1
|
Endo H, Sun YC, Sasaki N, Nokami T. Recent advancements in synthesis of cyclic oligosaccharides. Chem Commun (Camb) 2025; 61:4483-4494. [PMID: 40007235 DOI: 10.1039/d4cc04877f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The development of synthetic methods for chemical glycosylation enables the synthesis of various oligosaccharides, including nonnatural cyclic oligosaccharides. Electrochemical glycosylation is an enabling technology not only for automated solution-phase synthesis of linear oligosaccharides but also for the chemical synthesis of cyclic oligosaccharides. In this review, recent syntheses of nonnatural cyclic oligosaccharides are also introduced, and glycosylation methodologies are focused on.
Collapse
Affiliation(s)
- Hirofumi Endo
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Yu-Cong Sun
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, Tottori 680-8552, Japan
| |
Collapse
|
2
|
Shibuya A, Ishisaka Y, Saito A, Kato M, Manmode S, Komatsu H, Rahman MA, Sasaki N, Itoh T, Nokami T. Electrochemical synthesis of the protected cyclic (1,3;1,6)-β-glucan dodecasaccharide. Faraday Discuss 2023; 247:59-69. [PMID: 37466008 DOI: 10.1039/d3fd00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Automated electrochemical assembly is an electrochemical method to synthesise middle-sized molecules, including linear oligosaccharides, and some linear oligosaccharides can be electrochemically converted into the corresponding cyclic oligosaccharides effectively. In this study, the target cyclic oligosaccharide is a protected cyclic (1,3;1,6)-β-glucan dodecasaccharide, which consists of two types of glucose trisaccharides with β-(1,3)- and β-(1,6)-glycosidic linkages. The formation of the protected cyclic dodecasaccharide was confirmed by the electrochemical one-pot dimerisation-cyclisation of the semi-circular hexasaccharide. The yield of the protected cyclic dodecasaccharide was improved by using a stepwise synthesis via the linear dodecasaccharide.
Collapse
Affiliation(s)
- Akito Shibuya
- Graduate School of Engineering, Tottori University, Japan.
| | - Yui Ishisaka
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Asuka Saito
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Moeko Kato
- Graduate School of Sustainable Science, Tottori University, Japan
| | - Sujit Manmode
- Graduate School of Engineering, Tottori University, Japan.
| | - Hiroto Komatsu
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University, Japan
| | | | - Norihiko Sasaki
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiyuki Itoh
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| | - Toshiki Nokami
- Graduate School of Engineering, Tottori University, Japan.
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, Japan
| |
Collapse
|
3
|
Endo H, Ochi M, Rahman MA, Hamada T, Kawano T, Nokami T. Synthesis of cyclic α-1,4-oligo- N-acetylglucosamine 'cyclokasaodorin' via a one-pot electrochemical polyglycosylation-isomerization-cyclization process. Chem Commun (Camb) 2022; 58:7948-7951. [PMID: 35748909 DOI: 10.1039/d2cc02287g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical synthesis of unnatural cyclic oligosaccharides composed of N-acetylglucosamine with α-1,4-glycosidic linkages has been accomplished. A thioglycoside monomer equipped with the 2,3-oxazolidinone protecting group was used to prepare linear oligosaccharides by electrochemical polyglycosylation. In the same pot, isomerization of the linear oligosaccharides and intramolecular electrochemical glycosylation for cyclization were also conducted sequentially to obtain the precursor of the cyclic α-1,4-oligo-N-acetylglucosamine 'cyclokasaodorin'.
Collapse
Affiliation(s)
- Hirofumi Endo
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Masaharu Ochi
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Md Azadur Rahman
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan.
