1
|
Ariga K, Fujioka S, Yamashita Y. Dynamic Flow-Assisted Nanoarchitectonics. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40255047 DOI: 10.1021/acsami.5c03820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The solution to societal problems such as energy, environmental, and biomedical issues lies in the development of functional material systems with the capacity to address these problems. In the course of human development, we are entering a new era in which nanostructure control is considered in the major development of functional materials. The new concept of nanoarchitectonics is particularly significant in this regard, as it comprehensively promotes further development of nanotechnology and its fusion with materials chemistry. The integration of nanoscale phenomena and macroscopic actions is imperative for practical production of functional materials with nanoscale structural precision. This review focuses on dynamic flow-assisted nanoarchitectonics, wherein we explore the organization and control of functional structures by external mechanical stimuli, predominantly fluid flow. The review then proceeds to select some examples and divide them into categories for the purpose of discussion: structural organization by (i) natural flow, (ii) flow or stress created with artificial equipment or devices (forced flow), and (iii) flow at a specific field, namely interfaces, that is, layer-by-layer (LbL) assembly and the LB method. The final perspective section discusses the future research directions and requirements for dynamic flow-assisted nanoarchitectonics. The meaningful and effective use of nanotechnology and nanoarchitectonics in materials science is set to be a major area of focus in the future, and dynamic flow-assisted nanoarchitectonics is poised to play a significant role in achieving this objective.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Shuta Fujioka
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yu Yamashita
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
2
|
Zahid Y, Li Y, Dag Ö, Warr GG, Albayrak C. Non-ionic surfactant self-assembly in calcium nitrate tetrahydrate and related salts. SOFT MATTER 2025; 21:1323-1332. [PMID: 39838759 DOI: 10.1039/d4sm01268b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Self-assembly of amphiphilic molecules can take place in extremely concentrated salt solutions, such as inorganic molten salt hydrates or hydrous melts. The intermolecular interactions governing the organization of amphiphilic molecules under such extreme conditions are not yet fully understood. In this study, we investigated the specific effects of ions on the self-assembly of the non-ionic surfactant C12H25(OCH2CH2)10OH (C12E10) under extreme salt concentrations, using calcium nitrate tetrahydrate as a reference. The mixtures of Ca(NO3)2·4H2O and C12E10 displayed lyotropic (H1 and I1) and micellar phases, in contrast to CaCl2·xH2O-C12E10 or CaBr2·xH2O-C12E10 mixtures where mesostructurally ordered salt-surfactant complexes were observed. The Ca(NO3)2·4H2O-C12E10 system was thoroughly investigated by constructing its binary phase diagram and performing thermal and spectral comparisons with other salt hydrates. The Ca(NO3)2 system displayed significantly higher isotropization temperatures than zinc, aluminium, and lithium nitrate systems. ATR-FTIR analysis revealed that Ca2+ primarily interacts with the surfactant head groups through ion-dipole interactions, while these interactions were less pronounced with other cations. The results show that an intermediate hydration/coordination energy of the metal ion can lead to stronger metal-surfactant interactions and thermally more stable liquid crystals. Comparison between the Ca(NO3)2, CaCl2, and CaBr2 systems suggests that reduced ion pair formation enhances the interactions between Ca2+ and oxyethylene groups, leading to the salting-out of salt-surfactant complexes. Despite its low water content and strong intermolecular interactions, the Ca(NO3)2·xH2O-C12E10 system exhibited an electrical conductivity of up to 1.0 × 10-3 S cm-1 with 4 water molecules per salt, making it a promising medium for electrochemical applications.
Collapse
Affiliation(s)
- Yashfeen Zahid
- Sustainable Environment and Energy Systems, Middle East Technical University Northern Cyprus Campus, Kalkanlı, Güzelyurt, via Mersin 10, Türkiye
| | - Yizhen Li
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Ömer Dag
- Department of Chemistry, Bilkent University, 06800, Ankara, Türkiye
- UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800, Ankara, Türkiye
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Cemal Albayrak
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia.
- Chemistry Group, Middle East Technical University Northern Cyprus Campus, Kalkanlı, Güzelyurt, via Mersin 10, Türkiye
| |
Collapse
|
3
|
Topcu G, Al Hindawi AMA, Feng C, Spence D, Sitorus B, Liu H, Ellis AM, Yang S. Precision engineering of nano-assemblies in superfluid helium by the use of van der Waals forces. Commun Chem 2024; 7:125. [PMID: 38834741 DOI: 10.1038/s42004-024-01203-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
The ability to precisely engineer nanostructures underpins a wide range of applications in areas such as electronics, optics, and biomedical sciences. Here we present a novel approach for the growth of nanoparticle assemblies that leverages the unique properties of superfluid helium. Unlike viscous solvents at or near room temperature, superfluid helium provides an unperturbed and cold environment in which weak van der Waals interactions between molecular templates and metal atoms become significant and can define the spatial arrangement of nanoparticles. To demonstrate this concept, diol and porphyrin-based molecules are employed as templates to grow gold nanoparticle assemblies in superfluid helium droplets. After soft-landing on a solid surface to remove the helium, transmission electron microscopy (TEM) imaging shows the growth of gold nanoparticles at specific binding sites within the molecular templates where the interaction between gold atoms and the molecular template is at its strongest.
Collapse
Affiliation(s)
- Gokhan Topcu
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Aula M A Al Hindawi
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
- Department of Chemistry, College of Education for Pure Science, University of Karbala, Karbala, Iraq
| | - Cheng Feng
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Daniel Spence
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Berlian Sitorus
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
- Department of Chemistry, Tanjungpura University, Pontianak, Indonesia
| | - Hanqing Liu
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Andrew M Ellis
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Shengfu Yang
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
4
|
Getachew G, Wibrianto A, Rasal AS, Batu Dirersa W, Chang JY. Metal halide perovskite nanocrystals for biomedical engineering: Recent advances, challenges, and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
5
|
Fu CP, Li KJ, He JY, Yu WH, Zhou CH. Controlled fabrication of Ag@clay nanomaterials for ultrasensitive and rapid surface-enhanced Raman spectroscopic detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1001-1015. [PMID: 36541705 DOI: 10.1039/d2ay01262f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The nanostructure of Ag nanoparticles (NPs) plays a critical role in their surface-enhanced Raman scattering (SERS) activity. Despite many efforts to tune the nanostructure of Ag NPs, it remains a great challenge as Ag NPs tend to agglomerate and their nanostructure is difficult to control. Herein, newly-discovered clay-surfactant-Ag+ materials and interfacial processes were developed and used to prepare uniform spherical Ag@synthetic hectorite (Ag@Hct) nanomaterials for ultrasensitive SERS assay. Sodium dodecyl sulfate (SDS), an anionic surfactant, acted as a bridge to conjugate the positively charged edge of Hct NPs and Ag+via electrostatic interaction to form the bridging nanostructure of Hct-SDS-Ag+, which promoted the uniform dispersion of Hct NPs. Following this, Ag+ was reduced to Ag0 by the reductant, and Ag0 grew on the surface of disc-like Hct NPs to form spherical Ag@Hct nanomaterials with an average particle size of ∼24 nm. The prepared Ag@Hct nanomaterials showed an ultrasensitive SERS response to methylene blue (MB) with a detection limit of 10-12 M. The detection limit of MB in sewage was 10-11 M. The prepared Ag@Hct nanomaterials also exhibited great SERS enhancement for malachite green and crystal violet. This work provides a novel and simple approach to prepare Ag@Hct nanomaterials with uniform spheres and adjustable particle size, allowing more sensitive and reproducible detection of MB.
