1
|
Zhang Y, Wang Y, Zhao Y, Hu R, Yuan H. Design of aggregation-induced emission materials for biosensing of molecules and cells. Biosens Bioelectron 2025; 267:116805. [PMID: 39321612 DOI: 10.1016/j.bios.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
In recent years, aggregation-induced emission (AIE) materials have gained significant attention and have been developed for various applications in different fields including biomedical research, chemical analysis, optoelectronic devices, materials science, and nanotechnology. AIE is a unique luminescence phenomenon, and AIEgens are fluorescent moieties with relatively twisted structures that can overcome the aggregation-caused quenching (ACQ) effect. Additionally, AIEgens offer advantages such as non-washing properties, deep tissue penetration, minimal damage to biological structures, high signal-to-noise ratio, and excellent photostability. Fluorescent probes with AIE characteristics exhibit high sensitivity, short response time, simple operation, real-time detection capability, high selectivity, and excellent biocompatibility. As a result, they have been widely applied in cellular imaging, luminescent sensing, detection of physiological abnormalities in the human body, as well as early diagnosis and treatment of diseases. This review provides a comprehensive summary and discussion of the progress over the past four years regarding the detection of metal ions, small chemical molecules, biomacromolecules, microbes, and cells based on AIE materials, along with discussing their potential applications and future development prospects.
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yi Wang
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Yue Zhao
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, PR China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, PR China.
| |
Collapse
|
2
|
Qian X, Tao Y, Chen H, Li X, Wang Y, Xu X, Li S, Chen H, Cang S, Liu Y. Real‑world evaluation of the efficacy of immune checkpoint inhibitors in the treatment of metastatic breast cancer. Oncol Lett 2025; 29:29. [PMID: 39512498 PMCID: PMC11542155 DOI: 10.3892/ol.2024.14775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
The present study aimed to assess the efficacy and safety of immune checkpoint inhibitor (ICI)-based therapy in patients with metastatic breast cancer (MBC). Therefore, eligible patients with histologically confirmed MBC, treated with ICI-based therapy, were enrolled. The primary endpoint was progression-free survival (PFS) and the secondary endpoints included objective response rate (ORR), disease control rate (DCR), overall survival (OS) and safety. A total of 90 patients with MBC, treated with ICI-based therapy, with different treatment lines, were included in the present study. The median age was 50 years (range, 27-76). The predominant tumor subtypes were triple negative (53.3%) and luminal (31.1%) breast cancer. The majority of patients (61.1%) were heavily pretreated (lines of treatment, ≥3). Approximately half of the patients (46.7%) had ≥3 metastatic sites. The overall ORR was 36.7% (33/90 patients), while a DCR of 78.9% (71/90 patients) was also recorded. With a median follow-up of 16.0 months, the median PFS and OS were 4.9 months [95% confidence interval (CI), 3.8-6.1] and 13.9 months (95% CI, 9.5-18.2), respectively. Patients treated with ICIs as first-line therapy exhibited notable improvement, with a median PFS of 11.0 months (95% CI, 6.0-16.0) and a median OS of 24.3 months (95% CI, 11.4-37.2). In addition, the pretreatment blood platelet-to-lymphocyte ratio was an independent risk factor for PFS [hazard ratio (HR)=2.406; 95% CI, 1.325-4.370; P=0.004] and OS (HR=2.376; 95% CI, 1.059-5.328; P=0.036). The most common adverse events were nausea (44.4%), neutropenia (42.0%) and alanine aminotransferase/aspartate aminotransferase elevation (22.2%). Furthermore, three (3.3%) patients developed grade 1/2 immuno-related toxicity and recovered after supportive care. Overall, the present study suggested that the ICI-based therapy exhibited encouraging clinical outcomes with manageable toxicity in patients with MBC in real-world settings, with the most favorable efficacy in first-line treatment.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Yunxia Tao