| | - Tomoaki Hamada
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Takahiro Kawano
- Koganei Corporation, 3-11-28 Midorimachi, Koganei City, 184-8533 Tokyo, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan. .,Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho Minami, Tottori City, 680-8552 Tottori, Japan
| |
Collapse
|
4
|
Shibuya A, Kato M, Saito A, Manmode S, Nishikori N, Itoh T, Nagaki A, Nokami T. Glycosyl Dioxalenium Ions as Reactive Intermediates of Automated Electrochemical Assembly. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Akito Shibuya
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Moeko Kato
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Asuka Saito
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Sujit Manmode
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Naoto Nishikori
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry Faculty of Engineering Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University Nishikyo-ku, Kyoto city 615-8510 Kyoto Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
- Center for Research on Green and Sustainable Chemistry Faculty of Engineering Tottori University 4-101 Koyamachominami, Tottori city 680-8552 Tottori Japan
| |
Collapse
|
5
|
Shchepochkin AV, Antipin FV, Charushin VN, Chupakhin ON. Oxidative C–H Functionalization of Arenes: Main Tool of 21st Century Green Chemistry. A Review. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821070016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Naito Y, Nakamura Y, Shida N, Senboku H, Tanaka K, Atobe M. Integrated Flow Synthesis of α-Amino Acids by In Situ Generation of Aldimines and Subsequent Electrochemical Carboxylation. J Org Chem 2021; 86:15953-15960. [PMID: 34152747 DOI: 10.1021/acs.joc.1c00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis of α-amino acids was carried out in a continuous flow system. In this system, aldimines were efficiently generated in situ via the dehydration-condensation of aldehydes with anilines in a desiccant bed column filled with 4 Å molecular sieves desiccant, followed by reaction with CO2 in an electrochemical flow microreactor to afford the α-amino acids in high to moderate yields. The present system can provide α-amino acids without using stoichiometric amounts of metal reagents or highly toxic cyanide reagents.
Collapse
Affiliation(s)
- Yuki Naito
- Graduate School of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yuto Nakamura
- Graduate School of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Naoki Shida
- Graduate School of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Hisanori Senboku
- Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Kenta Tanaka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, Chiba 278-8510, Japan
| | - Mahito Atobe
- Graduate School of Science and Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
7
|
Yano K, Sasaki N, Itoh T, Nokami T. Synthesis of Oligosaccharides of Glucosamine by Automated Electrochemical Assembly. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University
| |
Collapse
|
8
|
Shibuya A, Nokami T. Electrochemical Assembly for Synthesis of Middle-Sized Organic Molecules. CHEM REC 2021; 21:2389-2396. [PMID: 34101967 DOI: 10.1002/tcr.202100085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/21/2021] [Indexed: 12/23/2022]
Abstract
Electrochemical methods offer a powerful, reliable, and environmentally benign approach for the synthesis of small organic molecules, and such methods are useful not only for the transformation of small molecules, but also for the preparation of oligomers and polymers. Electrochemical assembly is a concept that allows structurally well-defined middle-sized organic molecules to be synthesized by applying electrochemical methods. The preparation of dendrimers, dendronized polymers, and oligosaccharides are introduced as examples of such an approach. Automated electrochemical assembly of oligosaccharides is also demonstrated using the electrochemical synthesizer developed by our group.
Collapse
Affiliation(s)
- Akito Shibuya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho-minami, Tottori city, 680-8552 Tottori, Japan
| |
Collapse
|
9
|
Fan R, Tan C, Liu Y, Wei Y, Zhao X, Liu X, Tan J, Yoshida H. A leap forward in sulfonium salt and sulfur ylide chemistry. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Ashikari Y, Saito K, Nokami T, Yoshida JI, Nagaki A. Oxo-Thiolation of Cationically Polymerizable Alkenes Using Flow Microreactors. Chemistry 2019; 25:15239-15243. [PMID: 31414708 DOI: 10.1002/chem.201903426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/14/2019] [Indexed: 01/11/2023]
Abstract
The present study describes the cationic oxo-thiolation of polymerizable alkenes by using highly reactive cationic species generated by anodic oxidation. These highly reactive cations were able to activate alkenes before their polymerization. Fast mixing in flow microreactors effectively controlled chemoselectivity, enabling higher reaction temperatures.