Collapse
Affiliation(s)
- Chao Peng Fu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Ke Jin Li
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Jia Yong He
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Wei Hua Yu
- Zhijiang College, Zhejiang University of Technology, Shaoxing, 312030, China
| | - Chun Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
- Qing Yang Institute for Industrial Minerals, Youhua, Qingyang, Chizhou, 242804, China
- Engineering Research Center of Non-metallic Minerals of Zhejiang Province, Zhejiang Institute of Geology and Mineral Resources, Hangzhou, 310007, China
| |
Collapse
|
6
|
Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules 2023; 28:molecules28052013. [PMID: 36903259 PMCID: PMC10004212 DOI: 10.3390/molecules28052013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It has been more than 30 years since the first ordered mesoporous silica molecular sieve (MCM-41) was reported, but the enthusiasm for exploiting mesoporous silica is still growing due to its superior properties, such as its controllable morphology, excellent hosting capability, easy functionalization, and good biocompatibility. In this narrative review, the brief history of the discovery of mesoporous silica and several important mesoporous silica families are summarized. The development of mesoporous silica microspheres with nanoscale dimensions, hollow mesoporous silica microspheres, and dendritic mesoporous silica nanospheres is also described. Meanwhile, common synthesis methods for traditional mesoporous silica, mesoporous silica microspheres, and hollow mesoporous silica microspheres are discussed. Then, we introduce the biological applications of mesoporous silica in fields such as drug delivery, bioimaging, and biosensing. We hope this review will help people to understand the history of the development of mesoporous silica molecular sieves and become familiar with their synthesis methods and applications in biology.
Collapse
|
7
|
Kim M, Xin R, Earnshaw J, Tang J, Hill JP, Ashok A, Nanjundan AK, Kim J, Young C, Sugahara Y, Na J, Yamauchi Y. MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nat Protoc 2022; 17:2990-3027. [PMID: 36064756 DOI: 10.1038/s41596-022-00718-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/25/2022] [Indexed: 11/08/2022]
Abstract
Metal-organic frameworks (MOFs), or porous coordination polymers, are crystalline porous materials formed by coordination bonding between inorganic and organic species on the basis of the self-assembly of the reacting units. The typical characteristics of MOFs, including their large specific surface areas, ultrahigh porosities and excellent thermal and chemical stabilities, as well as their great potential for chemical and structural modifications, make them excellent candidates for versatile applications. Their poor electrical conductivity, however, has meant that they have not been useful for electrochemical applications. Fortuitously, the direct carbonization of MOFs results in a rearrangement of the carbon atoms of the organic units into a network of carbon atoms, which means that the products have useful levels of conductivity. The direct carbonization of zeolitic imidazolate framework (ZIF)-type MOFs, particularly ZIF-8, has successfully widened the scope of possible applications of MOFs to include electrochemical reactions that could be used in, for example, energy storage, energy conversion, electrochemical biosensors and capacitive deionization of saline water. Here, we present the first detailed protocols for synthesizing high-quality ZIF-8 and its modified forms of hollow ZIF-8, core-shell ZIF-8@ZIF-67 and ZIF-8@mesostuctured polydopamine. Typically, ZIF-8 synthesis takes 27 h to complete, and subsequent nanoarchitecturing procedures leading to hollow ZIF-8, ZIF-8@ZIF-67 and ZIF-8@mPDA take 6, 14 and 30 h, respectively. The direct-carbonization procedure takes 12 h. The resulting nanoporous carbons are suitable for electrochemical applications, in particular as materials for supercapacitors.
Collapse
Affiliation(s)
- Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jacob Earnshaw
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai, China
| | - Jonathan P Hill
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Ashok Kumar Nanjundan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Christine Young
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sugahara
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, Tokyo, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Republic of Korea.
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia.
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan.
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, Tokyo, Japan.
| |
Collapse
|
8
|
Khalaf E, Alameri AA, Malviya J, Kumar TCHA, Altalbawy FMA, Alfilh RHC, Kazemnejadi M. Synthesis of Highly Porous Mn2O3-Doped Fe3O4 NPs with a Dual Catalytic Function Using Asymmetric Water Soluble Mn-Salen Complex as a Reducing Agent and Template: Catalytic Activity over One-Pot Strecker Synthesis from Alcohols in Recyclable TAIm[CN] Ionic Liquid. Catal Letters 2022. [DOI: 10.1007/s10562-022-04210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Mabrouk M, Moaness M, Beherei HH. Fabrication of mesoporous zirconia and titania nanomaterials for bone regeneration and drug delivery applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Chen Y, Liang T, Chen L, Chen Y, Yang BR, Luo Y, Liu GS. Self-assembly, alignment, and patterning of metal nanowires. NANOSCALE HORIZONS 2022; 7:1299-1339. [PMID: 36193823 DOI: 10.1039/d2nh00313a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Armed with the merits of one-dimensional nanostructures (flexibility, high aspect ratio, and anisotropy) and metals (high conductivity, plasmonic properties, and catalytic activity), metal nanowires (MNWs) have stood out as a new class of nanomaterials in the last two decades. They are envisaged to expedite significantly and even revolutionize a broad spectrum of applications related to display, sensing, energy, plasmonics, photonics, and catalysis. Compared with disordered MNWs, well-organized MNWs would not only enhance the intrinsic physical and chemical properties, but also create new functions and sophisticated architectures of optoelectronic devices. This paper presents a comprehensive review of assembly strategies of MNWs, including self-assembly for specific structures, alignment for anisotropic constructions, and patterning for precise configurations. The technical processes, underlying mechanisms, performance indicators, and representative applications of these strategies are described and discussed to inspire further innovation in assembly techniques and guide the fabrication of optoelectrical devices. Finally, a perspective on the critical challenges and future opportunities of MNW assembly is provided.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Tianwei Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
- Key Laboratory of Visible Light Communications of Guangzhou, Jinan University, Guangzhou 510632, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Guangzhou 510632, China
| |
Collapse
|
11
|
Kim M, Firestein KL, Fernando JFS, Xu X, Lim H, Golberg DV, Na J, Kim J, Nara H, Tang J, Yamauchi Y. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: from the perspective of nanoarchitectonics. Chem Sci 2022; 13:10836-10845. [PMID: 36320690 PMCID: PMC9491178 DOI: 10.1039/d2sc02726g] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, we present microporous carbon (MPC), hollow microporous carbon (HMC) and hierarchically porous carbon (HPC) to demonstrate the importance of strategical designing of nanoarchitectures in achieving advanced catalyst (or electrode) materials, especially in the context of oxygen reduction reaction (ORR). Based on the electrochemical impedance spectroscopy and ORR studies, we identify a marked structural effect depending on the porosity. Specifically, mesopores are found to have the most profound influence by significantly improving electrochemical wettability and accessibility. We also identify that macropore contributes to the rate capability of the porous carbons. The results of the rotating ring disk electrode (RRDE) method also demonstrate the advantages of strategically designed double-shelled nanoarchitecture of HPC to increase the overall electron transfer number (n) closer to four by offering a higher chance of the double two-electron pathways. Next, selective doping of highly active Fe-N x sites on HPC is obtained by increasing the nitrogen content in HPC. As a result, the optimized Fe and N co-doped HPC demonstrate high ORR catalytic activity comparable to the commercial 20 wt% Pt/C in alkaline electrolyte. Our findings, therefore, strongly advocate the importance of a strategic design of advanced catalyst (or electrode) materials, especially in light of both structural and doping effects, from the perspective of nanoarchitectonics.