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Haizhu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 518107, P.R. China
| | - Xin Li
- Department of Medical Records, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Yaqin Wang
- Department of Pharmacy, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoming Xu
- Department of Medical Records, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Shuo Li
- Department of Medical Records, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Haoyu Chen
- Shenzhen MoZhou Tech Co., Ltd., Shenzhen, Guangdong 518057, P.R. China
| | - Shundong Cang
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan 450001, P.R. China
| | - Yang Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| |
Collapse
|
3
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
4
|
Li G, Ma X, Sui S, Chen Y, Li H, Liu L, Zhang X, Zhang L, Hao Y, Yang Z, Yang S, He X, Wang Q, Tao W, Xu S. NAT10/ac4C/JunB facilitates TNBC malignant progression and immunosuppression by driving glycolysis addiction. J Exp Clin Cancer Res 2024; 43:278. [PMID: 39363363 PMCID: PMC11451012 DOI: 10.1186/s13046-024-03200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional mechanism, plays a pivotal role in RNA modification and tumor progression. However, the molecular mechanism by which ac4C modification mediates tumor immunosuppression remains elusive in triple-negative breast cancer (TNBC). METHODS NAT10 expression was analyzed in TNBC samples in the level of mRNA and protein, and compared with the corresponding normal tissues. ac4C modification levels also measured in the TNBC samples. The effects of NAT10 on immune microenvironment and tumor metabolism were investigated. NAT10-mediated ac4C and its downstream regulatory mechanisms were determined in vitro and in vivo. The combination therapy of targeting NAT10 in TNBC was further explored. RESULTS The results revealed that the loss of NAT10 inhibited TNBC development and promoted T cell activation. Mechanistically, NAT10 upregulated JunB expression by increasing ac4C modification levels on its mRNA. Moreover, JunB further up-regulated LDHA expression and facilitated glycolysis. By deeply digging, remodelin, a NAT10 inhibitor, elevated the surface expression of CTLA-4 on T cells. The combination of remodelin and CTLA-4 mAb can further activate T cells and inhibite tumor progression. CONCLUSION Taken together, our study demonstrated that the NAT10-ac4C-JunB-LDHA pathway increases glycolysis levels and creates an immunosuppressive tumor microenvironment (TME). Consequently, targeting this pathway may assist in the identification of novel therapeutic strategies to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Guozheng Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Ma
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shiyao Sui
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yihai Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xin Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Lei Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Yi Hao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zihan Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Shuai Yang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
| | - Xu He
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China
- Weihan Yu Academy, Harbin Medical University, Harbin, 150086, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
- Key Laboratory of Tumor Biotherapy of Heilongjiang Province, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
5
|
Li X, Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor-induced synthetic lethality. J Clin Invest 2024; 134:e181062. [PMID: 39007266 PMCID: PMC11245158 DOI: 10.1172/jci181062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
Collapse
|
6
|
