1
|
Hutchinson AJ, Duffy BM, Rego LH, Staples JF. Paper towel shredding as a novel, affordable, noninvasive method for detecting arousals in hibernating rodents. Lab Anim (NY) 2024; 53:117-120. [PMID: 38637688 DOI: 10.1038/s41684-024-01362-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Many research groups explore the regulation of hibernation or compare the physiology of heterothermic mammals between the torpid and aroused, euthermic states. Current methods for monitoring torpor (for example, infrared cameras, body temperature or heart-rate telemetry, and motion sensing) are costly, require specialized techniques, and can be invasive. Here we present an alternate method for determining torpor-bout duration that is cost-effective, noninvasive and accurate: paper towel shredding. In the winter, euthermic thirteen-lined ground squirrels will shred paper towels placed in the cage, but torpid animals will not. The presence of a shredded paper towel, indicating an arousal from torpor, is easily evaluated during routine daily monitoring. In 12 animals over 52 days, this simple technique detected 59 arousals with 100% accuracy when compared with the body temperature telemetry of the same animals. Moreover, this novel method avoids some of the drawbacks of other cheap monitoring systems such as the sawdust technique.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, The University of Western Ontario, London, Ontario, Canada.
| | - Brynne M Duffy
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - Lauren H Rego
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| | - James F Staples
- Department of Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Haugg E, Borner J, Stalder G, Kübber‐Heiss A, Giroud S, Herwig A. Comparative transcriptomics of the garden dormouse hypothalamus during hibernation. FEBS Open Bio 2024; 14:241-257. [PMID: 37925593 PMCID: PMC10839406 DOI: 10.1002/2211-5463.13731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/06/2023] Open
Abstract
Torpor or heterothermy is an energy-saving mechanism used by endotherms to overcome harsh environmental conditions. During winter, the garden dormouse (Eliomys quercinus) hibernates with multiday torpor bouts and body temperatures of a few degrees Celsius, interrupted by brief euthermic phases. This study investigates gene expression within the hypothalamus, the key brain area controlling energy balance, adding information on differential gene expression potentially relevant to orchestrate torpor. A de novo assembled transcriptome of the hypothalamus was generated from garden dormice hibernating under constant darkness without food and water at 5 °C. Samples were collected during early torpor, late torpor, and interbout arousal. During early torpor, 765 genes were differentially expressed as compared with interbout arousal. Twenty-seven pathways were over-represented, including pathways related to hemostasis, extracellular matrix organization, and signaling of small molecules. Only 82 genes were found to be differentially expressed between early and late torpor, and no pathways were over-represented. During late torpor, 924 genes were differentially expressed relative to interbout arousal. Despite the high number of differentially expressed genes, only 10 pathways were over-represented. Of these, eight were also observed to be over-represented when comparing early torpor and interbout arousal. Our results are largely consistent with previous findings in other heterotherms. The addition of a transcriptome of a novel species may help to identify species-specific and overarching torpor mechanisms through future species comparisons.
Collapse
Affiliation(s)
- Elena Haugg
- Institute of NeurobiologyUlm UniversityGermany
| | - Janus Borner
- Sackler Institute for Comparative GenomicsAmerican Museum of Natural HistoryNew YorkNYUSA
| | - Gabrielle Stalder
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Anna Kübber‐Heiss
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
| | - Sylvain Giroud
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife EcologyUniversity of Veterinary MedicineViennaAustria
- Energetics Lab, Department of BiologyNorthern Michigan UniversityMarquetteMIUSA
| | | |
Collapse
|
3
|
Nowack J, Stawski C, Geiser F, Levesque DL. Rare and Opportunistic Use of Torpor in Mammals-An Echo from the Past? Integr Comp Biol 2023; 63:1049-1059. [PMID: 37328423 PMCID: PMC10714912 DOI: 10.1093/icb/icad067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/18/2023] Open
Abstract
Torpor was traditionally seen as a winter survival mechanism employed by animals living in cold and highly seasonal habitats. Although we now know that torpor is also used by tropical and subtropical species, and in response to a variety of triggers, torpor is still largely viewed as a highly controlled, seasonal mechanism shown by Northern hemisphere species. To scrutinize this view, we report data from a macroanalysis in which we characterized the type and seasonality of torpor use from mammal species currently known to use torpor. Our findings suggest that predictable, seasonal torpor patterns reported for Northern temperate and polar species are highly derived forms of torpor expression, whereas the more opportunistic and variable forms of torpor that we see in tropical and subtropical species are likely closer to the patterns expressed by ancestral mammals. Our data emphasize that the torpor patterns observed in the tropics and subtropics should be considered the norm and not the exception.
