1
|
Razzaq S, Fatima I, Moafian Z, Rahdar A, Fathi-Karkan S, Kharaba Z, Shirzad M, Khan A, Pandey S. Nanomedicine innovations in colon and rectal cancer: advances in targeted drug and gene delivery systems. Med Oncol 2025; 42:113. [PMID: 40097759 DOI: 10.1007/s12032-025-02670-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has revolutionized cancer diagnostics and therapy, offering unprecedented possibilities to overcome the constraints of conventional treatments. This study provides a detailed overview of the current progress and difficulties in the creation of nanostructured materials, with a specific emphasis on their use in drug and gene delivery systems. The study examines tactics that attempt to improve the effectiveness and safety of chemotherapeutic drugs such as doxorubicin (Dox) by focusing on the potential of antibody-drug conjugates and functionalized nanoparticles. Moreover, it clarifies the challenges encountered in administering nanoparticles orally for gastrointestinal treatments, emphasizing the crucial physicochemical properties that affect their behavior in the gastrointestinal system. This study highlights the transformational potential of nanostructured materials in precision oncology by examining advanced breakthroughs such cell membrane-camouflaged nanoparticles and inorganic nanoparticles designed for gastrointestinal disorders. The text investigates the processes involved in the absorption of nanoparticles and their destruction in lysosomes, revealing the many methods in which enterocytes take up these particles. This study strongly supports the use of advanced nanoparticle-based methods to reduce the harmful effects on the whole body and improve the effectiveness of therapy, based on a thorough examination of current experiments on animals and humans. The main objective of this paper is to provide a fundamental comprehension that will stimulate more investigation and practical use in the field of cancer nanomedicine, advancing its boundaries.
Collapse
Affiliation(s)
- Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore, Punjab, Pakistan
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zeinab Moafian
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, 538-98615, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 9414974877, Iran.
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, UAE
| | - Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Sadanand Pandey
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, 173229, Himachal Pradesh, India.
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
2
|
Wang D, Zhu L, Liu H, Feng X, Zhang C, Li T, Liu B, Liu L, Sun J, Chang H, Chen S, Guo S, Yang W. Huangqin tang alleviates colitis-associated colorectal cancer via amino acids homeostasisand PI3K/AKT/mtor pathway modulation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118597. [PMID: 39034016 DOI: 10.1016/j.jep.2024.118597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqin Tang (HQT), a traditional Chinese medicine formula, is commonly used in clinical practice for the treatment of inflammatory bowel diseases. It has been reported that HQT exerts antitumor effects on colitis-associated colorectal cancer (CAC). However, the mechanism by which HQT interferes with the inflammation-to-cancer transformation remains unclear. AIMS OF THE STUDY The purpose of this study was to dynamically evaluate the efficacy of HQT in alleviating or delaying CAC and to reveal the underlying mechanism. METHODS We established a mouse model of CAC using azoxymethane combined with 1.5% dextran sodium sulphate. The efficacy of HQT was evaluated based on pathological sections and serum biochemical indices. Subsequently, amino acids (AAs) metabolism analyses were performed using ultra-performance liquid chromatography-tandem mass spectrometry, and the phosphatidylinositol 3 kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway was detected by western blotting. RESULTS The data demonstrated that HQT could alleviate the development of CAC in the animal model. HQT effectively reduced the inflammatory response, particularly interleukin-6 (IL-6), in the inflammation induction stage, as well as in the stages of proliferation initiation and tumorigenesis. During the proliferation initiation and tumorigenesis stages, immunohistochemistry staining showed that the expression of the proliferation marker Ki67 was reduced, while apoptosis was increased in the HQT group. Accordingly, HQT substantially decreased the levels of specific AAs in the colon with CAC, including glutamic acid, glutamine, arginine, and isoleucine. Furthermore, HQT significantly inhibited the activated PI3K/AKT/mTOR pathway, which may contribute to suppression of cell proliferation and enhancement of apoptosis. CONCLUSION HQT is effective in alleviating and delaying the colon "inflammation-to-cancer". The mechanism of action may involve HQT maintained AAs metabolism homeostasis and regulated PI3K/AKT/mTOR pathway, so as to maintain the balance between proliferation and apoptosis, and then interfere in the occurrence and development of CAC.
Collapse
Affiliation(s)
- Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hao Chang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Siyuan Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shanshan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
4
|
Lee YJ, Kim WR, Park EG, Lee DH, Kim JM, Shin HJ, Jeong HS, Roh HY, Kim HS. Exploring the Key Signaling Pathways and ncRNAs in Colorectal Cancer. Int J Mol Sci 2024; 25:4548. [PMID: 38674135 PMCID: PMC11050203 DOI: 10.3390/ijms25084548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer to be diagnosed, and it has a substantial mortality rate. Despite numerous studies being conducted on CRC, it remains a significant health concern. The disease-free survival rates notably decrease as CRC progresses, emphasizing the urgency for effective diagnostic and therapeutic approaches. CRC development is caused by environmental factors, which mostly lead to the disruption of signaling pathways. Among these pathways, the Wingless/Integrated (Wnt) signaling pathway, Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway, Mitogen-Activated Protein Kinase (MAPK) signaling pathway, Transforming Growth Factor-β (TGF-β) signaling pathway, and p53 signaling pathway are considered to be important. These signaling pathways are also regulated by non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They have emerged as crucial regulators of gene expression in CRC by changing their expression levels. The altered expression patterns of these ncRNAs have been implicated in CRC progression and development, suggesting their potential as diagnostic and therapeutic targets. This review provides an overview of the five key signaling pathways and regulation of ncRNAs involved in CRC pathogenesis that are studied to identify promising avenues for diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Jung-min Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hae Jin Shin
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyeon-su Jeong
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Republic of Korea; (Y.J.L.); (W.R.K.); (E.G.P.); (D.H.L.); (J.-m.K.); (H.J.S.); (H.-s.J.)
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyun-Young Roh
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
5
|
Zhao H, Han R, Wang Z, Xian J, Bai X. Colorectal Cancer Stem Cells and Targeted Agents. Pharmaceutics 2023; 15:2763. [PMID: 38140103 PMCID: PMC10748092 DOI: 10.3390/pharmaceutics15122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Since their discovery, cancer stem cells have become a hot topic in cancer therapy research. These cells possess stem cell-like self-renewal and differentiation capacities and are important factors that dominate cancer metastasis, therapy-resistance and recurrence. Worse, their inherent characteristics make them difficult to eliminate. Colorectal cancer is the third-most common cancer and the second leading cause of cancer death worldwide. Targeting colorectal cancer stem cells (CR-CSCs) can inhibit colorectal cancer metastasis, enhance therapeutic efficacy and reduce recurrence. Here, we introduced the origin, biomarker proteins, identification, cultivation and research techniques of CR-CSCs, and we summarized the signaling pathways that regulate the stemness of CR-CSCs, such as Wnt, JAK/STAT3, Notch and Hh signaling pathway. In addition to these, we also reviewed recent anti-CR-CSC drugs targeting signaling pathways, biomarkers and other regulators. These will help researchers gain insight into the current agents targeting to CR-CSCs, explore new cancer drugs and propose potential therapies.