Collapse
Affiliation(s)
- Yosuke Ashikari
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology and Center for Research on Green Sustainable Chemistry, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori, 680-8552, Japan
| | - Jun-Ichi Yoshida
- National Institute of Technology, Suzuka College, Shiroko-cho, Suzuka, Mie, 510-0294, Japan
| | - Aiichiro Nagaki
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
11
|
Dwivedi V, Kalsi D, Sundararaju B. Electrochemical‐/Photoredox Aspects of Transition Metal‐Catalyzed Directed C−H Bond Activation. ChemCatChem 2019. [DOI: 10.1002/cctc.201900680] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikas Dwivedi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Deepti Kalsi
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| | - Basker Sundararaju
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur Uttar Pradesh 208 016 India
| |
Collapse
|
12
|
Shatskiy A, Lundberg H, Kärkäs MD. Organic Electrosynthesis: Applications in Complex Molecule Synthesis. ChemElectroChem 2019. [DOI: 10.1002/celc.201900435] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrey Shatskiy
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Helena Lundberg
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| | - Markus D. Kärkäs
- Department of ChemistryKTH Royal Institute of Technology SE-100 44 Stockholm Sweden
| |
Collapse
|
13
|
SHIMIZU A. Development of Electroorganic Reactions Utilizing Stabilized Reactive Species and Its Application to Organic Energy Storage Materials. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Akihiro SHIMIZU
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University
| |
Collapse
|
14
|
Hayashi R, Shimizu A, Davies JA, Ishizaki Y, Willis C, Yoshida JI. Metal- and Oxidant-Free Alkenyl C−H/Aromatic C−H Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. Angew Chem Int Ed Engl 2018; 57:12891-12895. [DOI: 10.1002/anie.201807592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/06/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | | | - Yu Ishizaki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Chris Willis
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Jun-ichi Yoshida
- National Institute of Technology; Suzuka College; Suzuka Mie 510-0294 Japan
| |
Collapse
|
15
|
Hayashi R, Shimizu A, Davies JA, Ishizaki Y, Willis C, Yoshida JI. Metal- and Oxidant-Free Alkenyl C−H/Aromatic C−H Cross-Coupling Using Electrochemically Generated Iodosulfonium Ions. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | | | - Yu Ishizaki
- Department of Synthetic Chemistry and Biological Chemistry; Graduate School of Engineering; Kyoto University, Nishikyo-ku; Kyoto 615-8510 Japan
| | - Chris Willis
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Jun-ichi Yoshida
- National Institute of Technology; Suzuka College; Suzuka Mie 510-0294 Japan
| |
Collapse
|
16
|
Kärkäs MD. Electrochemical strategies for C-H functionalization and C-N bond formation. Chem Soc Rev 2018; 47:5786-5865. [PMID: 29911724 DOI: 10.1039/c7cs00619e] [Citation(s) in RCA: 627] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Conventional methods for carrying out carbon-hydrogen functionalization and carbon-nitrogen bond formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently been recognized as a sustainable and scalable strategy for the construction of challenging carbon-carbon and carbon-heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic electrochemical methods for expediting the development of carbon-hydrogen functionalization and carbon-nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.
Collapse
Affiliation(s)
- Markus D Kärkäs
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
17
|
Abstract
Arylated products are found in various fields of chemistry and represent essential entities for many applications. Therefore, the formation of this structural feature represents a central issue of contemporary organic synthesis. By the action of electricity the necessity of leaving groups, metal catalysts, stoichiometric oxidizers, or reducing agents can be omitted in part or even completely. The replacement of conventional reagents by sustainable electricity not only will be environmentally benign but also allows significant short cuts in electrochemical synthesis. In addition, this methodology can be considered as inherently safe. The current survey is organized in cathodic and anodic conversions as well as by the number of leaving groups being involved. In some electroconversions the reagents used are regenerated at the electrode, whereas in other electrotransformations free radical sequences are exploited to afford a highly sustainable process. The electrochemical formation of the aryl-substrate bond is discussed for aromatic substrates, heterocycles, other multiple bond systems, and even at saturated carbon substrates. This survey covers most of the seminal work and the advances of the past two decades in this area.
Collapse
Affiliation(s)
- Siegfried R Waldvogel
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| | - Sebastian Lips
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Maximilian Selt
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , 55128 Mainz , Germany
| | - Barbara Riehl
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Christopher J Kampf
- Institute of Organic Chemistry , Johannes Gutenberg University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany.,Max Planck Graduate Center with Johannes Gutenberg University , Forum universitatis 2 , 55122 Mainz , Germany
| |
Collapse
|
18
|
Hardwick T, Ahmed N. Advances in electro- and sono-microreactors for chemical synthesis. RSC Adv 2018; 8:22233-22249. [PMID: 35541743 PMCID: PMC9081238 DOI: 10.1039/c8ra03406k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
The anatomy of electrochemical flow microreactors is important to safely perform chemical reactions in order to obtain pure and high yielding substances in a controlled and precise way that excludes the use of supporting electrolytes. Flow microreactors are advantageous in handling unstable intermediates compared to batch techniques and have efficient heat/mass transfer. Electrode nature (cathode and anode) and their available exposed surface area to the reaction mixture, parameters of the spacer, flow rate and direction greatly affects the efficiency of the electrochemical reactor. Solid formation during reactions may result in a blockage and consequently decrease the overall yield, thus limiting the use of microreactors in the field of electrosynthesis. This problem could certainly be overcome by application of ultrasound to break the solids for consistent flow. In this review, we discuss in detail the aforementioned issues, the advances in microreactor technology for chemical synthesis, with possible application of sonochemistry to deal with solid formations. Various examples of flow methods for electrosynthesis through microreactors have been explained in this review, which would definitely help to meet future demands for efficient synthesis and production of various pharmaceuticals and fine chemicals.