Collapse
Affiliation(s)
- Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
| | - Konstantin L Firestein
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
| | - Joseph F S Fernando
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Hyunsoo Lim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI) 25, Saenari-ro, Bundang-gu Seongnam-si Gyeonggi-do 13509 Republic of Korea
| | - Dmitri V Golberg
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT) 2 George Street Brisbane Queensland 4000 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- Materials Architecturing Research Center, Korea Institute of Science and Technology 5 Hwarang-ro 14-gil, Seongbuk-gu Seoul 02792 Republic of Korea
| | - Jihyun Kim
- Solar Energy R&D Department, Green Energy Institute Mokpo Jeollanamdo 58656 Republic of Korea
| | - Hiroki Nara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jing Tang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), School of Chemical Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
12
|
Stewart C, Siu A, Tsui C, Finer Y, Hatton B. Rapid synthesis of drug-encapsulated films by evaporation-induced self-assembly for highly-controlled drug release from biomaterial surfaces. J Mater Chem B 2022; 10:6453-6463. [PMID: 35993489 DOI: 10.1039/d1tb02121d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infection at the surgical site for dental implants results in failed procedures, patient pain, burdensome economic impact, and the over-prescription of prophylactic antibiotics. Mesoporous silica films as coatings for implants may provide an ideal antimicrobial drug storage and local release vector to the site of infection, however traditional drug loading techniques result in insufficient drug load and short-term release kinetics. In this work, we have applied a method to use a surfactant-antimicrobial drug octenidine dihydrochloride (OCT) as a template for mesostructured silica, to demonstrate silica-OCT composite films. The films are synthesized by evaporation induced self-assembly (EISA) and we explore the effects of synthesis parameters on porous film structure, OCT incorporation, and OCT drug release rates. Drug micelle incorporation into the silica mesostructure was highly dependent on silica precursor pre-reaction to form silica oligomers before film spin-casting. The OCT drug concentration of the synthesis solution dictated the time required for effective incorporation (without phase separation), with total loading in the film of up to 90% by mass. The OCT content in the films was found to directly determine the timescale of drug release, from 2 to 8 h for a single layer film. The total release timescale was increased by the addition of multiple layers of OCT-silica films to nearly 2 weeks. Drug release from films completely inhibited Streptococcus mutans (UA159) growth, while drug-free porous silica films showed no increase in bacterial growth over non-porous control. These OCT-silica films have a significant potential to store and release antimicrobial drugs from dental implant surfaces.
Collapse
Affiliation(s)
- C Stewart
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario, Canada.
| | - A Siu
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario, Canada.
| | - C Tsui
- Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, Ontario, Canada
| | - Y Finer
- Faculty of Dentistry, University of Toronto, 124 Edward St, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario, Canada.
| | - B Hatton
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, Ontario, Canada. .,Department of Materials Science and Engineering, University of Toronto, 184 College St, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sun L, Lv H, Feng J, Guselnikova O, Wang Y, Yamauchi Y, Liu B. Noble-Metal-Based Hollow Mesoporous Nanoparticles: Synthesis Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201954. [PMID: 35695354 DOI: 10.1002/adma.202201954] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 06/15/2023]
Abstract
As second-generation mesoporous materials, mesoporous noble metals (NMs) are of significant interest for their wide applications in catalysis, sensing, bioimaging, and biotherapy owing to their structural and metallic features. The introduction of interior hollow cavity into NM-based mesoporous nanoparticles (MNs), which subtly integrate hierarchical hollow and mesoporous structure into one nanoparticle, produces a new type of hollow MNs (HMNs). Benefiting from their higher active surface, better electron/mass transfer, optimum electronic structure, and nanoconfinement space, NM-based HMNs exhibit their high efficiency in enhancing catalytic activity and stability and tuning catalytic selectivity. In this review, recent progress in the design, synthesis, and catalytic applications of NM-based HMNs is summarized, including the findings of the groups. Five main strategies for synthesizing NM-based HMNs, namely silica-assisted surfactant-templated nucleation, surfactant-templated sequential nucleation, soft "dual"-template, Kirkendall effect in synergistic template, and galvanic-replacement-assisted surfactant template, are described in detail. In addition, the applications in ethanol oxidation electrocatalysis and hydrogenation reactions are discussed to highlight the high activity, enhanced stability, and optimal selectivity of NM-based HMNs in (electro)catalysis. Finally, the further outlook that may lead the directions of synthesis and applications of NM-based HMNs is prospected.