Collapse
Affiliation(s)
- Haobin Zhao
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| | - Ruining Han
- Obstetric Department, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China;
| | - Zhankun Wang
- Emergency Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China;
| | - Junfang Xian
- Department of General Practice, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China; (H.Z.); (J.X.)
| | - Xiaosu Bai
- Endocrinology Department, People’s Hospital of Longhua, 38 Jinglong Jianshe Road, Shenzhen 518109, China
| |
Collapse
|
6
|
Ling B, Xu Y, Qian S, Xiang Z, Xuan S, Wu J. Regulation of hematopoietic stem cells differentiation, self-renewal, and quiescence through the mTOR signaling pathway. Front Cell Dev Biol 2023; 11:1186850. [PMID: 37228652 PMCID: PMC10203478 DOI: 10.3389/fcell.2023.1186850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are important for the hematopoietic system because they can self-renew to increase their number and differentiate into all the blood cells. At a steady state, most of the HSCs remain in quiescence to preserve their capacities and protect themselves from damage and exhaustive stress. However, when there are some emergencies, HSCs are activated to start their self-renewal and differentiation. The mTOR signaling pathway has been shown as an important signaling pathway that can regulate the differentiation, self-renewal, and quiescence of HSCs, and many types of molecules can regulate HSCs' these three potentials by influencing the mTOR signaling pathway. Here we review how mTOR signaling pathway regulates HSCs three potentials, and introduce some molecules that can work as the regulator of HSCs' these potentials through the mTOR signaling. Finally, we outline the clinical significance of studying the regulation of HSCs three potentials through the mTOR signaling pathway and make some predictions.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyuan Qian
- The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Jha NK, Arfin S, Jha SK, Kar R, Dey A, Gundamaraju R, Ashraf GM, Gupta PK, Dhanasekaran S, Abomughaid MM, Das SS, Singh SK, Dua K, Roychoudhury S, Kumar D, Ruokolainen J, Ojha S, Kesari KK. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation-mediated cancer signaling. Semin Cancer Biol 2022; 86:1086-1104. [PMID: 35218902 DOI: 10.1016/j.semcancer.2022.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/20/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022]
Abstract
Recent mounting evidence has revealed extensive genetic heterogeneity within tumors that drive phenotypic variation affecting key cancer pathways, making cancer treatment extremely challenging. Diverse cancer types display resistance to treatment and show patterns of relapse following therapy. Therefore, efforts are required to address tumor heterogeneity by developing a broad-spectrum therapeutic approach that combines targeted therapies. Inflammation has been progressively documented as a vital factor in tumor advancement and has consequences in epigenetic variations that support tumor instigation, encouraging all the tumorigenesis phases. Increased DNA damage, disrupted DNA repair mechanisms, cellular proliferation, apoptosis, angiogenesis, and its incursion are a few pro-cancerous outcomes of chronic inflammation. A clear understanding of the cellular and molecular signaling mechanisms of tumor-endorsing inflammation is necessary for further expansion of anti-cancer therapeutics targeting the crosstalk between tumor development and inflammatory processes. Multiple inflammatory signaling pathways, such as the NF-κB signaling pathway, JAK-STAT signaling pathway, MAPK signaling, PI3K/AKT/mTOR signaling, Wnt signaling cascade, and TGF-β/Smad signaling, have been found to regulate inflammation, which can be modulated using various factors such as small molecule inhibitors, phytochemicals, recombinant cytokines, and nanoparticles in conjugation to phytochemicals to treat cancer. Researchers have identified multiple targets to specifically alter inflammation in cancer therapy to restrict malignant progression and improve the efficacy of cancer therapy. siRNA-and shRNA-loaded nanoparticles have been observed to downregulate STAT3 signaling pathways and have been employed in studies to target tumor malignancies. This review highlights the pathways involved in the interaction between tumor advancement and inflammatory progression, along with the novel approaches of nanotechnology-based drug delivery systems currently used to target inflammatory signaling pathways to combat cancer.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India.
| | - Saniya Arfin
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Rohan Kar
- Indian Institute of Management Ahmedabad (IIMA), Gujarat 380015, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, College Street, Kolkata 700073, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Laboratory, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot 32-34, Knowledge Park III, Greater Noida 201310, India
| | - Sugapriya Dhanasekaran
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Medical Laboratory Sciences Department, College of Applied Medical Sciences, University of Bisha, Bisha 67714, Saudi Arabia
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, 835215 Ranchi, Jharkhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144001, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia
| | | | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec 125, Noida 201303, India
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland.
| |
Collapse
|
8
|
Silva VR, Santos LDS, Dias RB, Quadros CA, Bezerra DP. Emerging agents that target signaling pathways to eradicate colorectal cancer stem cells. Cancer Commun (Lond) 2021; 41:1275-1313. [PMID: 34791817 PMCID: PMC8696218 DOI: 10.1002/cac2.12235] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most commonly diagnosed cancer and the second leading cause of cancer death worldwide. The modern concept of cancer biology indicates that cancer is formed of a small population of cells called cancer stem cells (CSCs), which present both pluripotency and self-renewal properties. These cells are considered responsible for the progression of the disease, recurrence and tumor resistance. Interestingly, some cell signaling pathways participate in CRC survival, proliferation, and self-renewal properties, and most of them are dysregulated in CSCs, including the Wingless (Wnt)/β-catenin, Notch, Hedgehog, nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activator of transcription (JAK/STAT), peroxisome proliferator-activated receptor (PPAR), phosphatidyl-inositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR), and transforming growth factor-β (TGF-β)/Smad pathways. In this review, we summarize the strategies for eradicating CRC stem cells by modulating these dysregulated pathways, which will contribute to the study of potential therapeutic schemes, combining conventional drugs with CSC-targeting drugs, and allowing better cure rates in anti-CRC therapy.
Collapse
Affiliation(s)
- Valdenizia R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Luciano de S Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Claudio A Quadros
- São Rafael Hospital, Rede D'Or/São Luiz, Salvador, Bahia, 41253-190, Brazil.,Bahia State University, Salvador, Bahia, 41150-000, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| |
Collapse
|
9
|
Konishi T, Yoshidome H, Shida T, Furukawa K, Takayashiki T, Kuboki S, Takano S, Miyazaki M, Ohtsuka M. Phosphorylated mTOR expression as a predictor of survival after liver resection for colorectal liver metastases. J Surg Oncol 2021; 124:598-606. [PMID: 34061356 DOI: 10.1002/jso.26551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/18/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Phosphorylated mammalian target of rapamycin (p-mTOR) plays a crucial role in the process of cancer progression. Common gene mutations of colorectal cancer lead to the activation of the PI3k/Akt/mTOR pathway. In this study, we determined whether p-mTOR expression in colorectal liver metastases is a predictive marker of prognosis following liver resection. METHODS Eighty-one patients with colorectal liver metastases who had undergone curative resection were evaluated using immunohistochemistry of p-mTOR. Data regarding clinicopathological features and patient survival were analyzed. RESULTS The p-mTOR expression in colorectal liver metastases was detected in 55 (67.9%) patients. Patients whose metastases had high p-mTOR expression showed a significantly lower overall survival rate after resection as compared to patients with low p-mTOR expression (p = 0.016), while there was no significant difference in the disease-free survival between the two groups. Repeat resection for recurrence was performed more frequently in patients with p-mTOR positive than others (p = 0.024). Multivariate analysis showed that p-mTOR expression was an independent prognostic factor of overall survival after liver resection (p = 0.019). CONCLUSIONS mTOR was frequently activated in colorectal liver metastases, and the p-mTOR expression was a biological marker for predicting the overall survival of patients with colorectal liver metastases following liver resection.