Collapse
Affiliation(s)
- Tomas Hardwick
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| | - Nisar Ahmed
- School of Chemistry, Cardiff University Main Building, Park Place Cardiff CF10 3AT UK
| |
Collapse
|
19
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Electrifying Organic Synthesis. Angew Chem Int Ed Engl 2018; 57:5594-5619. [PMID: 29292849 PMCID: PMC5969240 DOI: 10.1002/anie.201711060] [Citation(s) in RCA: 864] [Impact Index Per Article: 123.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 11/21/2022]
Abstract
The direct synthetic organic use of electricity is currently experiencing a renaissance. More synthetically oriented laboratories working in this area are exploiting both novel and more traditional concepts, paving the way to broader applications of this niche technology. As only electrons serve as reagents, the generation of reagent waste is efficiently avoided. Moreover, stoichiometric reagents can be regenerated and allow a transformation to be conducted in an electrocatalytic fashion. However, the application of electroorganic transformations is more than minimizing the waste footprint, it rather gives rise to inherently safe processes, reduces the number of steps of many syntheses, allows for milder reaction conditions, provides alternative means to access desired structural entities, and creates intellectual property (IP) space. When the electricity originates from renewable resources, this surplus might be directly employed as a terminal oxidizing or reducing agent, providing an ultra-sustainable and therefore highly attractive technique. This Review surveys recent developments in electrochemical synthesis that will influence the future of this area.
Collapse
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Tile Gieshoff
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Sabine Möhle
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Eduardo Rodrigo
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Michael Zirbes
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| | - Siegfried R. Waldvogel
- Max Planck Graduate CenterStaudingerweg 955128MainzGermany
- Graduate School Materials Science in MainzStaudingerweg 955128MainzGermany
- Institut für Organische ChemieJohannes Gutenberg-Universität MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
20
|
López-López EE, Pérez-Bautista JA, Sartillo-Piscil F, Frontana-Uribe BA. Electrochemical Corey-Winter reaction. Reduction of thiocarbonates in aqueous methanol media and application to the synthesis of a naturally occurring α-pyrone. Beilstein J Org Chem 2018; 14:547-552. [PMID: 29623116 PMCID: PMC5852465 DOI: 10.3762/bjoc.14.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/16/2018] [Indexed: 11/23/2022] Open
Abstract
An electrochemical version of the Corey-Winter reaction was developed giving excellent results in aqueous methanol media (MeOH/H2O (80:20) with AcOH/AcONa buffer 0.5 M as supporting electrolyte), using a reticulated vitreous carbon as cathode in a divided cell. The electrochemical version is much more environmentally friendly than the classical reaction, where a large excess of trialkyl phosphite as reducing agent and high temperatures are required. Thus, cathodic reduction at room temperature of two cyclic thiocarbonates (-1.2 to -1.4 V vs Ag/AgCl) afforded the corresponding alkenes, trans-6-(pent-1-enyl)-α-pyrone and trans-6-(pent-1,4-dienyl)-α-pyrone, which are naturally occurring metabolites isolated from Trichoderma viride and Penicillium, in high chemical yield and with excellent stereo selectivity.