Collapse
Affiliation(s)
- Lizhi Sun
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Ji Feng
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Olga Guselnikova
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
14
|
Biomass Photoreforming for Hydrogen Production over Hierarchical 3DOM TiO2-Au-CdS. Catalysts 2022. [DOI: 10.3390/catal12080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photocatalytic hydrogen production is a promising route to the provision of sustainable and green energy. However, the excess addition of traditional electron donors as the sacrificial agents to consume photogenerated holes greatly reduces the feasibility of this approach for commercialization. Herein, considering the abundant hydroxyl groups in cellulose, the major component of biomass, we adopted glucose (a component unit of cellulose), cellobiose (a structure unit of cellulose) and dissolving pulp (a pretreated cellulose) as electron donors for photocatalytic hydrogen production over a TiO2-Au-CdS material. The well-designed ternary TiO2-Au-CdS possesses a hierarchical three-dimensional ordered macroporous (3DOM) structure, which not only benefits light harvesting but can also facilitate mass diffusion to boost the reaction kinetics. As expected, the fabricated photocatalyst exhibits considerable hydrogen production from glucose (645.1 μmol·h−1·g−1), while the hydrogen production rates gradually decrease with the increased complexity in structure from cellobiose (273.9 μmol·h−1·g−1) to dissolving pulp (79.7 μmol·h−1·g−1). Other gaseous components such as CO and CH4 are also produced, indicating the partial conversion of biomass during the photoreforming process. This work demonstrates the feasibility of sustainable hydrogen production from biomass by photoreforming with a rational photocatalyst design.
Collapse
|
15
|
Wu F, Chen T, Miao Z, Zhang L, Zhou J. Simulated synthesis of silica nanowires by lyotropic liquid crystal template method. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2021.1951263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Fenghe Wu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Tinglu Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Zhaohong Miao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory for Green Chemical Product Technology, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Yoshida T, Ogawa M. A six-fold difference in structure results in a six-order difference in conductivity: silica shell nanoarchitectonics on carbon black particles. NANOSCALE 2022; 14:7480-7483. [PMID: 35545960 DOI: 10.1039/d2nr01714h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon black (Ketchen Black with a particle size of several tens of nm) was coated with silica with a varied thickness of 2 and 12 nm. Carbon/silica core-shell particles were grafted with the γ-methacryloxypropylsilyl group to be homogeneously dispersed into a poly(methyl methacrylate) film. The electrical conductivity of the poly(methyl methacrylate) films containing carbon/silica particles was successfully controlled by the thickness of the silica layer; silica coating with 2 nm thickness gave a conducting film, while that with 12 nm thickness gave a less conducting film with a remarkable difference on the order of 106 (in volume conductivity).
Collapse
Affiliation(s)
- Takaaki Yoshida
- Graduate School of Creative Science and Engineering, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
17
|
Advances in Nanoarchitectonics of Antimicrobial Tiles and a Quest for Anti-SARS-CoV-2 Tiles. J Inorg Organomet Polym Mater 2022; 32:3355-3367. [PMID: 35599970 PMCID: PMC9113380 DOI: 10.1007/s10904-022-02325-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/23/2022] [Indexed: 10/27/2022]
|
18
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Liu H, Liang X, Jiang T, Zhang Y, Liu S, Wang X, Fan X, Huai X, Fu Y, Geng Z, Zhang D. High-performance self-doped V4+-V2O5 ion storage films grown in situ using a novel hydrothermal-assisted sol-gel composite method. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Hara M, Oguri R, Shingo S, Nagano S, Seki T. Crystallization-Induced Uniform Nanodots Formation of Titanium Dioxide Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Ryota Oguri
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Sarkar Shingo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
21
|
Umegaki T, Dobashi M, Komuro T, Kojima Y. Fabrication of copper supported porous silica–alumina hollow spheres for catalytic decomposition of nitrous oxide. NEW J CHEM 2022. [DOI: 10.1039/d2nj01334g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Copper supported porous silica–alumina hollow sphere catalysts were prepared using surfactant micelles to control the size distribution of interparticle spaces in the hollow sphere shells.
Collapse
Affiliation(s)
- Tetsuo Umegaki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Miho Dobashi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Tsubasa Komuro
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| | - Yoshiyuki Kojima
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, 1-8-14, Kanda Surugadai, Chiyoda-ku, Tokyo, 101-8308, Japan
| |
Collapse
|
22
|
Hayashi K, Fujimaki Y, Mishiba K, Watanabe H, Imai H. Emergence of practical fluorescence in a confined space of nanoporous silica: significantly enhanced quantum yields of a conjugated molecule. Chem Commun (Camb) 2021; 57:13150-13153. [PMID: 34812452 DOI: 10.1039/d1cc05935a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence of benzanthrone, which is a conjugated molecule bearing a carbonyl group, is activated by confinement in a pore with a diameter close to the molecular size. An intense emission originating from the aromatic character π-π* transition is achieved through suppression of the nonradiative n-π* transition by strong hydrogen bonding between carbonyl groups and silanol groups with a micropore-filling effect in the nanospace.
Collapse
Affiliation(s)
- Kosei Hayashi
- Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi. Koto-ku, Tokyo, 135-0064, Japan. .,Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Yasuto Fujimaki
- Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi. Koto-ku, Tokyo, 135-0064, Japan.
| | - Kentaro Mishiba
- Tokyo Metropolitan Industrial Technology Research Institute (TIRI), 2-4-10 Aomi. Koto-ku, Tokyo, 135-0064, Japan.
| | - Hiroto Watanabe
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
23
|
Gutiérrez-Sevillano JJ, Martin-Calvo A, Dubbeldam D, Calero S. Modifying the hydrophobic nature of MAF-6. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Shamkhali AN, Izanloo C, Masoumi A. Pt core confined within an Au skeletal frame: Pt@Void@Au nanoframes in a molecular dynamics Perspective. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Kim M, Xu X, Xin R, Earnshaw J, Ashok A, Kim J, Park T, Nanjundan AK, El-Said WA, Yi JW, Na J, Yamauchi Y. KOH-Activated Hollow ZIF-8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52034-52043. [PMID: 34459576 DOI: 10.1021/acsami.1c09107] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Herein, the synergistic effects of hollow nanoarchitecture and high specific surface area of hollow activated carbons (HACs) are reported with the superior supercapacitor (SC) and capacitive deionization (CDI) performance. The center of zeolite imidazolate framework-8 (ZIF-8) is selectively etched to create a hollow cavity as a macropore, and the resulting hollow ZIF-8 (HZIF-8) is carbonized to obtain hollow carbon (HC). The distribution of nanopores is, subsequently, optimized by KOH activation to create more nanopores and significantly increase specific surface area. Indeed, as-prepared hollow activated carbons (HACs) show significant improvement not only in the maximum specific capacitance and desalination capacity but also capacitance retention and mean desalination rates in SC and CDI, respectively. As a result, it is confirmed that well-designed nanoarchitecture and porosity are required to allow efficient diffusion and maximum electrosorption of electrolyte ions.
