1
|
Cai M, Wu X, Liang X, Hu H, Liu Y, Yong T, Li X, Xiao C, Gao X, Chen S, Xie Y, Wu Q. Comparative proteomic analysis of two divergent strains provides insights into thermotolerance mechanisms of Ganoderma lingzhi. Fungal Genet Biol 2023; 167:103796. [PMID: 37146899 DOI: 10.1016/j.fgb.2023.103796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/18/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.
Collapse
Affiliation(s)
- Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaowei Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tianqiao Yong
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiangmin Li
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Chun Xiao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiong Gao
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shaodan Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yizhen Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Yuewei Edible Fungi Technology Co. Ltd., Guangzhou 510663, China.
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
2
|
Arabidopsis REI-LIKE proteins activate ribosome biogenesis during cold acclimation. Sci Rep 2021; 11:2410. [PMID: 33510206 PMCID: PMC7844247 DOI: 10.1038/s41598-021-81610-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Arabidopsis REIL proteins are cytosolic ribosomal 60S-biogenesis factors. After shift to 10 °C, reil mutants deplete and slowly replenish non-translating eukaryotic ribosome complexes of root tissue, while controlling the balance of non-translating 40S- and 60S-subunits. Reil mutations respond by hyper-accumulation of non-translating subunits at steady-state temperature; after cold-shift, a KCl-sensitive 80S sub-fraction remains depleted. We infer that Arabidopsis may buffer fluctuating translation by pre-existing non-translating ribosomes before de novo synthesis meets temperature-induced demands. Reil1 reil2 double mutants accumulate 43S-preinitiation and pre-60S-maturation complexes and alter paralog composition of ribosomal proteins in non-translating complexes. With few exceptions, e.g. RPL3B and RPL24C, these changes are not under transcriptional control. Our study suggests requirement of de novo synthesis of eukaryotic ribosomes for long-term cold acclimation, feedback control of NUC2 and eIF3C2 transcription and links new proteins, AT1G03250, AT5G60530, to plant ribosome biogenesis. We propose that Arabidopsis requires biosynthesis of specialized ribosomes for cold acclimation.
Collapse
|
3
|
Shao W, Cai Q, Tong SM, Ying SH, Feng MG. Rei1-like protein regulates nutritional metabolism and transport required for the asexual cycle in vitro and in vivo of a fungal insect pathogen. Environ Microbiol 2019; 21:2772-2786. [PMID: 30932324 DOI: 10.1111/1462-2920.14616] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/31/2019] [Indexed: 12/12/2022]
Abstract
Rei1 is a cytoplasm-specific pre-60S subunit export factor that functions exclusively in cold-sensitive yeast growth but remains unexplored in filamentous fungi. Here, we report that Rei1-like BbRei1 is localized in both cytoplasm and nucleus and acts as a vital regulator in Beauveria bassiana. Deletion of BbRei1 resulted in delayed conidial germination, abnormally polarized germlings, severe growth defects on various carbon/nitrogen sources and reduced conidiation capacity as well as low temperature-sensitive growth. In ΔBbrei1, greatly attenuated virulence correlated with reduced activities of enzymes secreted for cuticular penetration and blocked formation of hyphal bodies in vivo essential for facilitation of host mummification. Revealed by transcriptomic analysis, 560 and 840 genes were significantly up- and down-regulated in ΔBbrei1 versus wild-type respectively, representing 13.5% of the fungal genome. Many repressed genes were involved in metabolism and transport of carbohydrates and amino acids. However, electrophoretic mobility shift assays presented no interactions of purified BbRei1 with 14 promoter DNA fragments. Conclusively, BbRei1 plays a pivotal role in gene expression and metabolism of nutrients and energy essential for the asexual cycle in vitro and in vivo of B. bassiana and functions much beyond the role for the yeast Rei1 in cold-sensitive cell growth.