Collapse
Affiliation(s)
- Ernesto Emmanuel López-López
- Centro Conjunto de Investigaciones en Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca Atlacomulco San Cayetano-Toluca, 50200 Estado de México, México
| | - José Alvano Pérez-Bautista
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México
| | - Bernardo A Frontana-Uribe
- Centro Conjunto de Investigaciones en Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca Atlacomulco San Cayetano-Toluca, 50200 Estado de México, México.,Instituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
21
|
Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Elektrifizierung der organischen Synthese. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anton Wiebe
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Tile Gieshoff
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Sabine Möhle
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Eduardo Rodrigo
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Michael Zirbes
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| | - Siegfried R. Waldvogel
- Max Planck Graduate Center; Staudingerweg 9 55128 Mainz Deutschland
- Graduate School Materials Science in Mainz; Staudingerweg 9 55128 Mainz Deutschland
- Institut für Organische Chemie; Johannes Gutenberg-Universität Mainz; Duesbergweg 10-14 55128 Mainz Deutschland
| |
Collapse
|
22
|
Matsumoto K, Yanagi R, Yamaguchi K, Hayashi E, Yasuda E, Nokami T, Nishiwaki K, Kashimura S, Kuriyama K. Lewis Acid Promoted Prins Cyclization Using Non-Conjugated Diene Alcohol: Sequential Reactions Terminated by Fluoride Ion. HETEROCYCLES 2018. [DOI: 10.3987/com-18-13940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Yoshida JI, Shimizu A, Hayashi R. Electrogenerated Cationic Reactive Intermediates: The Pool Method and Further Advances. Chem Rev 2017; 118:4702-4730. [PMID: 29077393 DOI: 10.1021/acs.chemrev.7b00475] [Citation(s) in RCA: 375] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemistry serves as a powerful method for generating reactive intermediates, such as organic cations. In general, there are two ways to use reactive intermediates for chemical reactions: (1) generation in the presence of a reaction partner and (2) generation in the absence of a reaction partner with accumulation in solution as a "pool" followed by reaction with a subsequently added reaction partner. The former approach is more popular because reactive intermediates are usually short-lived transient species, but the latter method is more flexible and versatile. This review focuses on the latter approach and provides a concise overview of the current methods for the generation and accumulation of cationic reactive intermediates as a pool using modern techniques of electrochemistry and their reactions with subsequently added nucleophilic reaction partners.
Collapse
Affiliation(s)
- Jun-Ichi Yoshida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Akihiro Shimizu
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| | - Ryutaro Hayashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering , Kyoto University , Nishikyo-ku , Kyoto 615-8510 , Japan
| |
Collapse
|
24
|
Pletcher D, Green RA, Brown RCD. Flow Electrolysis Cells for the Synthetic Organic Chemistry Laboratory. Chem Rev 2017; 118:4573-4591. [DOI: 10.1021/acs.chemrev.7b00360] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Derek Pletcher
- Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Robert A. Green
- Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | | |
Collapse
|
25
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
26
|
Isoda Y, Sasaki N, Kitamura K, Takahashi S, Manmode S, Takeda-Okuda N, Tamura JI, Nokami T, Itoh T. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block. Beilstein J Org Chem 2017; 13:919-924. [PMID: 28684973 PMCID: PMC5480352 DOI: 10.3762/bjoc.13.93] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/30/2022] Open
Abstract
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.
Collapse
Affiliation(s)
- Yuta Isoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Kei Kitamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Shuji Takahashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Sujit Manmode
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Naoko Takeda-Okuda
- Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan
| | - Jun-Ichi Tamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Department of Regional Environment, Faculty of Regional Sciences, Tottori University, 4-101 Koyama-minami, Tottori 680-8551, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| | - Toshiyuki Itoh
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan.,Center for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
27
|
Metal-Free Benzylic C−H Amination via Electrochemically Generated Benzylaminosulfonium Ions. Chemistry 2016; 23:61-64. [DOI: 10.1002/chem.201604484] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Indexed: 12/12/2022]
|
28
|
Matsumura Y, Yamaji Y, Tateno H, Kashiwagi T, Atobe M. In Situ Generation of Trichloromethyl Anion and Efficient Reaction with Benzaldehyde in an Electrochemical Flow Microreactor. CHEM LETT 2016. [DOI: 10.1246/cl.160337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Hayashi R, Shimizu A, Yoshida JI. The Stabilized Cation Pool Method: Metal- and Oxidant-Free Benzylic C–H/Aromatic C–H Cross-Coupling. J Am Chem Soc 2016; 138:8400-3. [DOI: 10.1021/jacs.6b05273] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ryutaro Hayashi
- Department
of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Akihiro Shimizu
- Department
of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jun-ichi Yoshida
- Department
of Synthetic Chemistry
and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
30
|
Matsumura Y, Kakizaki Y, Tateno H, Kashiwagi T, Yamaji Y, Atobe M. Continuous in situ electrogenaration of a 2-pyrrolidone anion in a microreactor: application to highly efficient monoalkylation of methyl phenylacetate. RSC Adv 2015. [DOI: 10.1039/c5ra19286b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have successfully demonstrated effective generation of an electrogenerated base (EGB) such as the 2-pyrrolidone anion and its rapid use for the following alkylation reaction in a flow microreactor system without the need for severe reaction conditions.
Collapse
Affiliation(s)
- Yoshimasa Matsumura
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Yoshinobu Kakizaki
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Hiroyuki Tateno
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Tsuneo Kashiwagi
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Yoshiyuki Yamaji
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| | - Mahito Atobe
- Department of Environment and System Sciences
- Yokohama National University
- Yokohama
- Japan
| |
Collapse
|