Nabi R, Musarrat F, Menk P. Lima JC, Langohr IM, Chouljenko VN, Kousoulas KG. The Oncolytic herpes simplex virus type-1 (HSV-1) vaccine strain VC2 causes intratumor infiltration of functionally active T cells and inhibition of tumor metastasis and pro-tumor genes VEGF and PDL1 expression in the 4T1/Balb/c mouse model of stage four breast cancer. Front Mol Biosci 2023; 10:1199068. [PMID: 37388243 PMCID: PMC10303929 DOI: 10.3389/fmolb.2023.1199068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: Oncolytic viruses (OVs) provide new modalities for cancer therapy either alone or in combination with synergistic immunotherapies and/or chemotherapeutics. Engineered Herpes Simplex Virus Type-1 (HSV-1) has shown strong promise for the treatment of various cancers in experimental animal models as well as in human patients, with some virus strains licensed to treat human melanoma and gliomas. In the present study we evaluated the efficacy of mutant HSV-1 (VC2) in a late stage, highly metastatic 4T1 murine syngeneic. Method: VC2 was constructed VC2 using double red recombination technology. For in-vivo efficacy we utilized a late stage 4T1 syngeneic and immunocompetent BALB/cJ mouse model breast cancer model which exhibits efficient metastasis to the lung and other organs. Results: VC2 replicated efficiently in 4T1 cells and in cell culture, achieving titers similar to those in African monkey kidney (Vero) cells. Intra-tumor treatment with VC2 did not appreciably reduce average primary tumor sizes but a significant reduction of lung metastasis was noted in mice treated intratumorally with VC2, but not with ultraviolet-inactivated VC2. This reduction of metastasis was associated with increased T cell infiltration comprised of CD4+ and CD4+CD8+ double-positive T cells. Characterization of purified tumor infiltrating T cells revealed a significant improvement in their proliferation ability compared to controls. In addition, significant T cell infiltration was observed in the metastatic nodules associated with reduction of pro-tumor PD-L1 and VEGF gene transcription. Conclusion: These results show that VC2 therapy can improve anti-tumor response associated with a better control of tumor metastasis. improve T cell responses and reduce pro-tumor biomarker gene transcription. VC2 holds promise for further development as an oncolytic and immunotherapeutic approach to treat breast and other cancers.
Collapse
Affiliation(s)
- Rafiq Nabi
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Farhana Musarrat
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Jose Cesar Menk P. Lima
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Ingeborg M. Langohr
- Global Discovery Pathology, Translational Models Research Platform, Sanofi, Cambridge, MA, United States
| | - Vladimir N. Chouljenko
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Sánchez-León ML, Jiménez-Cortegana C, Silva Romeiro S, Garnacho C, de la Cruz-Merino L, García-Domínguez DJ, Hontecillas-Prieto L, Sánchez-Margalet V. Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. Int J Mol Sci 2023; 24:5208. [PMID: 36982282 PMCID: PMC10048951 DOI: 10.3390/ijms24065208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Breast cancer (BC) continues to be the most diagnosed tumor in women and a very heterogeneous disease both inter- and intratumoral, mainly given by the variety of molecular profiles with different biological and clinical characteristics. Despite the advancements in early detection and therapeutic strategies, the survival rate is low in patients who develop metastatic disease. Therefore, it is mandatory to explore new approaches to achieve better responses. In this regard, immunotherapy arose as a promising alternative to conventional treatments due to its ability to modulate the immune system, which may play a dual role in this disease since the relationship between the immune system and BC cells depends on several factors: the tumor histology and size, as well as the involvement of lymph nodes, immune cells, and molecules that are part of the tumor microenvironment. Particularly, myeloid-derived suppressor cell (MDSC) expansion is one of the major immunosuppressive mechanisms used by breast tumors since it has been associated with worse clinical stage, metastatic burden, and poor efficacy of immunotherapies. This review focuses on the new immunotherapies in BC in the last five years. Additionally, the role of MDSC as a therapeutic target in breast cancer will be described.