Collapse
Affiliation(s)
- Takanori Konishi
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Hiroyuki Yoshidome
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan.,Department of Surgery, Oami Municipal Hospital, Oami-Shirasato-shi, Chiba, Japan
| | - Takashi Shida
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University Graduate School of Medicine, Chuo-Ku, Chiba, Japan
| |
Collapse
|
10
|
Niu B, Liu J, Lv B, Lin J, Li X, Wu C, Jiang X, Zeng Z, Zhang XK, Zhou H. Interplay between transforming growth factor-β and Nur77 in dual regulations of inhibitor of differentiation 1 for colonic tumorigenesis. Nat Commun 2021; 12:2809. [PMID: 33990575 PMCID: PMC8121807 DOI: 10.1038/s41467-021-23048-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023] Open
Abstract
The paradoxical roles of transforming growth factor-β (TGFβ) signaling and nuclear receptor Nur77 in colon cancer development are known but the underlying mechanisms remain obscure. Inhibitor of differentiation 1 (ID1) is a target gene of TGFβ and a key promoter for colon cancer progression. Here, we show that Nur77 enhances TGFβ/Smad3-induced ID1 mRNA expression through hindering Smurf2-mediated Smad3 mono-ubiquitylation, resulting in ID1 upregulation. In the absence of TGFβ, however, Nur77 destabilizes ID1 protein by promoting Smurf2-mediated ID1 poly-ubiquitylation, resulting in ID1 downregulation. Interestingly, TGFβ stabilizes ID1 protein by switching Nur77 interaction partners to inhibit ID1 ubiquitylation. This also endows TGFβ with an active pro-tumorigenic action in Smad4-deficient colon cancers. Thus, TGFβ converts Nur77's role from destabilizing ID1 protein and cancer inhibition to inducing ID1 mRNA expression and cancer promotion, which is highly relevant to colon cancer stemness, metastasis and oxaliplatin resistance. Our data therefore define the integrated duality of Nur77 and TGFβ signaling in regulating ID1 expression and provide mechanistic insights into the paradoxical roles of TGFβ and Nur77 in colon cancer progression.
Collapse
MESH Headings
- Animals
- Carcinogenesis
- Cell Line, Tumor
- Colonic Neoplasms/etiology
- Colonic Neoplasms/genetics
- Colonic Neoplasms/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- HCT116 Cells
- HT29 Cells
- Humans
- Inhibitor of Differentiation Protein 1/genetics
- Inhibitor of Differentiation Protein 1/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Models, Biological
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Protein Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Smad3 Protein/metabolism
- Smad4 Protein/deficiency
- Smad4 Protein/metabolism
- Transforming Growth Factor beta/metabolism
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitination
Collapse
Affiliation(s)
- Boning Niu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Ben Lv
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Jiacheng Lin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Chunxiao Wu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Xiaohua Jiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
11
|
Kim SY, Yi HK, Yun BS, Lee DY, Hwang PH, Park HR, Kim MS. The extract of the immature fruit of Poncirus trifoliata induces apoptosis in colorectal cancer cells via mitochondrial autophagy. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Sarabia-Sánchez MÁ, Alvarado-Ortiz E, Toledo-Guzman ME, García-Carrancá A, Ortiz-Sánchez E. ALDH HIGH Population Is Regulated by the AKT/β-Catenin Pathway in a Cervical Cancer Model. Front Oncol 2020; 10:1039. [PMID: 32766133 PMCID: PMC7379485 DOI: 10.3389/fonc.2020.01039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
ALDH is an enzyme involved in different cellular processes, including cancer. It has been shown that a cellular subpopulation with high ALDH activity (ALDHHIGH) within a tumor is related to functional capabilities such as stemness, chemoresistance, and tumorigenicity. However, few studies have focused on determining the mechanisms behind ALDH activity within the cells. Previously, our group reported that ALDHHIGH cells have higher tumorigenicity in Cervical Cancer (CC) cell lines. Based on this, we were interested to know the molecular mediators of the ALDHHIGH cells, specifically β-catenin, inasmuch as β-catenin is regulated through different pathways, such as Wnt signaling, and that it acts as a transcriptional co-activator involved in cancer progression. In this work, we show that the increase in ALDHHIGH cell percentage is reverted by β-catenin knockdown. Consistently, upon GSK3-β inactivation, a negative regulator of β-catenin, we observed an increase in ALDHHIGH cells. Additionally, we observed a low percentage of cells positive for Fzd receptor, suggesting that in our model there is a low capacity to respond to Wnt ligands. The analysis of ALDHHIGH cells in a sphere formation model demonstrated the active state of AKT. In accordance with this, impairment of AKT activity not only reduced β-catenin active state, but also the percentage of ALDHHIGH cells. This corroborates that AKT acts upstream of β-catenin, thus affecting the percentage of ALDHHIGH cells. In conclusion, our results show that ALDHHIGH cells are dependent on β-catenin, in spite of the Wnt pathway seems to be dispensable, while AKT emerges as central player supporting a mechanism in this important axis that is not yet well known but its analysis improves our understanding of ALDH activity on CC.
Collapse
Affiliation(s)
- Miguel Ángel Sarabia-Sánchez
- Programa de posgrado en Ciencias Bioquímicas, Facultad de Química, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Eduardo Alvarado-Ortiz
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
- Programa de posgrado en Ciencias Biológicas, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | | | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
13
|
Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin R, He WL, Cai SR, He YL, Ye JN. Anti-EGFR therapy in metastatic colorectal cancer: mechanisms and potential regimens of drug resistance. Gastroenterol Rep (Oxf) 2020; 8:179-191. [PMID: 32665850 PMCID: PMC7333932 DOI: 10.1093/gastro/goaa026] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/27/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Cetuximab and panitumumab, as the highly effective antibodies targeting epidermal growth factor receptor (EGFR), have clinical activity in the patients with metastatic colorectal cancer (mCRC). These agents have good curative efficacy, but drug resistance also exists at the same time. The effects of KRAS, NRAS, and BRAF mutations and HER2 amplification on the treatment of refractory mCRC have been elucidated and the corresponding countermeasures have been put forward. However, the changes in EGFR and its ligands, the mutations or amplifications of PIK3CA, PTEN, TP53, MET, HER3, IRS2, FGFR1, and MAP2K1, the overexpression of insulin growth factor-1, the low expression of Bcl-2-interacting mediator of cell death, mismatch repair-deficient, and epigenetic instability may also lead to drug resistance in mCRC. Although the emergence of drug resistance has genetic or epigenetic heterogeneity, most of these molecular changes relating to it are focused on the key signaling pathways, such as the RAS/RAF/mitogen-activated protein kinase or phosphatidylinositol 3-kinase/Akt/mammalian target of the rapamycin pathway. Accordingly, numerous efforts to target these signaling pathways and develop the novel therapeutic regimens have been carried out. Herein, we have reviewed the underlying mechanisms of the resistance to anti-EGFR therapy and the possible implications in clinical practice.
Collapse
Affiliation(s)
- Qing-Hai Li
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Ying-Zhao Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jian Tu
- Department of Musculoskeletal Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Chu-Wei Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Jie Yuan
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Run Lin
- Department of Radiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Wei-Ling He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Rong Cai
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yu-Long He
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jin-Ning Ye
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
14
|
Skarkova V, Kralova V, Vitovcova B, Rudolf E. Selected Aspects of Chemoresistance Mechanisms in Colorectal Carcinoma-A Focus on Epithelial-to-Mesenchymal Transition, Autophagy, and Apoptosis. Cells 2019; 8:cells8030234. [PMID: 30871055 PMCID: PMC6468859 DOI: 10.3390/cells8030234] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance has been found in all malignant tumors including colorectal carcinoma (CRC). Nowadays chemoresistance is understood as a major reason for therapy failure, with consequent tumor growth and spreading leading ultimately to the patient's premature death. The chemotherapy-related resistance of malignant colonocytes may be manifested in diverse mechanisms that may exist both prior to the onset of the therapy or after it. The ultimate function of this chemoresistance is to ensure the survival of malignant cells through continuing adaptation within an organism, therefore, the nature and spectrum of cell-survival strategies in CRC represent a highly significant target of scientific inquiry. Among these survival strategies employed by CRC cells, three unique but significantly linked phenomena stand out-epithelial-to-mesenchymal transition (EMT), autophagy, and cell death. In this mini-review, current knowledge concerning all three mechanisms including their emergence, timeline, regulation, and mutual relationships will be presented and discussed.
