1
|
Koike M, Aizawa M, Minamikawa H, Shishido A, Yamamoto T. Photohardenable Pressure-Sensitive Adhesives using Poly(methyl methacrylate) containing Liquid Crystal Plasticizers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39949-39956. [PMID: 34383463 DOI: 10.1021/acsami.1c11634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hardenable pressure-sensitive adhesives, which show pressure-sensitive adhesion state with weak adhesion strength in their initial semisolid state and general adhesion state with strong adhesion strength in their hardened state, are desirable in various industrial fields to improve efficiency of manufacturing and recycling products. Here we developed novel photohardenable pressure-sensitive adhesives triggered by photoplasticization of poly(methyl methacrylate) containing photoresponsive liquid crystal (nematic and smectic E) plasticizers at various ratios. It was found that photoplasticization, which is the photoinduced reduction of glass transition temperature and hardness of polymers, could be repeatedly induced by alternate irradiation with ultraviolet (UV) and visible (Vis) light in all mixtures, regardless of the phase structures of the photoresponsive plasticizers. Upon photoplasticization under UV-light irradiation, all mixtures exhibited glassy-to-rubbery transition to a pressure-sensitive adhesion state under appropriate conditions. Upon irradiation of the photoplasticized samples with Vis light, the samples recovered their initial hardened state, recovering the glassy nature with elastic moduli. The adhesion strength of the samples in the hardened state was significantly influenced by the phase structures of the plasticizers. When a photoresponsive plasticizer exhibited the smectic E phase, which is a highly ordered liquid-crystalline phase, the adhesion strength was remarkably larger than those of the case using the plasticizers showing nematic and crystalline phases. This result was reasonably explained in terms of the suppressed bleed-out of the photoresponsive plasticizers from the polymer and the good mechanical properties of the mixture stemming from the characteristics of the smectic E phase. Furthermore, through the reversibility of a photoplasticization process, we achieved a photoinduced reduction of the adhesion strength by UV irradiation of the samples in the hardened state. Photohardenable pressure-sensitive adhesives with reversibility has been developed using a commodity plastic just by adding the photoresponsive plasticizer showing the smectic E phase.
Collapse
Affiliation(s)
- Mioka Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Miho Aizawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Minamikawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Shishido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Yamamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
2
|
Koike M, Aizawa M, Akamatsu N, Shishido A, Matsuzawa Y, Yamamoto T. Photoplasticization Behavior and Photoinduced Pressure-Sensitive Adhesion Properties of Various Polymers Containing an Azobenzene-Doped Liquid Crystal. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Mioka Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Miho Aizawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Norihisa Akamatsu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Atsushi Shishido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yoko Matsuzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takahiro Yamamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
3
|
Xu X, Zhang P, Wu B, Xing Y, Shi K, Fang W, Yu H, Wang G. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50135-50142. [PMID: 33085470 DOI: 10.1021/acsami.0c14160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendrimers are well-defined, highly branched macromolecules that have been widely applied in the fields of catalysis, sensing, and biomedicine. Here, we present a novel multifunctional photochromic dendrimer fabricated through grafting azobenzene units onto dendrimers, which not only enables controlled switching of adhesives and effective repair of coating scratches but also realizes high-performance solar energy storage and on-demand heat release. The switchable adhesives and healable coatings of azobenzene-containing dendrimers are attributed to the reversible solid-to-liquid transitions because trans-isomers and cis-isomers have different glass transition temperatures. The adhesion strengths increase significantly with the increase in dendrimer generations, wherein the adhesion strength of fifth-generation photochromic dendrimers (G5-Azo) can reach up to 1.62 MPa, five times higher than that of pristine azobenzenes. The solar energy storage and heat release of dendrimer solar thermal fuels, the isomers of which possess different chemical energies, can be also enhanced remarkably with the amplification of azobenzene groups on dendrimers. The storage energy density of G5-Azo can reach 59 W h kg-1, which is much higher than that of pristine azobenzenes (36 W h kg-1). The G5-Azo fuels exhibit a 5.2 °C temperature difference between cis-isomers and trans-isomers. These findings provide a new perspective and tremendously attractive avenue for the fabrication of photoswitchable adhesives and coatings and solar thermal fuels with dendrimer structures.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Xu WC, Sun S, Wu S. Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials. Angew Chem Int Ed Engl 2019; 58:9712-9740. [PMID: 30737869 DOI: 10.1002/anie.201814441] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/06/2022]
Abstract
Heating and cooling can induce reversible solid-to-liquid transitions of matter. In contrast, athermal photochemical processes can induce reversible solid-to-liquid transitions of some newly developed azobenzene compounds. Azobenzene is photoswitchable. UV light induces trans-to-cis isomerization; visible light or heat induces cis-to-trans isomerization. Trans and cis isomers usually have different melting points (Tm ) or glass transition temperatures (Tg ). If Tm or Tg of an azobenzene compound in trans and cis forms are above and below room temperature, respectively, light may induce reversible solid-to-liquid transitions. In this Review, we introduce azobenzene compounds that exhibit photoinduced reversible solid-to-liquid transitions, discuss the mechanisms and design principles, and show their potential applications in healable coatings, adhesives, transfer printing, lithography, actuators, fuels, and gas separation. Finally, we discuss remaining challenges in this field.
Collapse
Affiliation(s)
- Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, 230026, China
| |
Collapse
|
5
|
Xu W, Sun S, Wu S. Photoinduzierte, reversible Fest‐flüssig‐Übergänge unter Verwendung photoschaltbarer Materialien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814441] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wen‐Cong Xu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter ChemistryHefei National Laboratory for Physical Sciences at the MicroscaleAnhui Key Laboratory of Optoelectronic Science and TechnologyDepartment of Polymer Science and EngineeringUniversity of Science and Technology of China Jinzhai Road 96 Hefei 230026 China
| |
Collapse
|
6
|
Yamamoto T, Norikane Y, Akiyama H. Photochemical liquefaction and softening in molecular materials, polymers, and related compounds. Polym J 2018. [DOI: 10.1038/s41428-018-0064-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|