Collapse
Affiliation(s)
- María Luisa Sánchez-León
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carlos Jiménez-Cortegana
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Silvia Silva Romeiro
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Carmen Garnacho
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel J. García-Domínguez
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Virgen Macarena University Hospital, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Víctor Sánchez-Margalet
- Laboratory Service, Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
8
|
Hajibabaei S, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. Aberrant promoter hypermethylation of miR-335 and miR-145 is involved in breast cancer PD-L1 overexpression. Sci Rep 2023; 13:1003. [PMID: 36653507 PMCID: PMC9849328 DOI: 10.1038/s41598-023-27415-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
PD-L1 is one of the most important immune checkpoint molecules in breast cancer that plays an important role in suppressing the immune system when confronted with tumor cells and is regulated by various microRNAs. Among them, microRNA-335-3p and microRNA-145-5p, regulated by DNA methylation, have tumor suppressor activities. We studied the role of miR-335 and -145 on PD-L1 suppression in breast cancer. The expression of miR-355 and miR-145 was significantly downregulated in BC tissues and cell lines compared to their controls, and their downregulation was negatively correlated with PD-L1 overexpression. In-silico and luciferase reporter systems confirmed that miR-335 and -145 target PD-L1. In BC tissues and cell lines, cancer-specific methylation was found in CpG-rich areas upstream of miR-335 and-145, and up-regulation of PD-L1 expression was connected with hypermethylation (r = 0.4089, P = 0.0147, and r = 0.3373, P = 0.0475, respectively). The higher levels of miR-355 and -145 in BC cells induced apoptosis, arrested the cell cycle, and reduced proliferation significantly. In summary, we found that miR-335 and -145 are novel tumor suppressors inactivated in BC, and these miRs may serve as potential therapeutic targets for breast cancer treatment.
Collapse
Affiliation(s)
- Sara Hajibabaei
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
9
|
Wu J, Chen Y, Chen L, Ji Z, Tian H, Zheng D, Yang Q, Liu Y, Cai J, Zheng J, Chen Y, Li Z. Global research trends on anti-PD-1/anti-PD-L1 immunotherapy for triple-negative breast cancer: A scientometric analysis. Front Oncol 2023; 12:1002667. [PMID: 36713507 PMCID: PMC9875294 DOI: 10.3389/fonc.2022.1002667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023] Open
Abstract
In recent years, anti-PD-1/anti-PD-L1 has been considered to be a valuable therapeutic target and prognostic indicator for triple-negative breast cancer. We analyzed all publications published in the field from their inception until the present day in order to determine the current research status and hotspots. All related publications were searched on the Web of Science. Our research used R-studio (bibliometrix package), VOSviewer, and CiteSpace to analyze and obtain annual publications and citation information, articles, highest publication countries and affiliations, influential journals and authors, keyword analysis, and keyword bursts. In total, 851 documents were retrieved including 628 articles and 223 review articles. The output of publications increased year by year from 2013 to 2021. However, the average article citation times reached the top in 2014 but generally showed a downward trend from 2014 to 2021. It was an article written by Schmid et al. in 2018 that received the most citations. With regard to publications, citations, and link strength, among the top countries was the United States. Cancers was the most published journal. Schmid and Loi ranked top in total citations and h-index. Schmid has the largest M-index and Loi has the most publication. The keywords that received the most attention were "Immunotherapy", "PD-L1", "Triple-negative breast cancer", "Tumor-infiltrating lymphocytes", and "Expression". According to the report, this current research focuses on immunotherapy for triple-negative breast cancer and the expression of PD-L1 and tumor-infiltrating lymphocytes (TILs). Pembrolizumab and Atezolizumab plus chemotherapy have completed the Phase 3 clinical trial. However, the biomarkers were limited in predicting the treatment prognosis. Through the scientometric analysis, we can understand the current research status and potential research points in this filed and provide research direction for researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yexi Chen
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| | - Zhiyang Li
- *Correspondence: Yexi Chen, ; Zhiyang Li,
| |
Collapse
|
10
|
Yao D, Wang Y, Bian K, Zhang B, Wang D. A self-cascaded unimolecular prodrug for pH-responsive chemotherapy and tumor-detained photodynamic-immunotherapy of triple-negative breast cancer. Biomaterials 2023; 292:121920. [PMID: 36442436 DOI: 10.1016/j.biomaterials.2022.121920] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022]
Abstract
Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3. The activated caspase-3 could in turn trigger release and in situ aggregation of photosensitizers. Importantly, the unimolecular prodrug exhibits a renal clearance pathway similar to small molecules in vivo, while the aggregated AIEgens prolong tumor retention for long-term fluorescence imaging and repeatable photodynamic therapy (PDT) by only one single-dose injection. Furthermore, the tumor-detained PDT boosts both immunogenic cell death of TNBC cells and maturation of dendritic cells. Finally, the combination of repeatable PDT with ICB therapy further promotes the proliferation and intratumoral infiltration of cytotoxic T lymphocytes, and effectively suppresses tumor growth and pulmonary metastasis. This prodrug is a proof-of-concept that confirms the first self-cascaded chemo-PDT strategy to reverse the ITM and boost the ICB-mediated TNBC immunotherapy.