Collapse
Affiliation(s)
- Minjun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacob Earnshaw
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Aditya Ashok
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeonghun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Teahoon Park
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do Republic of Korea
| | - Ashok Kumar Nanjundan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. 80327, Jeddah, 21589, Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jin Woo Yi
- Carbon Composite Department, Composites Research Division, Korea Institute of Materials Science (KIMS), 797, Changwon-daero, Seongsan-gu, Changwon-si 51508, Gyeongsangnam-do Republic of Korea
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
26
|
Sarker M, Yoo DK, Lee S, Kim TW, Kim CU, Jhung SH. Conversion of Y into SSZ-13 zeolite, in the absence of extra silica, alumina and seed crystals, with N,N,N-dimethylethylcyclohexylammonium bromide, and application of the SSZ-13 zeolite in the propylene production from ethylene. Catal Today 2021. [DOI: 10.1016/j.cattod.2019.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
The Efficient Recyclable Molybdenum- and Tungsten-Promoted Mesoporous ZrO2 Catalysts for Aminolysis of Epoxides. Catalysts 2021. [DOI: 10.3390/catal11060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, we report the synthesis and catalytic activity of tungsten- and molybdenum-promoted mesoporous metal oxides in the aminolysis of epoxides. The as-synthesized catalysts were fully characterized by a variety of techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), temperature-programmed reduction (TPR) and desorption (TPD), nitrogen sorption measurements, powder X-ray diffraction (p-XRD), and thermogravimetric analysis (TGA). Amongst the two supports utilized, ZrO2 is a better support compared to SiO2. Furthermore, MoO3 proved to be a better dopant compared to its counterpart. Several parameters such as the variation of solvents, substrates, catalyst amounts, and stirring speed were investigated. It was observed that 450 rpm was the optimum stirring speed, with toluene as the best solvent and styrene oxide as the best substrate. Moreover, the optimum parameters afforded 98% conversion with 95% selectivity towards 2-phenyl-2-(phenylamino) ethanol and 5% towards 1-phenyl-2-(phenylamino) ethanol. Furthermore, 5%MoO3-ZrO2 catalyst demonstrated optimal performance and it exhibited excellent activity as well as great stability after being recycled 6 times.
Collapse
|
28
|
Yoo DK, Woo HC, Jhung SH. Ionic Salts@Metal-Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23092-23102. [PMID: 33970607 DOI: 10.1021/acsami.1c02290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The elimination of particulate matters (PMs) from the air is very important for our sustainability. In this study, highly porous metal-organic frameworks (MOFs) like MIL-101 and UiO-67 were first modified, coated onto cotton, and applied in PM removal via filtration. Ionic salts (ISs) like CaCl2 and LiCl, after loading onto the MOFs, remarkably increased the PM removal efficiency. For example, CaCl2(20)@MIL-101/cotton shows 5.7 times the quality factor (QF, which is the most important parameter in filtration) of that of bare cotton and has the most competitive performances in PM removal (with the highest QF of 0.085 Pa-1) compared to any filter modified with porous materials or commercial filters. The noticeable performances of ISs@MOFs can be explained by the contribution of charge separation (that is effective for electrostatic interactions with PMs) of ISs and the high porosity of MOFs. Moreover, how MOFs with small pores of a few nanometers or less can remove large PMs with sizes in the micron range could be explained. Finally, loading ISs onto highly porous materials can be a promising strategy to improve the performances of filters to remove PMs from the air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
29
|
Li W, Li Y, Zhang W, Yin D, Cheng Y, Chu W, Hu M. Size-controlled flow synthesis of metal-organic frameworks crystals monitored by in-situ ultraviolet–visible absorption spectroscopy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Ruiz-Clavijo A, Caballero-Calero O, Martín-González M. Revisiting anodic alumina templates: from fabrication to applications. NANOSCALE 2021; 13:2227-2265. [PMID: 33480949 DOI: 10.1039/d0nr07582e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anodic porous alumina, -AAO- (also known as nanoporous alumina, nanohole alumina arrays, -NAA- or nanoporous anodized alumina platforms, -NAAP-) has opened new opportunities in a wide range of fields, and is used as an advanced photonic structure for applications in structural coloration and advanced optical biosensing based on the ordered nanoporous structure obtained and as a template to grow nanowires or nanotubes of different materials giving rise to metamaterials with tailored properties. Therefore, understanding the structure of nanoporous anodic alumina templates and knowing how they are fabricated provide a tool for the further design of structures based on them, such as 3D nanoporous structures developed recently. In this work, we review the latest developments related to nanoporous alumina, which is currently a very active field, to provide a solid and thorough reference for all interested experts, both in academia and industry, on these nanostructured and highly useful structures. We present an overview of theories on the formation of pores and self-ordering in alumina, paying special attention to those presented in recent years, and different nanostructures that have been developed recently. Therefore, a wide variety of architectures, ranging from ordered nanoporous structures to diameter changing pores, branched pores, and 3D nanostructures will be discussed. Next, some of the most relevant results using different nanostructured morphologies as templates for the growth of different materials with novel properties and reduced dimensionality in magnetism, thermoelectricity, etc. will be summarised, showing how these structures have influenced the state of the art in a wide variety of fields. Finally, a review on how these anodic aluminium membranes are used as platforms for different applications combined with optical techniques, together with principles behind these applications will be presented, in addition to a hint on the future applications of these versatile nanomaterials. In summary, this review is focused on the most recent developments, without neglecting the basis and older studies that have led the way to these findings. Thus, it gives an updated state-of-the-art review that should be useful not only for experts in the field, but also for non-specialists, helping them to gain a broad understanding of the importance of anodic porous alumina, and most probably, endow them with new ideas for its use in fields of interest or even developing the anodization technique.
Collapse
Affiliation(s)
- Alejandra Ruiz-Clavijo
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Olga Caballero-Calero
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| | - Marisol Martín-González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC) Isaac Newton, 8, E-28760, Tres Cantos, Madrid, Spain.
| |
Collapse
|
31
|
Karthick V, Kumar D, Ariga K, Vineeth Kumar CM, Ganesh Kumar V, Vasanth K, Stalin Dhas T, Ravi M, Baalamurugan J. Incorporation of 5-Nitroisatin for Tailored Hydroxyapatite Nanorods and its Effect on Cervical Cancer Cells: A Nanoarchitectonics Approach. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01891-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Kumari N, Kumar A, Krishnan V. Ultrathin Au–Ag Heterojunctions on Nanoarchitectonics Based Biomimetic Substrates for Dip Catalysis. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01902-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Pierpaoli M, Jakobczyk P, Sawczak M, Łuczkiewicz A, Fudala-Książek S, Bogdanowicz R. Carbon nanoarchitectures as high-performance electrodes for the electrochemical oxidation of landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123407. [PMID: 32763699 DOI: 10.1016/j.jhazmat.2020.123407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials and assemblies of the aforementioned into complex architectures constitute an opportunity to design efficient and selective solutions to widespread and emerging environmental issues. The limited disposal of organic matter in modern landfills generates extremely concentrated leachates characterised by high concentrations of refractory compounds. Conventional biochemical treatment methods are unsuitable, while advanced treatment, such coagulation, reverse osmosis and ultrafiltration can be very costly and generate additional waste. Electrochemical oxidation is an established technique to efficiently mineralise a plethora of recalcitrant pollutants, however the selectivity and efficiency of the process are strongly related to the anode material. For this reason, a nanoarchitectured carbon material has been designed and synthesised to improve the capability of the anode towards the adsorption and decomposition of pollutants. Instead of simple nanostructures, intelligently engineered nanomaterials can come in handy for more efficient advanced treatment techniques. In this study, a carbon nanoarchitecture comprising boron-doped vertically aligned graphene walls (BCNWs) were grown on a boron-doped diamond (BDD) interfacial layer. The results show how the peculiar maze-like morphology and the concurrence of different carbon hybridisations resulted in a higher current exchange density. The BDD performed better for the removal of NH4+ while the BCNW-only sample exhibited a faster deactivation. The BDD/BCNW nanoarchitecture resulted in an enhanced COD removal and a NH4+ removal similar to that of BDD, without the intermediate production of NO2- and NO3-.
