1
|
Takahashi K, Lee Y, Fago A, Bautista NM, Storz JF, Kawamoto A, Kurisu G, Nishizawa T, Tame JRH. The unique allosteric property of crocodilian haemoglobin elucidated by cryo-EM. Nat Commun 2024; 15:6505. [PMID: 39090102 PMCID: PMC11294572 DOI: 10.1038/s41467-024-49947-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites.
Collapse
Affiliation(s)
- Katsuya Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan
| | - Yongchan Lee
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan
| | - Angela Fago
- Department of Biology, Aarhus University, C. F. Møllers Alle 3, Aarhus, DK-8000, Aarhus C, Denmark
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, 1104 T St., Lincoln, NE 68588-0118, NE, USA
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, 1104 T St., Lincoln, NE 68588-0118, NE, USA
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan.
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, Suehiro 1-7-29, Yokohama, 230-0045, Japan.
| |
Collapse
|
2
|
Natarajan C, Signore AV, Bautista NM, Hoffmann FG, Tame JRH, Fago A, Storz JF. Evolution and molecular basis of a novel allosteric property of crocodilian hemoglobin. Curr Biol 2023; 33:98-108.e4. [PMID: 36549299 PMCID: PMC9839640 DOI: 10.1016/j.cub.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
The extraordinary breath-hold diving capacity of crocodilians has been ascribed to a unique mode of allosterically regulating hemoglobin (Hb)-oxygenation in circulating red blood cells. We investigated the origin and mechanistic basis of this novel biochemical phenomenon by performing directed mutagenesis experiments on resurrected ancestral Hbs. Comparisons of Hb function between the common ancestor of archosaurs (the group that includes crocodilians and birds) and the last common ancestor of modern crocodilians revealed that regulation of Hb-O2 affinity via allosteric binding of bicarbonate ions represents a croc-specific innovation that evolved in combination with the loss of allosteric regulation by ATP binding. Mutagenesis experiments revealed that evolution of the novel allosteric function in crocodilians and the concomitant loss of ancestral function were not mechanistically coupled and were caused by different sets of substitutions. The gain of bicarbonate sensitivity in crocodilian Hb involved the direct effect of few amino acid substitutions at key sites in combination with indirect effects of numerous other substitutions at structurally disparate sites. Such indirect interaction effects suggest that evolution of the novel protein function was conditional on neutral mutations that produced no adaptive benefit when they first arose but that contributed to a permissive background for subsequent function-altering mutations at other sites. Due to the context dependence of causative substitutions, the unique allosteric properties of crocodilian Hb cannot be easily transplanted into divergent homologs of other species.
Collapse
Affiliation(s)
| | - Anthony V Signore
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Naim M Bautista
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jeremy R H Tame
- Drug Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Bautista NM, Petersen EE, Jensen RJ, Natarajan C, Storz JF, Crossley DA, Fago A. Changes in hemoglobin function and isoform expression during embryonic development in the American alligator, Alligator mississippiensis. Am J Physiol Regul Integr Comp Physiol 2021; 321:R869-R878. [PMID: 34704846 DOI: 10.1152/ajpregu.00047.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the developing embryos of egg-laying vertebrates, O2 flux takes place across a fixed surface area of the eggshell and the chorioallantoic membrane. In the case of crocodilians, the developing embryo may experience a decrease in O2 flux when the nest becomes hypoxic, which may cause compensatory adjustments in blood O2 transport. However, whether the switch from embryonic to adult hemoglobin isoforms (isoHbs) plays some role in these adjustments is unknown. Here, we provide a detailed characterization of the developmental switch of isoHb synthesis in the American alligator, Alligator mississippiensis. We examined the in vitro functional properties and subunit composition of purified alligator isoHbs expressed during embryonic developmental stages in normoxia and hypoxia (10% O2). We found distinct patterns of isoHb expression in alligator embryos at different stages of development, but these patterns were not affected by hypoxia. Specifically, alligator embryos expressed two main isoHbs: HbI, prevalent at early developmental stages, with a high O2 affinity and high ATP sensitivity, and HbII, prevalent at later stages and identical to the adult protein, with a low O2 affinity and high CO2 sensitivity. These results indicate that whole blood O2 affinity is mainly regulated by ATP in the early embryo and by CO2 and bicarbonate from the late embryo until adult life, but the developmental regulation of isoHb expression is not affected by hypoxia exposure.
Collapse
Affiliation(s)
| | | | | | | | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
4
|
Bautista NM, Malte H, Natarajan C, Wang T, Storz JF, Fago A. New insights into the allosteric effects of CO2 and bicarbonate on crocodilian hemoglobin. J Exp Biol 2021; 224:271141. [PMID: 34338300 DOI: 10.1242/jeb.242615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
Crocodilians are unique among vertebrates in that their hemoglobin (Hb) O2 binding is allosterically regulated by bicarbonate, which forms in red blood cells upon hydration of CO2. Although known for decades, this remarkable mode of allosteric control has not yet been experimentally verified with direct evidence of bicarbonate binding to crocodilian Hb, probably because of confounding CO2-mediated effects. Here, we provide the first quantitative analysis of the separate allosteric effects of CO2 and bicarbonate on purified Hb of the spectacled caiman (Caiman crocodilus). Using thin-layer gas diffusion chamber and Tucker chamber techniques, we demonstrate that both CO2 and bicarbonate bind to Hb with high affinity and strongly decrease O2 saturation of Hb. We propose that both effectors bind to an unidentified positively charged site containing a reactive amino group in the low-O2 affinity T conformation of Hb. These results provide the first experimental evidence that bicarbonate binds directly to crocodilian Hb and promotes O2 delivery independently of CO2. Using the gas diffusion chamber, we observed similar effects in Hbs of a phylogenetically diverse set of other caiman, alligator and crocodile species, suggesting that the unique mode of allosteric regulation by CO2 and bicarbonate evolved >80-100 million years ago in the common ancestor of crocodilians. Our results show a tight and unusual linkage between O2 and CO2 transport in the blood of crocodilians, where the build-up of erytrocytic CO2 and bicarbonate ions during breath-hold diving or digestion facilitates O2 delivery, while Hb desaturation facilitates CO2 transport as protein-bound CO2 and bicarbonate.
Collapse
Affiliation(s)
- Naim M Bautista
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Malte
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Tobias Wang
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jay F Storz
- School of Biological Sciences , University of Nebraska, Lincoln, NE 68588, USA
| | - Angela Fago
- Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Knight K. Caiman red blood cells carry bicarbonate, not blood plasma. J Exp Biol 2021. [DOI: 10.1242/jeb.242659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|