Collapse
Affiliation(s)
- Defan Yao
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanshu Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kexin Bian
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
11
|
Abdou Y, Goudarzi A, Yu JX, Upadhaya S, Vincent B, Carey LA. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. NPJ Breast Cancer 2022; 8:121. [PMID: 36351947 PMCID: PMC9646259 DOI: 10.1038/s41523-022-00486-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
The development of immunotherapy agents has revolutionized the field of oncology. The only FDA-approved immunotherapeutic approach in breast cancer consists of immune checkpoint inhibitors, yet several novel immune-modulatory strategies are being actively studied and appear promising. Innovative immunotherapeutic strategies are urgently needed in triple negative breast cancer (TNBC), a subtype of breast cancer known for its poor prognosis and its resistance to conventional treatments. TNBC is more primed to respond to immunotherapy given the presence of more tumor infiltrating lymphocytes, higher PD-L1 expression, and higher tumor mutation burden relative to the other breast cancer subtypes, and therefore, immuno-oncology represents a key area of promise for TNBC research. The aim of this review is to highlight current data and ongoing efforts to establish the safety and efficacy of immunotherapeutic approaches beyond checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
- Yara Abdou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Atta Goudarzi
- Department of Medicine, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jia Xin Yu
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, 94129, USA
| | | | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Lisa A Carey
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
12
|
Xie J, Zou Y, Gao T, Xie L, Tan D, Xie X. Therapeutic Landscape of Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. Cancer Control 2022; 29:10732748221099230. [PMID: 35499382 PMCID: PMC9067050 DOI: 10.1177/10732748221099230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/30/2022] [Accepted: 04/18/2022] [Indexed: 01/08/2023] Open
Abstract
Human epidermal growth factor receptor 2-positive breast cancer (HER2+BC) is a common malignancy that is prone to recurrence and metastasis in the early stages, resulting in a poor prognosis for patients. Many studies have suggested that targeted therapy promotes clinical outcomes in HER2+BC. With the introduction of trastuzumab in 1998, the prognosis of patients with early HER2+BC has improved significantly. However, owing to obstinate drug resistance and adverse events, the addition of new agents in standardized treatment has become a research hotspot. These promising agents include antibodies, antibody-drug conjugates, tyrosine kinase inhibitors, and anti-HER2 combined therapies. This article provides a brief description of the biology of BC and the expression of HER2, with the aim to provide an overview of the therapeutic landscape of HER2+BC by reviewing research results and introducing the latest evidence to provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Jindong Xie
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yutian Zou
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Gao
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Liming Xie
- Department of Medical Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Duxun Tan
- South China Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Xiaoming Xie
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
13
|
Ledys F, Kalfeist L, Galland L, Limagne E, Ladoire S. Therapeutic Associations Comprising Anti-PD-1/PD-L1 in Breast Cancer: Clinical Challenges and Perspectives. Cancers (Basel) 2021; 13:5999. [PMID: 34885109 PMCID: PMC8656936 DOI: 10.3390/cancers13235999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Despite a few cases of long-responder patients, immunotherapy with anti-PD-(L)1 has so far proved rather disappointing in monotherapy in metastatic breast cancer, prompting the use of synergistic therapeutic combinations incorporating immunotherapy by immune-checkpoint inhibitors. In addition, a better understanding of both the mechanisms of sensitivity and resistance to immunotherapy, as well as the immunological effects of the usual treatments for breast cancer, make it possible to rationally consider this type of therapeutic combination. For several years, certain treatments, commonly used to treat patients with breast cancer, have shown that in addition to their direct cytotoxic effects, they may have an impact on the tumor immune microenvironment, by increasing the antigenicity and/or immunogenicity of a "cold" tumor, targeting the immunosuppressive microenvironment or counteracting the immune-exclusion profile. This review focuses on preclinical immunologic synergic mechanisms of various standard therapeutic approaches with anti-PD-(L)1, and discusses the potential clinical use of anti-PD-1/L1 combinations in metastatic or early breast cancer.