Collapse
Affiliation(s)
- Mattia Pierpaoli
- Faculty of Electronics, Telecommunications And Informatics, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk Poland.
| | - Paweł Jakobczyk
- Faculty of Electronics, Telecommunications And Informatics, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk Poland
| | - Mirosław Sawczak
- The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14, 80-231 Gdańsk Poland
| | - Aneta Łuczkiewicz
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk Poland
| | - Sylwia Fudala-Książek
- Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk Poland
| | - Robert Bogdanowicz
- Faculty of Electronics, Telecommunications And Informatics, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk Poland
| |
Collapse
|
34
|
Pan ZZ, Govedarica A, Nishihara H, Tang R, Wang C, Luo Y, Lv W, Kang FY, Trifkovic M, Yang QH. pH-Dependent Morphology Control of Cellulose Nanofiber/Graphene Oxide Cryogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005564. [PMID: 33350120 DOI: 10.1002/smll.202005564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
The precise control of the ice crystal growth during a freezing process is of essential importance for achieving porous cryogels with desired architectures. The present work reports a systematic study on the achievement of multi-structural cryogels from a binary dispersion containing 50 wt% 2,2,6,6-tetramethylpiperidin-1-oxyl, radical-mediated oxidized cellulose nanofibers (TOCNs), and 50 wt% graphene oxide (GO) via the unidirectional freeze-drying (UDF) approach. It is found that the increase in the sol's pH imparts better dispersion of the two components through increased electrostatic repulsion, while also causing progressively weaker gel networks leading to micro-lamella cryogels from the UDF process. At the pH of 5.2, an optimum between TOCN and GO self-aggregation and dispersion is achieved, leading to the strongest TOCN-GO interactions and their templating into the regular micro-honeycomb structures. A two-faceted mechanism for explaining the cryogel formation is proposed and it is shown that the interplay of the maximized TOCN-GO interactions and the high affinity of the dispersoid complexes for the ice crystals are necessary for obtaining a micro-honeycomb morphology along the freezing direction. Further, by linking the microstructure and rheology of the corresponding precursor sols, a diagram for predicting the microstructure of TOCN-GO cryogels obtained through the UDF process is proposed.
Collapse
Affiliation(s)
- Zheng-Ze Pan
- Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Aleksandra Govedarica
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Rui Tang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Cong Wang
- Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Luo
- Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Lv
- Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Fei-Yu Kang
- Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N1N4, Canada
| | - Quan-Hong Yang
- Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
35
|
Singh B, Na J, Konarova M, Wakihara T, Yamauchi Y, Salomon C, Gawande MB. Functional Mesoporous Silica Nanomaterials for Catalysis and Environmental Applications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200136] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Department of Chemistry, Aveiro 3810-193, Portugal
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Toru Wakihara
- Graduate School of Engineering, The University of Tokyo, 7 Chome-3-1 Hongo, Bunkyo, Tokyo 113-8654, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Manoj B. Gawande
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna, 431203 Maharashtra, India
| |
Collapse
|
36
|
Popov AA, Shubin YV, Bauman YI, Plyusnin PE, Mishakov IV, Sharafutdinov MR, Maksimovskiy EA, Korenev SV, Vedyagin AA. Preparation of porous Co-Pt alloys for catalytic synthesis of carbon nanofibers. NANOTECHNOLOGY 2020; 31:495604. [PMID: 32990267 DOI: 10.1088/1361-6528/abb430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A simple and convenient procedure for the production of highly dispersed porous Co-Pt alloys to be used as catalysts for the synthesis of nanostructured carbon fibers (CNF) has been developed. The technique is based on the thermal decomposition of specially synthesized multicomponent precursors in a reducing atmosphere. A series of porous single-phase alloys Co-Pt (10-75 at% Pt) have been synthesized. The alloys containing 75 and 50 at% Pt were identified by the x-ray diffraction analysis as the intermetallics CoPt3 and CoPt, respectively. Within the region of 10-35 at% Pt, the synthesized alloys are represented by Co1-x Pt x random solid solutions with face-centered cubic lattice. The alloys obtained are characterized by a porous structure consisting of assembled fragments with a size of 50-150 nm. The obtained alloys were tested in the catalytic chemical vapor deposition of the ethylene to CNF. A significant synergistic effect between Co and Pt in the synthesis of carbon nanomaterials (CNMs) was revealed. The yield of CNF (for 30 min reaction) for catalysts containing 25-35 at% Pt was 30-38 g(CNF)/g(cat), whereas those for Co (100%) and Pt (100%) samples were as low as 5.6 and >0.1 g(CNF)/g(cat), respectively. The produced CNM composed of fibers with a segmented structure was shown to be characterized by a rather high specific surface area (200-250 m2 g-1) and structural homogeneity.
Collapse
Affiliation(s)
- Anton A Popov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Yury V Shubin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | - Yury I Bauman
- Boreskov Institute of Catalysis SB RAS, Novosibirsk, Russia
| | - Pavel E Plyusnin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | | | | | | | - Sergey V Korenev
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk, Russia
| | | |
Collapse
|
37
|
Wakabayashi R, Tomita A, Kimura T. Understanding of NOx storage property of impregnated Ba species after crystallization of mesoporous alumina powders. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122791. [PMID: 32768855 DOI: 10.1016/j.jhazmat.2020.122791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The regulation of automobile exhaust gas, especially that concerning hazardous nitrogen oxide (called as NOx) becomes stricter year-by-year, which should be urgently corresponded for cleaning the NOx containing emission. According to surface affinity of γ-alumina to metal catalysts and its thermal stability, crystalline γ-alumina has been frequently utilized as catalyst supports showing relatively high specific surface area. From the viewpoint, we consider that highly porous alumina powders prepared using amphiphilic organic molecules are potential as such a catalyst support for improving NOx removing property. In this study, we report surface property of the mesoporous alumina powders against NOx molecules after crystallizing to its γ-phase and NOx storage property after impregnation of barium (Ba) acetate in the mesopores. Adsorption of NO with O2 on mesoporous γ-alumina powders without Ba species were more likely to be bridging bidentate than chelating bidentate nitrates (NO3-) with comparing to commercially available γ-alumina powders. After impregnating the Ba species, admitted NO molecules were oxidized with enough O2 and stored very strongly as ionic nitrate (NO3-) onto the Ba species even after heating at 500 °C. This preliminary study is helpful for designing mesoporous deNOx catalysts combined with unique storage/adsorption property.