Collapse
Affiliation(s)
- Julia Nowack
- School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Clare Stawski
- School of Science, Technology and Engineering, University of the Sunshine Coast (USC), Maroochydore DC, QLD 4558, Australia
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | | |
Collapse
|
4
|
Nogueira-de-Sá PG, Bicudo JEPW, Chaui-Berlinck JG. Energy and time optimization during exit from torpor in vertebrate endotherms. J Comp Physiol B 2023:10.1007/s00360-023-01494-5. [PMID: 37171656 DOI: 10.1007/s00360-023-01494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Torpor is used in small sized birds and mammals as an energy conservation trait. Considerable effort has been put towards elucidating the mechanisms underlying its entry and maintenance, but little attention has been paid regarding the exit. Firstly, we demonstrate that the arousal phase has a stereotyped dynamic: there is a sharp increase in metabolic rate followed by an increase in body temperature and, then, a damped oscillation in body temperature and metabolism. Moreover, the metabolic peak is around two-fold greater than the corresponding euthermic resting metabolic rate. We then hypothesized that either time or energy could be crucial variables to this event and constructed a model from a collection of first principles of physiology, control engineering and thermodynamics. From the model, we show that the stereotyped pattern of the arousal is a solution to save both time and energy. We extended the analysis to the scaling of the use of torpor by endotherms and show that variables related to the control system of body temperature emerge as relevant to the arousal dynamics. In this sense, the stereotyped dynamics of the arousal phase necessitates a certain profile of these variables which is not maintained as body size increases.
Collapse
Affiliation(s)
- Pedro Goes Nogueira-de-Sá
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
5
|
de Wit L, Hamberg MR, Ross AM, Goris M, Lie FF, Ruf T, Giroud S, Henning RH, Hut RA. Temperature Effects on DNA Damage during Hibernation. Physiol Biochem Zool 2023; 96:144-152. [PMID: 36921268 DOI: 10.1086/722904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDuring multiday torpor, deep-hibernating mammals maintain a hypometabolic state where heart rate and ventilation are reduced to 2%-4% of euthermic rates. It is hypothesized that this ischemia-like condition may cause DNA damage through reactive oxygen species production. The reason for intermittent rewarming (arousal) during hibernation might be to repair the accumulated DNA damage. Because increasing ambient temperatures (Ta's) shortens torpor bout duration, we hypothesize that hibernating at higher Ta's will result in a faster accumulation of genomic DNA damage. To test this, we kept 39 male and female garden dormice at a Ta of either 5°C or 10°C and obtained tissue at 1, 4, and 8 d in torpor to assess DNA damage and recruitment of DNA repair markers in splenocytes. DNA damage in splenocytes measured by comet assay was significantly higher in almost all torpor groups than in summer euthermic groups. Damage accumulates in the first days of torpor at T a = 5 ° C (between days 1 and 4) but not at T a = 10 ° C . At the higher Ta, DNA damage is high at 24 h in torpor, indicating either a faster buildup of DNA damage at higher Ta's or an incomplete repair during arousals in dormice. At 5°C, recruitment of the DNA repair protein 53BP1 paralleled the increase in DNA damage over time during torpor. In contrast, after 1 d in torpor at 10°C, DNA damage levels were high, but 53BP1 was not recruited to the nuclear DNA yet. The data suggest a potential mismatch in the DNA damage/repair dynamics during torpor at higher Ta's.