Collapse
Affiliation(s)
- Fanny Ledys
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Laura Kalfeist
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Loick Galland
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| | - Emeric Limagne
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
| | - Sylvain Ladoire
- Platform of Transfer in Cancer Biology, Georges-François Leclerc Center, 21000 Dijon, France; (F.L.); (L.K.); (L.G.); (E.L.)
- School of Medicine and Pharmacy, University of Burgundy Franche-Comté, 21000 Dijon, France
- UMR INSERM 1231, Lipides Nutrition Cancer, 21000 Dijon, France
- Department of Medical Oncology, Georges-François Leclerc Center, 21000 Dijon, France
| |
Collapse
|
14
|
Alfasi A, Ben-Aharon I. Breast Cancer during Pregnancy-Current Paradigms, Paths to Explore. Cancers (Basel) 2019; 11:cancers11111669. [PMID: 31661803 PMCID: PMC6896197 DOI: 10.3390/cancers11111669] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most common form of malignancy in pregnant women. The prevalence of pregnancy-associated breast cancer (PABC) is up to 0.04% of pregnancies and is expected to rise in developed countries. PABC represents a unique clinical scenario which requires a delicate balance of risks and benefits for both maternal and fetal well-being. Currently, there is paucity of data regarding the short- and long-term outcomes of in-utero exposure to anti-neoplastic agents. In general, when possible, treatment for PABC should follow the same guidelines as in non-pregnant patients. Surgery, including sentinel lymph node biopsy, is possible during all trimesters of pregnancy. Radiotherapy is contraindicated during pregnancy, although it might be considered in highly selected patients based on risk-benefit assessment. Evidence supports that administration of chemotherapy may be safe during the second and third trimesters, with cessation of treatment three weeks prior to expected delivery. Currently, hormonal therapy and anti-HER2 agents are contraindicated during pregnancy and should be postponed until after delivery. Prematurity is associated with worse neonatal and long-term outcomes, and thus should be avoided. While current data on the long-term effects of anti-neoplastic treatments are reassuring, grade of evidence is lacking, hence additional large prospective studies with long-term follow-up are essential to rule out any treatment-induced adverse effects.
Collapse
Affiliation(s)
- Ayelet Alfasi
- Division of Oncology, Rambam Health Care Center, Haifa 3109601, Israel.
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Center, Haifa 3109601, Israel.
- Rapport Faculty of Medicine, Technion, Haifa 3200000, Israel.
| |
Collapse
|
15
|
Planes-Laine G, Rochigneux P, Bertucci F, Chrétien AS, Viens P, Sabatier R, Gonçalves A. PD-1/PD-L1 Targeting in Breast Cancer: The First Clinical Evidences Are Emerging. A Literature Review. Cancers (Basel) 2019; 11:E1033. [PMID: 31336685 PMCID: PMC6679223 DOI: 10.3390/cancers11071033] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, the development of immunotherapy through the immune checkpoint blockade led to long-lasting responses in several types of cancers that are refractory to conventional treatments, such as melanoma or non-small cell lung cancer. Immunotherapy has also demonstrated significant improvements in various other types of cancers. However, breast cancer remains one of the tumors that have not experienced the explosion of immunotherapy yet. Indeed, breast cancer was traditionally considered as being weakly immunogenic with a lower mutational load compared to other tumor types. In the last few years, anti-PD1/PD-L1 (Programmed death-ligand 1) agents have been evaluated in breast cancer, particularly in the triple negative subtype, with promising results observed when delivered as monotherapy or in combination with conventional treatments. In this review, we will report the results of the most recent studies evaluating immune checkpoint inhibitors in breast cancer. In addition, we will discuss the concomitant development of possible biomarkers, which is required for improving the selection of patients with the highest probability of benefiting from these agents.
