 2) summarize the functions of baseline and stress-induced glucocorticoid concentrations; 3) synthesize the current knowledge of the relationship between circulating glucocorticoids and high environmental temperatures in birds; 4) generate hypotheses for how glucocorticoids may support plastic thermoregulatory responses to high environmental temperatures that occur over different time-frames (i.e., acute, short- and longer-term); and 5) discuss open questions on how glucocorticoids, and their relationship with thermoregulation, may evolve. Throughout this review we highlight that our knowledge, particularly on free-living populations, is really limited and outline promising avenues for future research. As evolutionary endocrinologists we now need to step up and identify the costs, benefits, and evolution of glucocorticoid plasticity to elucidate how they may help birds cope with a warming world.
Collapse
Affiliation(s)
- Lucia Mentesana
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| | - Michaela Hau
- Max Planck Institute for Ornithology, Eberhard-Gwinner-Str., 82319 Seewiesen, Germany.
| |
Collapse
|
8
|
Zimmer C, Woods HA, Martin LB. Information theory in vertebrate stress physiology. Trends Endocrinol Metab 2022; 33:8-17. [PMID: 34750063 DOI: 10.1016/j.tem.2021.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022]
Abstract
Information theory has been applied productively across biology, but it has been used minimally in endocrinology. Here, we advocate for the integration of information theory into stress endocrinology. Presently, the majority of models of stress center on the regulation of hormone concentrations, even though what interests most endocrinologists and matters in terms of individual health and evolutionary fitness is the information content of hormones. In neuroscience, the free energy principle, a concept offered to explain how the brain infers current and future states of the environment, could be a guide for resolving how information is instantiated in hormones such as the glucocorticoids. Here, we offer several ideas and promising options for research addressing how hormones encode and cells respond to information in glucocorticoids.
Collapse
Affiliation(s)
- Cedric Zimmer
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA; Laboratoire d'Ethologie Expérimentale et Comparée, LEEC, UR 4443, Université Sorbonne Paris Nord, 93430, Villetaneuse, France.
| | - H Arthur Woods
- University of Montana, Division of Biological Sciences, Missoula, MT 59812, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research Center, University of South Florida, FL 33612, USA
| |
Collapse
|
9
|
Malkoc K, Mentesana L, Casagrande S, Hau M. Quantifying Glucocorticoid Plasticity Using Reaction Norm Approaches: There Still is So Much to Discover! Integr Comp Biol 2021; 62:58-70. [PMID: 34665256 PMCID: PMC9375136 DOI: 10.1093/icb/icab196] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hormones are highly responsive internal signals that help organisms adjust their phenotype to fluctuations in environmental and internal conditions. Our knowledge of the causes and consequences of variation in circulating hormone concentrations has improved greatly in the past. However, this knowledge often comes from population-level studies, which generally tend to make the flawed assumption that all individuals respond in the same way to environmental changes. Here, we advocate that we can vastly expand our understanding of the ecology and evolution of hormonal traits once we acknowledge the existence of individual differences by quantifying hormonal plasticity at the individual level, where selection acts. In this review, we use glucocorticoid (GC) hormones as examples of highly plastic endocrine traits that interact intimately with energy metabolism but also with other organismal traits like behavior and physiology. First, we highlight the insights gained by repeatedly assessing an individual's GC concentrations along a gradient of environmental or internal conditions using a “reaction norm approach.” This study design should be followed by a hierarchical statistical partitioning of the total endocrine variance into the among-individual component (individual differences in average hormone concentrations, i.e., in the intercept of the reaction norm) and the residual (within-individual) component. The latter is ideally further partitioned by estimating more precisely hormonal plasticity (i.e., the slope of the reaction norm), which allows to test whether individuals differ in the degree of hormonal change along the gradient. Second, we critically review the published evidence for GC variation, focusing mostly on among- and within-individual levels, finding only a good handful of studies that used repeated-measures designs and random regression statistics to investigate GC plasticity. These studies indicate that individuals can differ in both the intercept and the slope of their GC reaction norm to a known gradient. Third, we suggest rewarding avenues for future work on hormonal reaction norms, for example to uncover potential costs and trade-offs associated with GC plasticity, to test whether GC plasticity varies when an individual's reaction norm is repeatedly assessed along the same gradient, whether reaction norms in GCs covary with those in other traits like behavior and fitness (generating multivariate plasticity), or to quantify GC reaction norms along multiple external and internal gradients that act simultaneously (leading to multidimensional plasticity). Throughout this review, we emphasize the power that reaction norm approaches offer for resolving unanswered questions in ecological and evolutionary endocrinology.
Collapse
Affiliation(s)
- Kasja Malkoc
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Lucia Mentesana
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Stefania Casagrande
- Research Group for Evolutionary Physiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michaela Hau
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|