Collapse
Affiliation(s)
- Veronika Skarkova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Vera Kralova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Barbora Vitovcova
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Charles University, Faculty of Medicine in Hradec Králové, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| |
Collapse
|
15
|
Targeting cancer stem cells as therapeutic approach in the treatment of colorectal cancer. Int J Biochem Cell Biol 2019; 110:75-83. [PMID: 30818083 DOI: 10.1016/j.biocel.2019.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most common cancers globally. A large portion of colorectal cancer patients who are treated with conventional chemotherapy eventually develop local recurrence or metastases. The failure of a complete cure in colorectal cancer patients may be related to the lack of complete eradication of cancer stem cells when using conventional therapy. Colorectal cancer stem cells comprise a small population of tumor cells that possess the properties of rapid proliferation and differentiation. The colorectal cancer stem cells are also phenotypically and molecularly distinct, and resistant to conventional chemo-radiotherapy. Therefore, it is important to identify approaches in combination with conventional therapy for targeting and eradicating cancer cells. The aim of this review was to summarize the main findings of recent studies on targeting colorectal cancer stem cells as a novel therapeutic approach in colorectal cancer treatment.
Collapse
|
16
|
PIK3CA mutations confer resistance to first-line chemotherapy in colorectal cancer. Cell Death Dis 2018; 9:739. [PMID: 29970892 PMCID: PMC6030128 DOI: 10.1038/s41419-018-0776-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/12/2018] [Accepted: 06/04/2018] [Indexed: 01/01/2023]
Abstract
Chemotherapy represents an important treatment option for colorectal cancer (CRC), but only half of the patients benefit from these regimens. We explored the potential predicting value and mechanism of PIK3CA mutation in CRC chemotherapy. CRC specimens from 440 patients were retrospectively collected and examined with a fluorescence PCR-based method. The correlation of first-line chemotherapy response and PIK3CA mutation was evaluated according to follow-up and medical records. The underlying mechanism of PIK3CA mutation in chemotherapy resistance was assessed with CRC tumors and primary cells. The mutation frequency of the PIK3CA gene in CRC patients was 9.55%, which was correlated with late TNM staging and lower histological grade. The CRC patients with PIK3A mutation showed worse response to first-line chemotherapy than those without PIK3CA mutation. PIK3A mutation tumor cells showed poor sensitivity to first-line chemotherapy in vitro and in vivo. PIK3CA mutation induced PI3K/Akt signaling activation to increase LGR5+ CRC stem cells survival and proliferation, from which lead to chemotherapy resistance. Furthermore, PIK3CAmutation/LGR5+ expression was an independent detrimental factor for CRC patients. Our findings indicated that PIK3CA mutation induced PI3K/Akt activation contributed to CRC stem cells survival and proliferation, from which cells further resistance to chemotherapy. PIK3CA mutation/LGR5+ expression was a potential biomarker for monitoring chemotherapy resistance in CRC.
Collapse
|
17
|
Le Y, Zhang S, Ni J, You Y, Luo K, Yu Y, Shen X. Sorting nexin 10 controls mTOR activation through regulating amino-acid metabolism in colorectal cancer. Cell Death Dis 2018; 9:666. [PMID: 29867114 PMCID: PMC5986761 DOI: 10.1038/s41419-018-0719-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
Amino-acid metabolism plays a vital role in mammalian target of rapamycin (mTOR) signaling, which is the pivot in colorectal cancer (CRC). Upregulated chaperone-mediated autophagy (CMA) activity contributes to the regulation of metabolism in cancer cells. Previously, we found that sorting nexin 10 (SNX10) is a critical regulator in CMA activation. Here we investigated the role of SNX10 in regulating amino-acid metabolism and mTOR signaling pathway activation, as well as the impact on the tumor progression of mouse CRC. Our results showed that SNX10 deficiency promoted colorectal tumorigenesis in male FVB mice and CRC cell proliferation and survival. Metabolic pathway analysis of gas chromatography–mass spectrometry (GC-MS) data revealed unique changes of amino-acid metabolism by SNX10 deficiency. In HCT116 cells, SNX10 knockout resulted in the increase of CMA and mTOR activation, which could be abolished by chloroquine treatment or reversed by SNX10 overexpression. By small RNA interference (siRNA), we found that the activation of mTOR was dependent on lysosomal-associated membrane protein type-2A (LAMP-2A), which is a limiting factor of CMA. Similar results were also found in Caco-2 and SW480 cells. Ultra-high-performance liquid chromatography–quadrupole time of flight (UHPLC-QTOF) and GC-MS-based untargeted metabolomics revealed that 10 amino-acid metabolism in SNX10-deficient cells were significantly upregulated, which could be restored by LAMP-2A siRNA. All of these amino acids were previously reported to be involved in mTOR activation. In conclusion, this work revealed that SNX10 controls mTOR activation through regulating CMA-dependent amino-acid metabolism, which provides potential target and strategy for treating CRC.
Collapse
Affiliation(s)
- Yunchen Le
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Sulin Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Jiahui Ni
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yan You
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kejing Luo
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Yunqiu Yu
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| | - Xiaoyan Shen
- School of Pharmacy, Fudan University, Shanghai, 201203, PR China.
| |
Collapse
|
18
|
Abstract
Metformin is the most common biguanide used in the treatment of diabetes, with 120 million treated patients worldwide. Metformin decreases hyperglycemia without inducing hypoglycemia in diabetic patients and is very well tolerated. The principal effects of metformin are to decrease hepatic gluconeogenesis and increase glucose absorption by skeletal muscles. These effects are primarily due to metformin's action on mitochondria, which requires the activation of metabolic checkpoint AMP-activated protein kinase (AMPK). AMPK is implicated in several pathways, and following metformin activation, it decreases protein synthesis and cell proliferation. Many studies have examined the role of metformin in the regulation of cancer cells, particularly its effects on cancer cell proliferation and cell death. Encouraging results have been obtained in different types of cancers, including prostate, breast, lung, and skin cancers (melanoma). Furthermore, many retrospective epidemiological studies in diabetes patients have shown that metformin treatment decreased the risk of cancers compared with other antidiabetic treatments. In this review, we will discuss the effects of metformin on melanoma cells. Together, our novel data demonstrate the importance of developing metformin and new biguanide-derived compounds as potential treatments against a number of different cancers, particularly melanoma.
Collapse
Affiliation(s)
- Emilie Jaune
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France
| | - Stéphane Rocchi
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
- Université de Nice Sophia Antipolis, UFR de Médecine, Nice, France
- *Correspondence: Stéphane Rocchi
| |
Collapse
|
19
|
You Y, Zheng Q, Dong Y, Xie X, Wang Y, Wu S, Zhang L, Wang Y, Xue T, Wang Z, Chen R, Wang Y, Cui J, Ren Z. Matrix stiffness-mediated effects on stemness characteristics occurring in HCC cells. Oncotarget 2017; 7:32221-31. [PMID: 27050147 PMCID: PMC5078009 DOI: 10.18632/oncotarget.8515] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/23/2016] [Indexed: 12/28/2022] Open
Abstract
Matrix stiffness as an important physical attribute of extracellular matrix exerts significant impacts on biological behaviors of cancer cells such as growth, proliferation, motility, metabolism and invasion. However, its influence on cancer stemness still remains elusive. Here, we explore whether matrix stiffness-mediated effects on stemness characteristics occur in HCC cells. As the substrate stiffness increased, HCC cells exhibited high proportion of cells with CD133(+)/EpCAM(+), high expression levels of CD133, EpCAM, Nanog and SOX2, greater self-renewing ability and oxaliplatin resistance. Simultaneously, their phosphorylation levels of Akt and mTOR, as well as p-4E-BP and SOX2 expressions were also obviously upregulated. Conversely, knockdown of integrin β1 partially attenuated higher stiffness-mediated stemness characteristics in HCC cells, and reversed the phosphorylation levels of Akt and mTOR, and expressions of p-4E-BP and SOX2, suggesting that integrin β1 may deliver higher stiffness signal into HCC cells and activate mTOR signaling pathway. Additionally, mTOR inhibitor suppressed the mTOR phosphorylation level and expression levels of p-4E-BP and SOX2 in HCC cells grown on higher stiffness substrate, as well as depressed their stemness properties significantly, favoring a regulating role of mTOR signaling pathway in matrix stiffness-mediated effects on stemness. In summary, matrix stiffness may be involved in the process of stemness regulation via activating integrin β1/Akt/mTOR/SOX2 signaling pathway. To the best of our knowledge, this study first reveals a novel regulating pathway to direct the stemness characteristics in HCC cells.