Collapse
Affiliation(s)
- Gabrielle Planes-Laine
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - Philippe Rochigneux
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
- CRCM-Tumor Immunology laboratory, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - François Bertucci
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
- CRCM-Predictive Oncology laboratory, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chrétien
- CRCM-Tumor Immunology laboratory, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - Patrice Viens
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - Renaud Sabatier
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
- CRCM-Predictive Oncology laboratory, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France
| | - Anthony Gonçalves
- Department of Medical Oncology, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France.
- CRCM-Predictive Oncology laboratory, Aix-Marseille University, Inserm U1068, CNRS UMR7258, Institute Paoli-Calmettes, 13009 Marseille, France.
| |
Collapse
|
16
|
Diaz Casas S, Lancheros García E, Sanchéz Campo A, Sanchez Pedraza R, Roman Vasquez V, Mendoza SD, Angel Aristizabal J, Lehmann Mosquera C, Duarte Torres C, Vergel JC. Clinical Behavior of Triple Negative Breast Cancer in a Cohort of Latin American Women. Cureus 2019; 11:e4963. [PMID: 31453035 PMCID: PMC6701886 DOI: 10.7759/cureus.4963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Breast cancer is a worldwide public health problem. In Colombia, there are 13,000 new cases, having the highest incidence and mortality among cancers. This article describes the clinical behavior of patients with triple negative breast cancer (TNBC) treated at the National Cancer Institute (NCI) in Bogota, Colombia. Methods: A historical cohort and analytical study that included elderly patients diagnosed with TNBC treated at the National Cancer Institute Functional Breast Cancer Unit (NCI-FBCU) was conducted. Results: Of the 1,066 patients registered in the unit from September 1st 2013 to December 31st 2016: 146 (13.7 %) had triple negative tumors. The average age was 57.3 years; 61% of patients had locally advanced tumors. The majority of patients received neoadjuvant chemotherapy as their first treatment (69.1%), and in 41.2% of the cases platinum was added to the chemotherapy regimen. The most common surgery conducted was modified radical mastectomy in 57.8% of cases. The pathological complete response (pCR) (Chevallier 1 and 2) was reached in 22.6% and, in this group of patients, a greater overall survival (OS) was found [hazard ratio (HR) 0.08, 95% CI 0.01-0.63; p = 0.016]. Progression of the disease occurred in 36.5% of cases, being lungs the most frequent location (44.4%). The death incidence rate was 1.21 deaths per 100 patients/month. The median event-free survival (EFS) was 18.2 months. Conclusion: TNBC occurs in Latin American women at advanced clinical stages with aggressive clinical behavior, with lower OS rates, and higher risk of metastasis compared to other molecular subtypes.