Collapse
|
6
|
Ruf T, Bieber C. Why hibernate? Predator avoidance in the edible dormouse. MAMMAL RES 2022; 68:1-11. [PMID: 36624745 PMCID: PMC9816287 DOI: 10.1007/s13364-022-00652-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 01/12/2023]
Abstract
We address the question of ultimate selective advantages of hibernation. Biologists generally seem to accept the notion that multiday torpor is primarily a response to adverse environmental conditions, namely cold climate and low food abundance. We closely examine hibernation, and its summer equivalent estivation, in the edible dormouse, Glis glis. We conclude that in this species, hibernation is not primarily driven by poor conditions. Dormice enter torpor with fat reserves in years that are unfavourable for reproduction but provide ample food supply for animals to sustain themselves and even gain body energy reserves. While staying in hibernacula below ground, hibernators have much higher chances of survival than during the active season. We think that dormice enter prolonged torpor predominantly to avoid predation, mainly nocturnal owls. Because estivation in summer is immediately followed by hibernation, this strategy requires a good body condition in terms of fat reserves. As dormice age, they encounter fewer occasions to reproduce when calorie-rich seeds are available late in the year, and phase advance the hibernation season. By early emergence from hibernation, the best territories can be occupied and the number of mates maximised. However, this advantage comes at the cost of increased predation pressure that is maximal in spring. We argue the predator avoidance is generally one of the primary reasons for hibernation, as increased perceived predation pressure leads to an enhanced torpor use. The edible dormouse may be just an example where this behaviour becomes most obvious, on the population level and across large areas.
Collapse
Affiliation(s)
- Thomas Ruf
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| | - Claudia Bieber
- Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
7
|
A thermodynamic-based approach to model the entry into metabolic depression by mammals and birds. J Comp Physiol B 2022; 192:593-610. [PMID: 35737097 DOI: 10.1007/s00360-022-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 10/17/2022]
Abstract
For decades, there was an intense debate in relation to the mechanism behind the entry into metabolic depression (EMD) of mammals and birds. The fulcrum of the argument was whether the depression of metabolic rate ([Formula: see text]) was caused by the drop in body temperature, the so-called "Q10 effect", or whether it was caused by a metabolic downregulation. One present-day model of this process is a qualitative (textual) description: the initial step of EDM would be a downregulation in [Formula: see text] from the value maintaining euthermia at a given ambient temperature to the basal metabolic rate of the animal and, then, Q10 effect would take over and drop [Formula: see text] to its lower levels. Despite widely accepted, this qualitative description still misses a theoretical analysis. Here, we transpose the descriptive model to a formal quantitative one and analyze it under necessary thermodynamic conditions of a system. We, then, compare the results of the formal model to empirical data of EMD by mammals and birds. The comparisons indicate that the metabolic evolution in the course of the entry phase does not follow the descriptive model. Instead, as proposed by alternate models, EMD is a downregulated process as a whole until a new equilibrium Tb is attained.
Collapse
|
8
|
Ruf T, Giroud S, Geiser F. Hypothesis and Theory: A Two-Process Model of Torpor-Arousal Regulation in Hibernators. Front Physiol 2022; 13:901270. [PMID: 35812322 PMCID: PMC9266152 DOI: 10.3389/fphys.2022.901270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Hibernating mammals drastically lower their metabolic rate (MR) and body temperature (Tb) for up to several weeks, but regularly rewarm and stay euthermic for brief periods. It has been hypothesized that the necessity for rewarming is due to the accumulation or depletion of metabolites, or the accrual of cellular damage that can be eliminated only in the euthermic state. Recent evidence for significant inverse relationships between the duration of torpor bouts (TBD) and MR in torpor strongly supports this hypothesis. We developed a new mathematical model that simulates hibernation patterns. The model involves an hourglass process H (Hibernation) representing the depletion/accumulation of a crucial enzyme/metabolite, and a threshold process Hthr. Arousal, modelled as a logistic process, is initiated once the exponentially declining process H reaches Hthr. We show that this model can predict several phenomena observed in hibernating mammals, namely the linear relationship between TMR and TBD, effects of ambient temperature on TBD, the modulation of torpor depth and duration within the hibernation season, (if process Hthr undergoes seasonal changes). The model does not need but allows for circadian cycles in the threshold T, which lead to arousals occurring predominantly at certain circadian phases, another phenomenon that has been observed in certain hibernators. It does not however, require circadian rhythms in Tb or MR during torpor. We argue that a two-process regulation of torpor-arousal cycles has several adaptive advantages, such as an easy adjustment of TBD to environmental conditions as well as to energy reserves and, for species that continue to forage, entrainment to the light-dark cycle.
Collapse
Affiliation(s)
- Thomas Ruf
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
- *Correspondence: Thomas Ruf,
| | - Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Fritz Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW, Australia
| |
Collapse
|