Collapse
Affiliation(s)
- Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yaohui Wang
- Department of Interventional Radiology, Shanghai Cancer Center, Fudan University, Shanghai 200032, PR China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Lan Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yingcong Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital Subdivision, Fudan University, Shanghai 200052, PR China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Yanhong Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, PR China
| |
Collapse
|
20
|
Invitro Evaluation of Torin2 and 2, 6-Dihydroxyacetophenone in Colorectal Cancer Therapy. Pathol Oncol Res 2017; 25:301-309. [DOI: 10.1007/s12253-017-0347-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 01/11/2023]
|
21
|
Qian HR, Shi ZQ, Zhu HP, Gu LH, Wang XF, Yang Y. Interplay between apoptosis and autophagy in colorectal cancer. Oncotarget 2017; 8:62759-62768. [PMID: 28977986 PMCID: PMC5617546 DOI: 10.18632/oncotarget.18663] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/15/2017] [Indexed: 12/15/2022] Open
Abstract
Autophagy and apoptosis are two pivotal mechanisms in mediating cell survival and death. Cross-talk of autophagy and apoptosis has been documented in the tumorigenesis and progression of cancer, while the interplay between the two pathways in colorectal cancer (CRC) has not yet been comprehensively summarized. In this study, we outlined the basis of apoptosis and autophagy machinery firstly, and then reviewed the recent evidence in cellular settings or animal studies regarding the interplay between them in CRC. In addition, several key factors that modulate the cross-talk between autophagy and apoptosis as well as its significance in clinical practice were discussed. Understanding of the interplay between the cell death mechanisms may benefit the translation of CRC treatment from basic research to clinical use.
Collapse
Affiliation(s)
- Hao-Ran Qian
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Zhao-Qi Shi
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - He-Pan Zhu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Li-Hu Gu
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Xian-Fa Wang
- Department of General Surgery, Institute of Minimally Invasive, Surgery of Zhejiang University, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, PR China
| | - Yi Yang
- Department of Pharmacology, Hangzhou Key Laboratory of Medical Neurobiology, School of Medicine, Hangzhou Normal University, Hangzhou 310036, Zhejiang, PR China
| |
Collapse
|
22
|
Stankevicius V, Kunigenas L, Stankunas E, Kuodyte K, Strainiene E, Cicenas J, Samalavicius NE, Suziedelis K. The expression of cancer stem cell markers in human colorectal carcinoma cells in a microenvironment dependent manner. Biochem Biophys Res Commun 2017; 484:726-733. [PMID: 28174005 DOI: 10.1016/j.bbrc.2017.01.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 01/21/2017] [Indexed: 12/14/2022]
Abstract
Numerous lines of evidence support the hierarchical model of cancer development and tumor initiation. According to the theory, cancer stem cells play a crucial role in the formation of the tumor and should be targeted for more effective anticancer treatment. However, cancer stem cells quickly loose their characteristics when propagated as 2D cell culture, indicating that the 2D cell culture does not provide the appropriate settings to maintain an in vivo environment. In this study we have investigated the expression of self-renewal, cancer stem cell and epithelial to mesenchymal transition markers after the transfer of human colorectal carcinoma cell DLD1 and HT29 lines from 2D cell cultures to scaffold-attached laminin rich extracellular matrix and scaffold-free multicellular spheroid 3D culture models. Based on the up-regulated expression of multipotency, CSC and EMT markers, our data suggests that human colorectal carcinoma cells grown in 3D exhibit enhanced cancer stem cell characteristics. Therefore, in order to design more efficient targeted therapies, we suggest that 3D cell culture models should be employed in cancer stem cell research.
Collapse
Affiliation(s)
- Vaidotas Stankevicius
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Linas Kunigenas
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Edvinas Stankunas
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Karolina Kuodyte
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Egle Strainiene
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Jonas Cicenas
- Vetsuisse Faculty, Institute of Animal Pathology, University of Bern, 3012 Bern, Switzerland; MAP Kinase Resource, Bern, Switzerland; Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio av. 7, Vilnius LT-10257, Lithuania.
| | - Narimantas E Samalavicius
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania.
| | - Kestutis Suziedelis
- Laboratory of Molecular Oncology, National Cancer Institute, Santariskiu str. 1, 08660 Vilnius, Lithuania; Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| |
Collapse
|
23
|
Chen J, Shao R, Li F, Monteiro M, Liu JP, Xu ZP, Gu W. PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. Clin Exp Pharmacol Physiol 2016; 42:1317-26. [PMID: 26399781 DOI: 10.1111/1440-1681.12493] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/13/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Colon cancer is one of the most common cancers worldwide with high mortality. A major issue in colon cancer treatment is drug-resistance and metastasis that have been ascribed to the cancer stem cells. In this study, colon cancer stem cells were isolated through sphere culture and verified with the cancer stem cell markers CD133, CD44, and CD24. It was demonstrated that the PI3K/Akt/mTOR signalling pathway was highly activated in the colon cancer stem cells and that inhibition of the PI3K/Akt/mTOR pathway by the inhibitor BEZ235 suppressed the colon cancer stem cell proliferation with reduced stemness indicated by CD133 and Lgr5 expressions. Treatment with insulin as a known activator of the PI3K/Akt pathway increased CD133 expression and decreased the effects of BEZ235 on colon cancer proliferation and survival. The data presented here collectively suggest that the PI3K/Akt/mTOR pathway underpins the stemness of colon cancer stem cells and BEZ235 is potentially a good drug candidate for treatment of colon cancer drug resistance and metastasis.
Collapse
Affiliation(s)
- Jiezhong Chen
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia.,School of Biomedical Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Qld, Australia
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezhi University, Xinjiang, China
| | - Michael Monteiro
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Jun-Ping Liu
- Aging Research Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
24
|
Ong PS, Wang LZ, Dai X, Tseng SH, Loo SJ, Sethi G. Judicious Toggling of mTOR Activity to Combat Insulin Resistance and Cancer: Current Evidence and Perspectives. Front Pharmacol 2016; 7:395. [PMID: 27826244 PMCID: PMC5079084 DOI: 10.3389/fphar.2016.00395] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/07/2016] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR), via its two distinct multiprotein complexes, mTORC1, and mTORC2, plays a central role in the regulation of cellular growth, metabolism, and migration. A dysregulation of the mTOR pathway has in turn been implicated in several pathological conditions including insulin resistance and cancer. Overactivation of mTORC1 and disruption of mTORC2 function have been reported to induce insulin resistance. On the other hand, aberrant mTORC1 and mTORC2 signaling via either genetic alterations or increased expression of proteins regulating mTOR and its downstream targets have contributed to cancer development. These underlined the attractiveness of mTOR as a therapeutic target to overcome both insulin resistance and cancer. This review summarizes the evidence supporting the notion of intermittent, low dose rapamycin for treating insulin resistance. It further highlights recent data on the continuous use of high dose rapamycin analogs and related second generation mTOR inhibitors for cancer eradication, for overcoming chemoresistance and for tumor stem cell suppression. Within these contexts, the potential challenges associated with the use of mTOR inhibitors are also discussed.
