Binsalah M, Devanesan S, AlSalhi MS, Nooh A, Alghamdi O, Nooh N. Biomimetic Synthesis of Silver Nanoparticles Using Ethyl Acetate Extract of
Urtica diocia Leaves; Characterizations and Emerging Antimicrobial Activity.
Microorganisms 2022;
10:microorganisms10040789. [PMID:
35456839 PMCID:
PMC9031428 DOI:
10.3390/microorganisms10040789]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The current work reports the biosynthesis of silver nanoparticles (AgNPs) using the antimicrobial activities of ethyl acetate extract of Urtica diocia (UD) leaves as a reducing and capping agent. The synthesized UD-AgNPs were characterized using UV−visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and dynamic light scattering (DLS). The UD-AgNPs were evaluated against Gram-positive and Gram-negative bacteria, and their size, shape, and distribution were recorded. The average size of an NP was 19.401 nm. The zone of inhibition (ZOI) for 75 µL of UD-AgNPs against Pseudomonas aeruginosa (P. aeruginosa) was 21 ± 0.4 mm more than that of the control drug Ciprofloxacin (16 ± 10 mm). The minimum inhibitory concentration (MIC) was the lowest against Escherichia coli (E. coli) (36 ± 3 µg/mL) and Staphylococcusepidermidis (S. epidermidis) (38 ± 3 µg/mL). Moreover, the minimum bactericidal concentration (MBC) was the lowest against E.coli (75 ± 00 µg/mL) and Enterococcus faecalis (E. faecalis (83 ± 16 µg/mL). Thus, the UD-AgNPs synthesized using the ethyl acetate extract of UD can be used as a new antimicrobial drug.
Collapse