Collapse
Affiliation(s)
- Ryutaro Wakabayashi
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Atsuko Tomita
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan
| | - Tatsuo Kimura
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Shimoshidami, Moriyama-ku, Nagoya, 463-8560, Japan.
| |
Collapse
|
38
|
|
39
|
Malgras V, Shirai Y, Takei T, Yamauchi Y. Coalescence-Driven Verticality in Mesoporous TiO2 Thin Films with Long-Range Ordering. J Am Chem Soc 2020; 142:15815-15822. [DOI: 10.1021/jacs.0c05708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Victor Malgras
- International Center for Young Scientists, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Yasuhiro Shirai
- Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Toshiaki Takei
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
40
|
Obrero JM, Filippin AN, Alcaire M, Sanchez-Valencia JR, Jacob M, Matei C, Aparicio FJ, Macias-Montero M, Rojas TC, Espinos JP, Saghi Z, Barranco A, Borras A. Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins. Front Chem 2020; 8:520. [PMID: 32626693 PMCID: PMC7311806 DOI: 10.3389/fchem.2020.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The large area scalable fabrication of supported porous metal and metal oxide nanomaterials is acknowledged as one of the greatest challenges for their eventual implementation in on-device applications. In this work, we will present a comprehensive revision and the latest results regarding the pioneering use of commercially available metal phthalocyanines and porphyrins as solid precursors for the plasma-assisted deposition of porous metal and metal oxide films and three-dimensional nanostructures (hierarchical nanowires and nanotubes). The most advanced features of this method relay on its ample general character from the point of view of the porous material composition and microstructure, mild deposition and processing temperature and energy constrictions and, finally, its straightforward compatibility with the direct deposition of the porous nanomaterials on processable substrates and device-architectures. Thus, taking advantage of the variety in the composition of commercially available metal porphyrins and phthalocyanines, we present the development of metal and metal oxides layers including Pt, CuO, Fe2O3, TiO2, and ZnO with morphologies ranging from nanoparticles to nanocolumnar films. In addition, we combine this method with the fabrication by low-pressure vapor transport of single-crystalline organic nanowires for the formation of hierarchical hybrid organic@metal/metal-oxide and @metal/metal-oxide nanotubes. We carry out a thorough characterization of the films and nanowires using SEM, TEM, FIB 3D, and electron tomography. The latest two techniques are revealed as critical for the elucidation of the inner porosity of the layers.
Collapse
Affiliation(s)
- Jose M Obrero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Alejandro N Filippin
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Maria Alcaire
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan R Sanchez-Valencia
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville, Spain
| | - Martin Jacob
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | | | - Francisco J Aparicio
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Manuel Macias-Montero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Instituto de Óptica Daza Baldés (CSIC), Madrid, Spain
| | - Teresa C Rojas
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan P Espinos
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Zineb Saghi
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | - Angel Barranco
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Ana Borras
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| |
Collapse
|
41
|
Woo HC, Yoo DK, Jhung SH. Highly Improved Performance of Cotton Air Filters in Particulate Matter Removal by the Incorporation of Metal-Organic Frameworks with Functional Groups Capable of Large Charge Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28885-28893. [PMID: 32520525 DOI: 10.1021/acsami.0c07123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, air contamination, especially with particulate matters (PMs), is severe in several countries. To increase the efficiency of air filters in PM removal, metal-organic frameworks (MOFs, here, Zr-MOFs, especially with functional groups (FGs) such as -NO2) were coated, after synthesis, onto cotton using covalent bonding for the first time. The removal efficiencies (REs) and quality factors (QFs) of cottons with or without MOFs were in the order: cotton < Zr-MOF/cotton < Zr-MOF-NH2/cotton < Zr-MOF-NH-SO3H/cotton < Zr-MOF-NH3+Cl-/cotton < Zr-MOF-NO2/cotton. This monotonic increase in the PM removal efficiency or QF could be explained with the order of charge separation or developed charges (total, in absolute value: ∼0 to 2.0) on FGs of MOFs. Importantly, Zr-MOF-NO2 coating on cotton showed a very high increase in the performance of cotton in PM removal. QF and RE of Zr-MOF-NO2/cotton were 4.6 times and 6.2 times of the bare cotton, respectively, for PM2.5 removal, even with a very small increase in pressure drop (3 Pa or less) with MOF coating. Based on the research, it can be suggested that coating MOFs on substrates is a promising way to improve the performances of air filters for PM removal, especially when MOFs have FGs that can have large charge separation such as -NO2. This work may pave a way to utilize a functionalized MOF in the effective removal of PMs from air.
Collapse
Affiliation(s)
- Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
42
|
Vibulyaseak K, Kudo A, Ogawa M. Template Synthesis of Well-Defined Rutile Nanoparticles by Solid-State Reaction at Room Temperature. Inorg Chem 2020; 59:7934-7938. [PMID: 32491850 DOI: 10.1021/acs.inorgchem.0c01214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Well-defined nanoparticles of rutile (with the size of 5 nm) were successfully prepared by the unusual solid-state transformation of an amorphous precursor in well-defined nanospace of a mesoporous silica template (SBA-15) at room temperature. An aqueous colloidal suspension of the rutile nanoparticles was successfully obtained by dissolution of SBA-15 and subsequent pH adjustment. The isolated rutile nanoparticles were used for H2 evolution from an aqueous methanol solution by UV irradiation.