Collapse
Affiliation(s)
- Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Louis Z Wang
- Department of Pharmacy, Faculty of Science, National University of SingaporeSingapore, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sheng Hsuan Tseng
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Shang Jun Loo
- Department of Pharmacy, Faculty of Science, National University of Singapore Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
25
|
Malkomes P, Lunger I, Luetticke A, Oppermann E, Haetscher N, Serve H, Holzer K, Bechstein WO, Rieger MA. Selective AKT Inhibition by MK-2206 Represses Colorectal Cancer-Initiating Stem Cells. Ann Surg Oncol 2016; 23:2849-57. [PMID: 27059026 PMCID: PMC4972858 DOI: 10.1245/s10434-016-5218-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 01/08/2023]
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide. Growing evidence indicates that tumor-initiating cells (TICs) are responsible for tumor growth and progression. Conventional chemotherapeutics do not sufficiently eliminate TICs, leading to tumor relapse. We aimed to gain insight into TIC biology by comparing the transcriptome of primary TIC cultures and their normal stem cell counterparts to uncover expression differences. Methods
We established colonosphere cultures derived from the resection of paired specimens of primary tumor and normal mucosa in patients with CRC. These colonospheres, enriched for TICs, were used for differential transcriptome analyses to detect new targets for a TIC-directed therapy. Effects of target inhibition on CRC cells were studied in vitro and in vivo. Results Pathway analysis of the regulated genes showed enrichment of genes central to PI3K/AKT and Wnt-signaling. We identified CD133 as a marker for a more aggressive CRC subpopulation enriched with TICs in SW480 CRC cells in an in vivo cancer model. Treatment of CRC cells with the selective AKT inhibitor MK-2206 caused a decrease in cell proliferation, particularly in the TIC fraction, resulting in a significant reduction of the stemness capacity to form colonospheres in vitro and to initiate tumor formation in vivo. Consequently, MK-2206 treatment of mice with established xenograft tumors exhibited a significant deceleration of tumor progression. Primary patient-derived tumorsphere growth was significantly inhibited by MK-2206. Conclusion This study reveals that AKT signaling is critical for TIC proliferation and can be efficiently targeted by MK-2206 representing a preclinical therapeutic strategy to repress colorectal TICs. Electronic supplementary material The online version of this article (doi:10.1245/s10434-016-5218-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patrizia Malkomes
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| | - Ilaria Lunger
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany.,LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Alexander Luetticke
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Elsie Oppermann
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Nadine Haetscher
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Hubert Serve
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Holzer
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Wolf Otto Bechstein
- Department of General Surgery, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy Frankfurt and Department of Medicine, Hematology/Oncology, Goethe University Hospital Frankfurt, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
26
|
Zhang J, Jiang W, Liu W, Wu JJ, Song L, Cheng JX, Yao M, Yang LP, Yao DF. Effective targeting of colorectal cancer cells using TORC1/2 kinase inhibitors in vitro and in vivo. Future Oncol 2016; 12:515-24. [PMID: 26776341 DOI: 10.2217/fon.15.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim: We investigated the effects of TORC1/2 kinase inhibitors on colorectal cancer (CRC) cell lines. Materials & methods: Using selective TORC1/2 inhibitors, rapamycin and PP242, we assessed their effect on the growth of CRC cells in vitro and tumor growth in vivo. Results: Rapamycin and PP242 inhibit proliferation and induce apoptosis of CRC cells. They also enhance proapoptotic effect of conventional chemo drug doxorubicin in CRC cells in vitro. When combined with doxorubicin, rapamycin and PP242 almost completely inhibit tumor growth in vivo. Rapamycin and PP242 inhibit phosphorylation of Akt, ribosomal S6 kinase, 4EBP1 and mTOR. Conclusion: Our study suggests rapamycin and PP242 may be a useful therapeutic agent and inhibiting mTOR signaling pathway represents a new targeted therapy for CRC.
Collapse
Affiliation(s)
- Jie Zhang
- The Affiliated Hospital of Nantong University, Nantong 226001, China
- School of Medicine, Nantong University, Nantong 226019, China
| | - Wen Jiang
- Department of Internal Medicine, The Third People's Hospital of Nantong, Nantong 226001, China
| | - Wei Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Juan-Juan Wu
- School of Medicine, Nantong University, Nantong 226019, China
| | - Lei Song
- Department of Paediatrics, The Second Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Ji-Xian Cheng
- Department of Oncological Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, China
| | - Ming Yao
- The Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Li-Ping Yang
- School of Medicine, Nantong University, Nantong 226019, China
| | - Deng-Fu Yao
- The Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
27
|
Maletzki C, Huehns M, Knapp P, Waukosin N, Klar E, Prall F, Linnebacher M. Functional Characterization and Drug Response of Freshly Established Patient-Derived Tumor Models with CpG Island Methylator Phenotype. PLoS One 2015; 10:e0143194. [PMID: 26618628 PMCID: PMC4664421 DOI: 10.1371/journal.pone.0143194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/02/2015] [Indexed: 12/16/2022] Open
Abstract
Patient-individual tumor models constitute a powerful platform for basic and translational analyses both in vitro and in vivo. However, due to the labor-intensive and highly time-consuming process, only few well-characterized patient-derived cell lines and/or corresponding xenografts exist. In this study, we describe successful generation and functional analysis of novel tumor models from patients with sporadic primary colorectal carcinomas (CRC) showing CpG island methylator phenotype (CIMP). Initial DNA fingerprint analysis confirmed identity with the patient in all four cases. These freshly established cells showed characteristic features associated with the CIMP-phenotype (HROC40: APCwt, TP53 mut, KRAS mut; 3/8 marker methylated; HROC43: APC mut, TP53 mut, KRAS mut; 4/8 marker methylated; HROC60: APCwt, TP53 mut, KRASwt; 4/8 marker methylated; HROC183: APC mut, TP53 mut, KRAS mut; 6/8 marker methylated). Cell lines were of epithelial origin (EpCAM+) with distinct morphology and growth kinetics. Response to chemotherapeutics was quite individual between cells, with stage I-derived cell line HROC60 being most susceptible towards standard clinically approved chemotherapeutics (e.g. 5-FU, Irinotecan). Of note, most cell lines were sensitive towards "non-classical" CRC standard drugs (sensitivity: Gemcitabin > Rapamycin > Nilotinib). This comprehensive analysis of tumor biology, genetic alterations and assessment of chemosensitivity towards a broad range of (chemo-) therapeutics helps bringing forward the concept of personalized tumor therapy.
Collapse
Affiliation(s)
- Claudia Maletzki
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Maja Huehns
- Institute of Pathology, University of Rostock, Rostock, Germany
| | - Patrick Knapp
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Nancy Waukosin
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| | - Ernst Klar
- Department of General Surgery, University of Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University of Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, University of Rostock, Rostock, Germany
| |
Collapse
|
28
|
Cheng L, Xia Z, Bian X, Li G, Hu J, Cao Y, Wang Q, Qian X. Combination of cetuximab and PP242 synergistically suppress the progression of wild-type KRAS colorectal carcinoma. Onco Targets Ther 2015; 8:3185-92. [PMID: 26586952 PMCID: PMC4636092 DOI: 10.2147/ott.s82453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) has been shown to be overactive in human colorectal cancer, but the first-generation mTOR inhibitor, rapamycin, has failed to show clinical efficacy against colorectal cancer. On the other hand, although the second-generation mTOR inhibitor, PP242, has exerted substantial efficacy, it was revealed that independent inhibition by PP242 was transient, which could lead to positive-feedback loop to EGFR. Using wild-type KRAS colorectal cancer cells as models, we investigate the treatment efficacy of a widely used anti-EGFR monoclonal antibody, cetuximab, and PP242, alone or in combination in vitro and in vivo. Results of cell viability assays confirmed the synergistic inhibitory effect of PP242 and cetuximab on the survival of Caco-2 and HT-29 cells. Moreover, the ability of cancer-cell invasion and proliferation was also significantly inhibited by the combination therapy when compared with cetuximab or PP242 alone. Interestingly, the percentage of CD44-positive cancer cells was substantially decreased by the combination therapy in comparison with PP242 alone through fluorescence-activated cell sorting. The growth of cancer stem-like cell spheres in vitro was also maximally inhibited by combination therapy, in terms of either diameter or number. More importantly, the efficacy of combination therapy was more prominent than either drug alone in established tumor xenografts. These findings supported the potential use of combination therapy of PP242 and cetuximab against wild-type KRAS colorectal carcinomas.