Collapse
Affiliation(s)
- Sandra Diaz Casas
- Breast and Soft Tissue Clinic, Instituto Nacional de Cancerologia, Bogotá D.C., COL
| | | | | | - Ricardo Sanchez Pedraza
- Office of the Deputy Director for Research, Epidemiological Surveillance, Promotion and Prevention, Instituto Nacional de Cancerologia, Bogotá D.C., COL
| | | | - Sara D Mendoza
- Oncology, Instituto Nacional de Cancerologia, Bogotá D.C., COL
| | | | | | - Carlos Duarte Torres
- Breast and Soft Tissue Clinic, Instituto Nacional de Cancerologia, Bogotá D.C., COL
| | - Juan C Vergel
- Breast and Soft Tissue Clinic, Instituto Nacional de Cancerologia, Bogotá D.C., COL
| |
Collapse
|
17
|
Campana LG, Miklavčič D, Bertino G, Marconato R, Valpione S, Imarisio I, Dieci MV, Granziera E, Cemazar M, Alaibac M, Sersa G. Electrochemotherapy of superficial tumors - Current status:: Basic principles, operating procedures, shared indications, and emerging applications. Semin Oncol 2019; 46:173-191. [PMID: 31122761 DOI: 10.1053/j.seminoncol.2019.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Treatment of superficial tumors with electrochemotherapy (ECT) has shown a steep rise over the past decade and indications range from skin cancers to locally advanced or metastatic neoplasms. Based on reversible electroporation, which is a physical method to achieve transient tumor cell membrane permeabilization by means of short electric pulses, ECT increases cellular uptake of bleomycin and cisplatin and their cytotoxicity by 8,000- and 80-fold, respectively. Standard operating procedures were established in 2006 and updated in 2018. Ease of administration, patient tolerability, efficacy across histotypes, and repeatability are peculiar advantages, which make standard ECT (ie, ECT using fixed-geometry electrodes) a reliable option for controlling superficial tumor growth locally and preventing their morbidity. Consolidated indications include superficial metastatic melanoma, breast cancer, head and neck skin tumors, nonmelanoma skin cancers, and Kaposi sarcoma. In well-selected patients with oropharyngeal cancers, ECT ensures appreciable symptom control. Emerging applications include skin metastases from visceral or hematological malignancies, vulvar cancer, and some noncancerous skin lesions (keloids and capillary vascular malformations). Repeatability and integration with other oncologic therapies allow for consolidation of response and sustained tumor control. In this review, we present the basic principles of ECT, recently updated operating procedures, anesthesiological management, and provide a synthesis of the efficacy of standard ECT across histotypes.
Collapse
Affiliation(s)
- Luca G Campana
- Department of Surgery Oncology and Gastroenterology (DISCOG), University of Padua, Italy; Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Giulia Bertino
- Department of Otolaryngology Head Neck Surgery, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | | | | | - Ilaria Imarisio
- Medical Oncology Unit, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Maria Vittoria Dieci
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy; Medical Oncology-2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisa Granziera
- Anesthesiology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Mauro Alaibac
- Dermatology, Department of Medicine, University of Padua, Padua, Italy
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
18
|
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2018; 195:162-171. [PMID: 30439456 DOI: 10.1016/j.pharmthera.2018.11.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many metabolic alterations, including the Warburg effect, occur in cancer cells that influence the tumor microenvironment, including switching to glycolysis from oxidative phosphorylation, using opportunistic modes of nutrient acquisition, and increasing lipid biosynthesis. The altered metabolic landscape of the tumor microenvironment can suppress the infiltration of immune cells and other functions of antitumor immunity through the production of immune-suppressive metabolites. Metabolic dysregulation in cancer cells further affects the expression of cell surface markers, which interferes with immune surveillance. Immune checkpoint therapies have revolutionized the standard of care for some patients with cancer, but disease in many others is resistant to immunotherapy. Specific metabolic pathways involved in immunotherapy resistance include PI3K-Akt-mTOR, hypoxia-inducible factor (HIF), adenosine, JAK/STAT, and Wnt/Beta-catenin. Depletion of essential amino acids such as glutamine and tryptophan and production of metabolites like kynurenine in the tumor microenvironment also blunt immune cell function. Targeted therapies against metabolic checkpoints could work in synergy with immune checkpoint therapy. This combined strategy could be refined by profiling patients' mutation status before treatment and identifying the optimal sequencing of therapies. This personalized combinatorial approach, which has yet to be explored, may well pave the way for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauricio S Caetano
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Carolina P Mafra
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erika Pereira Zambalde
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|