Collapse
Affiliation(s)
- Kasimanat Vibulyaseak
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
| | - Akihiko Kudo
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science (TUS), 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
43
|
Qiao X, Wang C, Niu Y. N-Benzyl HMTA induced self-assembly of organic-inorganic hybrid materials for efficient photocatalytic degradation of tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122121. [PMID: 32062343 DOI: 10.1016/j.jhazmat.2020.122121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Photocatalytic degradation technology (PDT), as one of the most important advanced oxidation technologies (AOTs) for environment-purifying, have drawn great attentions in recent years. It is highly desirable but remains challenging to design and synthesize catalysts with enhanced performance of photocatalysis. Herein, we develop a cation induced self-assembly strategy for the synthesis of two new organic-inorganic hybrid materials ({[BHMTA][Cu2(SCN)3]}n (1), {[BHMTA][Cu2I3]}n (2) BHMTA = N-benzylhexamethylenetetramine bromide). Owing to their unique structural and the desirable composition, the as-prepared organic-inorganic hybrid materials exhibit high efficiency and excellent cycling stability for degradation of tetracycline (TC) under visible light irradiation. In addition, the effect factors for photocatalysis such as catalyst dosage, temperature, and pH were also investigated. The possible mechanism studied shows that superoxide radicals (O2-) and holes (h+) are the main active substances in the degradation process of TC. This work may shed light on preparing new organic-inorganic hybrid materials with promising photocatalysis performance for water purification.
Collapse
Affiliation(s)
- Xiuying Qiao
- College of Chemistry, Zhengzhou University, Henan 450001, PR China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yunyin Niu
- College of Chemistry, Zhengzhou University, Henan 450001, PR China.
| |
Collapse
|
44
|
Yamaguchi A, Edanami Y, Yamaguchi T, Shibuya Y, Fukaya N, Kohzuma T. Effect of Cavity Size of Mesoporous Silica on Type 1 Copper Site Geometry in Pseudoazurin. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akira Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yurie Edanami
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Takahide Yamaguchi
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yuuta Shibuya
- New Industry Creation Hatchery Center, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Norihisa Fukaya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takamitsu Kohzuma
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
45
|
He H, Yan A, Karapala VK, Wang S, Shen M, Lin Y, Chen Y, Sugiyama T, Chen J. Laser‐Assisted Nanowetting: Selective Fabrication of Polymer/Gold Nanorod Arrays Using Anodic Aluminum Oxide Templates. Macromol Rapid Commun 2020; 41:e2000035. [DOI: 10.1002/marc.202000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Hung‐Chieh He
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ai‐Ling Yan
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | | | - Shun‐Fa Wang
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Ming‐Hui Shen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yu‐Liang Lin
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Yi‐Fan Chen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Teruki Sugiyama
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Graduate School of Materials ScienceNara Institute of Science and Technology Ikoma Nara 630‐0192 Japan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| | - Jiun‐Tai Chen
- Department of Applied ChemistryNational Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter ScienceNational Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
46
|
Han C, Yang L, Yu H, Luo Y, Shan X. The adsorption behavior and mechanism of Cr(VI) on facile synthesized mesoporous NH-SiO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2455-2463. [PMID: 30392169 DOI: 10.1007/s11356-018-3599-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
An efficient Cr(VI) adsorbent, mesoporous amine-functionalized silica (NH-SiO2), was successfully synthesized within 2 h by a facile one-step route under room temperature and aqueous solution. The structure properties of the obtained materials were characterized by N2 adsorption-desorption isotherm, XRD, TEM, and FT-IR. The Cr(VI) removal performance was investigated by batch experiment. It was found that Cr(VI) removal performance was dependent on solution pH, and the removal efficiency is above 90% for initial pH in the range of 1.0-4.0. The adsorption process was obeyed by pseudo-second-order model, and the equilibrium adsorption data were fitted well by Langmuir model. The maximum monolayer adsorption capacity was 205.76 mg/g at pH 2.0, which was larger than that of traditional two-step tri-amine-functionalized MCM-41. Additionally, high selectivity was exhibited in NH-SiO2 for removal Cr(VI) from co-presence anions Cl-, NO3-, PO43-, SO42-, and SiO32-. Furthermore, the spent NH-SiO2 could be regenerated by 0.005 M NaOH, and Cr(VI) removal is above 92% after NH-SiO2 recycled four. From the analyzed results of adsorption energy, FT-IR, and XPS, the electrostatic attraction between protonated amine group and HCrO4- was the mainly adsorption mechanism. And then some adsorbed Cr(VI) was reduced to low toxicity Cr(III) on the adsorbent surface by electron transfer from nitrogen in -NBr group to Cr(VI).
Collapse
Affiliation(s)
- Caiyun Han
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Liu Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Hongli Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongming Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Xin Shan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| |
Collapse
|
47
|
Li C, Li Q, Kaneti YV, Hou D, Yamauchi Y, Mai Y. Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chem Soc Rev 2020; 49:4681-4736. [DOI: 10.1039/d0cs00021c] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This paper reviews the progress in the field of block copolymer-templated mesoporous materials, including synthetic methods, morphological and pore size control and their potential applications in energy storage and conversion devices.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Qian Li
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuf Valentino Kaneti
- International Center for Materials Nanoarchitectonics (WPI-MANA)
- National Institute for Materials Science (NIMS)
- Ibaraki 305-0044
- Japan
| | - Dan Hou
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)
- The University of Queensland
- Brisbane
- Australia
- Key Laboratory of Marine Chemistry Theory and Technology
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
- Shanghai Jiao Tong University
- Shanghai 200242
| |
Collapse
|
48
|
Yoo DK, Jhung SH. Effect of Functional Groups of Metal-Organic Frameworks, Coated on Cotton, on Removal of Particulate Matters via Selective Interactions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47649-47657. [PMID: 31742375 DOI: 10.1021/acsami.9b19646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Currently, the contamination of air with particulate matters (PMs such as PM2.5 and PM10) is very severe, especially in Asian countries. Metal-organic frameworks (MOFs), with or without extra functional groups such as -NH2 and -NH-SO3H, were coated on conventional cotton to improve the efficiency of filters (composed of cotton fabric) in the removal of PMs from air. More importantly, the effect of the functional group of MOFs on the effective PM removal was analyzed quantitatively for the first time and could be interpreted via selective interactions. The removal efficiency was increased on the order: cotton < UiO-66/cotton < UiO-66-NH2/cotton < UiO-66-NH-SO3H/cotton, and the efficiency of the UiO-66-NH-SO3H-coated cotton was more than three times that of the pristine cotton. Moreover, the quality factor of cotton was more than doubled (or, 2.5-3 times) by UiO-66-NH-SO3H (only 20%) coating. The plausible mechanism for PM removal could be suggested based on the characterization of captured PM and introduced functional groups on MOFs. Based on the removal efficiency, pressure drop, and quality factor, coating of MOFs with functional groups, especially that are effective for charge separations (such as -SO3H), is one of the promising ways to improve the performance of PM filters. Moreover, the suggested strategy might be applied in capturing most of PMs composed of oxides, ammonium species, and carbons with polar outside.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center , Kyungpook National University , Daegu 41566 , Republic of Korea
| |
Collapse
|
49
|
Banerjee S, Dubey S, Gautam RK, Chattopadhyaya M, Sharma YC. Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
50
|
Ionic liquid based nanoporous organosilica supported propylamine as highly efficient adsorbent for removal of congo red from aqueous solution. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|