Collapse
Affiliation(s)
- Lei Cheng
- Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Zuguang Xia
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China ; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Xinyu Bian
- Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Guangchao Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong, People's Republic of China
| | - Jing Hu
- Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Ya Cao
- Department of Biological Science and Technology and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, People's Republic of China
| | - Qing Wang
- Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoping Qian
- Comprehensive Cancer Center of Drum-Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
29
|
Chen QY, Jiao DM, Zhu Y, Hu H, Wang J, Tang X, Chen J, Yan L. Identification of carcinogenic potential-associated molecular mechanisms in CD133(+) A549 cells based on microRNA profiles. Tumour Biol 2015; 37:521-30. [PMID: 26227219 DOI: 10.1007/s13277-015-3675-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/15/2015] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify carcinogenic potential-related molecular mechanisms in cancer stem cells (CSCs) in lung cancer. CD133(+) and CD133(-) subpopulations were sorted from A549 cells using magnetic-activated cell sorting. The abilities to form sphere and clone, proliferate, migrate, and invade were compared between CD133(+) and CD133(-) cells, as well as drug sensitivity. Thereafter, microRNA (miRNA) profiles were performed to identify differentially expressed miRNAs between CD133(+) and CD133(-) subpopulation. Following, bioinformatic methods were used to predict target genes for differentially expressed miRNAs and perform enrichment analysis. Furthermore, the mammalian target of rapamycin (mTOR) signaling pathways and CSC property-associated signaling pathways were explored and visualized in regulatory network among competitive endogenous RNA (ceRNA), miRNA, and target gene. CD133(+) subpopulation showed greater oncogenic potential than CD133(-) subpopulation. In all, 14 differentially expressed miRNAs were obtained and enriched in 119 pathways, including five upregulated (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, and -4734) and nine downregulated (hsa-miR-1246, -30b-5p, -5096, -6510-5p, has-miR-7110-5p, -7641, -3197, -7108-5p, and -6791-5p). For mTOR signaling pathway, eight differential miRNAs (hsa-miR-23b-3p, -23a-3p, -15b-5p, -24-3p, -4734, -1246, -7641, and -3197) and 39 target genes (e.g., AKT1, AKT2, PIK3CB, PIK3CG, PIK3R1, PIK3CA, and PIK3CD) were involved, as well as some ceRNAs. Besides, for CSC property-related signaling pathways, six miRNAs (hsa-miR-1246, -15b-5p, -30b-5p, -3197, -4734, and -7110-5p) were dramatically enriched in Hedgehog, Notch, and Wnt signaling pathways via regulating 108 target genes (e.g., DVL1, DVL3, WNT3A, and WNT5A). The mTOR and CSC property-associated signaling pathways may be important oncogenic molecular mechanisms in CD133(+) A549 cells.
Collapse
Affiliation(s)
- Qing-Yong Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, People's Republic of China. .,Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China.
| | - De-Min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Ya Zhu
- Department of Oncology, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Huizhen Hu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Jian Wang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Xiali Tang
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Jun Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China
| | - Li Yan
- Department of Oncology, The 117th Hospital of PLA, Hangzhou, 310013, Zhejiang Province, People's Republic of China.
| |
Collapse
|
30
|
Ju SY, Huang CYF, Huang WC, Su Y. Identification of thiostrepton as a novel therapeutic agent that targets human colon cancer stem cells. Cell Death Dis 2015; 6:e1801. [PMID: 26136074 PMCID: PMC4650716 DOI: 10.1038/cddis.2015.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 04/02/2015] [Accepted: 04/06/2015] [Indexed: 12/12/2022]
Abstract
Accumulating evidence shows that colorectal cancer stem cells (CRSCs) are largely responsible for the metastasis and relapse of colorectal cancer (CRC) after therapy. Hence, identifying new agents that specifically target CRSCs would help improve the effectiveness of current CRC therapies. To accelerate identification of agents targeting CRSCs, the Connectivity Map (CMap) approach was used. Among the top-ranked candidates, thiostrepton, a thiazole antibiotic, was selected for further investigation because of its known tumoricidal activity. Thiostrepton could selectively induce apoptosis in CRSC subpopulations in both parental HCT-15 and HT-29 human CRC lines as well as in EMT and chemoresistant clones derived from them. Further, we investigated its inhibitory effects on the sphere- and colony-forming capabilities of the aforementioned CRC lines. The in vitro inhibition of sphere and colony formation was associated with downregulation of various modulators of the stem cell phenotype. The combination of thiostrepton and oxaliplatin eradicated both CD44+ HCT-15 and HT-29 cells more efficiently than either drug alone. FoxM1, an oncogenic transcription factor, was identified as a critical positive modulator of stemness and as the main target of thiostrepton in the CRC lines. This is the first report showing the selective killing of CRSCs by thiostrepton, which has been proposed to be a promising anti-neoplastic agent. On the basis of its synergism with oxaliplatin in killing CRSCs in vitro, if this activity is confirmed in vivo, thiostrepton may be a promising agent to be used clinically in combination with current chemotherapies to improve the efficacy of these regimens.
Collapse
Affiliation(s)
- S-Y Ju
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - C-Y F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - W-C Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
31
|
Abstract
The mammalian target of rapamycin (mTOR) has emerged as a potential target for drug development, particularly due to the fact that it plays such a crucial role in cancer biology. In addition, next-generation mTOR inhibitors have become available, marking an exciting new phase in mTOR-based therapy. However, the verdict on their therapeutic efectiveness remains unclear. Here we review phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR signaling as one of the primary mechanisms for sustaining tumor outgrowth and metastasis, recent advances in the development of mTOR inhibitors, and current studies addressing mTOR activation/inhibition in colorectal cancer (CRC). We will also discuss our recent comparative study of diferent mTOR inhibitors in a population of colon cancer stem cells (CSCs), and current major challenges for achieving individualized drug therapy using kinase inhibitors.
Collapse
|
32
|
Kornakiewicz A, Solarek W, Bielecka ZF, Lian F, Szczylik C, Czarnecka AM. Mammalian Target of Rapamycin Inhibitors Resistance Mechanisms in Clear Cell Renal Cell Carcinoma. CURRENT SIGNAL TRANSDUCTION THERAPY 2014; 8:210-218. [PMID: 25152703 PMCID: PMC4141323 DOI: 10.2174/1574362409666140206222746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 11/22/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a kinase protein involved in PI3K/AKT signaling with a central role in the processes of cell growth, survival and angiogenesis. Frequent mutations of this pathway make upstream and downstream components novel targets for tailored therapy design. Two mTOR inhibitors - everolimus and temsirolimus - enable an increase in overall survival (OS) or progression-free survival (PFS) time in a treatment of renal cancer. Despite recent advances in renal cancer treatment, resistance to targeted therapy is common. Understanding of molecular mechanisms is the basis of drug resistance which can facilitate prediction of success or failure in combinational or sequential targeted therapy. The article provides current knowledge on the mTOR signaling network and gives insight into the mechanisms of resistance to mTOR inhibitors from the complex perspective of RCC biology. The mechanisms of resistance developed not only by cancer cells, but also by interactions with tumor microenvironment are analyzed to emphasize the role of angiogenesis in ccRCC pathogenesis. As recent studies have shown the role of PI3K/AKT-mTOR pathway in proliferation and differentiation of cancer stem cells, we discuss cancer stem cell hypothesis and its possible contribution to ccRCC resistance. In the context of drug resistance, we also elaborate on a new approach considering ccRCC as a metabolic disease. In conclusion we speculate on future developments in agents targeting the mTOR pathway taking into consideration the singular biology of ccRCC.
Collapse
Affiliation(s)
- Anna Kornakiewicz
- Oncology Department, Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw,Poland
- I Faculty of Medicine, Medical University of Warsaw,Poland
- Collegium Invisibile, Warsaw,Poland
| | - Wojciech Solarek
- Oncology Department, Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw,Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw,Poland
| | - Zofia F. Bielecka
- Oncology Department, Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw,Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw,Poland
| | - Fei Lian
- Department of Urology, Emory School of Medicine, Atlanta, GA ,USA
| | - Cezary Szczylik
- Oncology Department, Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw,Poland
| | - Anna M. Czarnecka
- Oncology Department, Laboratory of Molecular Oncology, Military Institute of Medicine, Warsaw,Poland
| |
Collapse
|
33
|
Ivanova L, Zandberga E, Siliņa K, Kalniņa Z, Ābols A, Endzeliņš E, Vendina I, Romanchikova N, Hegmane A, Trapencieris P, Eglītis J, Linē A. Prognostic relevance of carbonic anhydrase IX expression is distinct in various subtypes of breast cancer and its silencing suppresses self-renewal capacity of breast cancer cells. Cancer Chemother Pharmacol 2014; 75:235-46. [PMID: 25422154 DOI: 10.1007/s00280-014-2635-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE Carbonic anhydrase IX (CAIX) is a hypoxia-inducible enzyme with extracellular catalytic domain that is overexpressed in a variety of cancers including breast cancer and plays a crucial role in maintaining favourable intracellular pH and reducing extracellular pH. The purpose of the current study was to elucidate the prognostic significance of CAIX in the intrinsic subtypes of breast cancer and to characterise CAIX as a drug target in breast cancer. METHODS The prognostic significance of CAIX mRNA expression was interrogated in a cohort of 3,455 breast tumours by using an online tool, Kaplan-Meier plotter. The functional effects of stable CAIX depletion by shRNA in three breast cancer cell lines—MDA-MB-231, MCF7 and SKBR-3, representing basal-like, luminal A and HER2+ subtypes, respectively—were studied by proliferation, invasion, clonal spheroid formation and chemosensitivity assays under normoxia and hypoxia. Finally, the effect of pharmacological CA inhibition alone or in the combination with doxorubicin on self-renewal was assessed by spheroid-forming assay. RESULTS High CAIX mRNA expression was significantly associated with poor survival in patients with basal-like, luminal B and triple-negative breast cancer, but not luminal A and HER+ subtypes. Silencing of CAIX expression had no significant effect on the cell proliferation or viability upon treatment with doxorubicin in any of the cell lines studied, while it inhibited spheroid formation in hypoxic conditions. Furthermore, pharmacological inhibition of CAs using acetazolamide had a synergistic effect with doxorubicin on decreasing the spheroid-forming efficiency in MDA-MB-231 cells. CONCLUSIONS Inhibition of CAIX reduces the self-renewal capacity of breast cancer cells, and the combination of doxorubicin and CAIX inhibition is an attractive therapeutic strategy in basal-like and triple-negative breast cancer, which warrants further investigations.
Collapse
Affiliation(s)
- Lāsma Ivanova
- Latvian Biomedical Research and Study Centre, Ratsupites Str 1, Riga, 1067, Latvia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Francipane MG, Lagasse E. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget 2014; 4:1948-62. [PMID: 24185040 PMCID: PMC3875761 DOI: 10.18632/oncotarget.1310] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Metastatic colorectal cancer (CRC) is incurable for most patients. Since mammalian target of rapamycin (mTOR) has been suggested as a crucial modulator of tumor biology, we aimed at evaluating the effectiveness of mTOR targeting for CRC therapy. To this purpose, we analyzed mTOR expression and the effect of mTOR inhibition in cancer stem-like cells isolated from three human metastatic CRCs (CoCSCs). CoCSCs exhibited a strong mTOR complex 2 (mTORC2) expression, and a rare expression of mTOR complex 1 (mTORC1). This latter correlated with differentiation, being expressed in CoCSC-derived xenografts. We indicate Serum/glucocorticoid-regulated kinase 1 (SGK1) as the possible main mTORC2 effector in CoCSCs, as highlighted by the negative effect on cancer properties following its knockdown. mTOR inhibitors affected CoCSCs differently, resulting in proliferation, autophagy as well as apoptosis induction. The apoptosis-inducing mTOR inhibitor Torin-1 hindered growth, motility, invasion, and survival of CoCSCs in vitro, and suppressed tumor growth in vivo with a concomitant reduction in vessel formation. Torin-1 also affected the expression of markers for cell proliferation, angio-/lympho-genesis, and stemness in vivo, including Ki67, DLL1, DLL4, Notch, Lgr5, and CD44. Importantly, Torin-1 did not affect the survival of normal colon stem cells in vivo, suggesting its selectivity towards cancer cells. Thus, we propose Torin-1 as a powerful drug candidate for metastatic CRC therapy.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Lai EY, Chen ZG, Zhou X, Fan XR, Wang H, Lai PL, Su YC, Zhang BY, Bai XC, Li YF. DEPTOR Expression Negatively Correlates with mTORC1 Activity and Tumor Progression in Colorectal Cancer. Asian Pac J Cancer Prev 2014; 15:4589-94. [DOI: 10.7314/apjcp.2014.15.11.4589] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
36
|
Papagerakis S, Pannone G, Zheng L, About I, Taqi N, Nguyen NPT, Matossian M, McAlpin B, Santoro A, McHugh J, Prince ME, Papagerakis P. Oral epithelial stem cells - implications in normal development and cancer metastasis. Exp Cell Res 2014; 325:111-29. [PMID: 24803391 DOI: 10.1016/j.yexcr.2014.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 12/18/2022]
Abstract
Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.
Collapse
Affiliation(s)
- Silvana Papagerakis
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Li Zheng
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Imad About
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | - Nawar Taqi
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Nghia P T Nguyen
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Margarite Matossian
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Blake McAlpin
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA; Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Angela Santoro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Jonathan McHugh
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Mark E Prince
- Department of Otolaryngology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Petros Papagerakis
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Center for Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, MI, USA; Center for Organogenesis, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Kim TI. Chemopreventive drugs: Mechanisms via inhibition of cancer stem cells in colorectal cancer. World J Gastroenterol 2014; 20:3835-3846. [PMID: 24744576 PMCID: PMC3983440 DOI: 10.3748/wjg.v20.i14.3835] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/27/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiological studies, basic research and clinical trials on colorectal cancer (CRC) prevention have helped identify candidates for effective chemopreventive drugs. However, because of the conflicting results of clinical trials or side effects, the effective use of chemopreventive drugs has not been generalized, except for patients with a high-risk for developing hereditary CRC. Advances in genetic and molecular technologies have highlighted the greater complexity of carcinogenesis, especially the heterogeneity of tumors. We need to target cells and processes that are critical to carcinogenesis for chemoprevention and treatment of advanced cancer. Recent research has shown that intestinal stem cells may serve an important role in tumor initiation and formation of cancer stem cells. Moreover, studies have shown that the tumor microenvironment may play additional roles in dedifferentiation, to enable tumor cells to take on stem cell features and promote the formation of tumorigenic stem cells. Therefore, early tumorigenic changes of stem cells and signals for dedifferentiation may be good targets for chemoprevention. In this review, I focus on cancer stem cells in colorectal carcinogenesis and the effect of major chemopreventive drugs on stem cell-related pathways.
Collapse
|
38
|
Stem Cell Signaling Pathways in Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0194-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|