Collapse
Affiliation(s)
- Wei Shao
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qing Cai
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Sen-Miao Tong
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, Zhejiang 311300, China
| | - Sheng-Hua Ying
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ming-Guang Feng
- MOE Laboratory of Biosystems Homeostasis & Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
4
|
Homoto S, Izawa S. Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J Cell Sci 2018; 131:jcs.217091. [PMID: 29991513 DOI: 10.1242/jcs.217091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Short-term exposure to severe ethanol stress has adverse effects on yeast cells. However, limited information is available on the effects of long-term exposure to severe ethanol stress. In this study, we examined the effects of a long-term treatment with a high ethanol concentration [10% (v/v)] on yeast morphology. We found that long-term severe ethanol stress induced the continuous depolarization of the actin cytoskeleton and hypertrophy in yeast cells, accompanied by the aberrant localization of septins, which formed multiple small cortical rings (MSCRs). The formation of MSCRs was also induced by the continuous depolarization of the actin cytoskeleton caused by a treatment with latrunculin-A, an effective inhibitor of actin polymerization. Unlike the formation of conventional septin rings, the formation of MSCRs did not require Cdc42 and its effectors, Gic1, Gic2 and Cla4. These results provide novel insights into the effects of persistent actin depolarization caused by long-term exposure to severe ethanol stress on yeast cytomorphology.
Collapse
Affiliation(s)
- Sena Homoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
5
|
Meitinger F, Pereira G. The septin-associated kinase Gin4 recruits Gps1 to the site of cell division. Mol Biol Cell 2017; 28:883-889. [PMID: 28148650 PMCID: PMC5385937 DOI: 10.1091/mbc.e16-09-0687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/24/2023] Open
Abstract
Gps1 is a regulator of Rho GTPases during cell division. Cell cycle–regulated recruitment of Gps1 to the cell division site is under control of the conserved kinase Gin4 and the bud neck–associated protein Nba1. This biphasic recruitment is required for the spatiotemporal activation of Rho1 and inhibition of Cdc42. Cell cycle–dependent morphogenesis of unicellular organisms depends on the spatiotemporal control of cell polarity. Rho GTPases are the major players that guide cells through structural reorganizations such as cytokinesis (Rho1 dependent) and polarity establishment (Cdc42 dependent). In budding yeast, the protein Gps1 plays a pivotal role in both processes. Gps1 resides at the bud neck to maintain Rho1 localization and restrict Cdc42 activity during cytokinesis. Here we analyze how Gps1 is recruited to the bud neck during the cell cycle. We show that different regions of Gps1 and the septin-associated kinase Gin4 are involved in maintaining Gps1 at the bud neck from late G1 phase until midanaphase. From midanaphase, the targeting function of Gin4 is taken over by the bud neck–associated protein Nba1. Our data show that Gps1 is targeted to the cell division site in a biphasic manner, via Gin4 and Nba1, to control the spatiotemporal activation of Rho1 and inhibition of Cdc42.
Collapse
Affiliation(s)
- Franz Meitinger
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies and German Cancer Research Center, DKFZ-ZMBH Alliance, and Molecular Biology of Centrosomes and Cilia Unit, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2016; 211:1035-51. [PMID: 27041000 DOI: 10.1111/nph.13948] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/24/2016] [Indexed: 05/21/2023]
Abstract
The Cys2 -His2 (C2H2) zinc finger protein family is the second-largest family of transcription factors (TFs) in Magnaporthe oryzae, the causal fungus responsible for the destructive rice blast disease. However, little is known about the roles of most C2H2 TFs in the development and pathogenicity of M. oryzae. The roles of 47 C2H2 genes in development and pathogenicity were investigated by gene deletion in M. oryzae. The TF-dependent genes in mycelia or appressoria were analyzed with RNA sequencing and quantitative PCR (qPCR). Forty-four C2H2 genes are involved in growth (20 genes), conidiation (28 genes), appressorium formation (four genes) and pathogenicity (22 genes) in M. oryzae. Of these, MGG_14931, named as VRF1, is required for pathogenicity, specifically controlling appressorium maturation by affecting the expression of genes related to appressorial structure and function, including melanin biosynthesis, chitin catabolism, lipid metabolism, proteolysis, transmembrane transport, and response to oxidative stress; MGG_01776, named as VRF2, is required for plant penetration and invasive growth; conidiation-related gene CON7 is required for conidial differentiation; and MoCREA, encoding a carbon catabolite repression protein, is a novel repressor of lipid catabolism when glucose obtainable in M. oryzae. This study provides many insights into the regulation of growth, asexual development, appressorium formation, and pathogenicity by C2H2 TFs in M. oryzae.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lilin Zhang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dandan Sun
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang Province, 31006, China
| | - John Hugh Snyder
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, 450001, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
7
|
Greber BJ, Gerhardy S, Leitner A, Leibundgut M, Salem M, Boehringer D, Leulliot N, Aebersold R, Panse VG, Ban N. Insertion of the Biogenesis Factor Rei1 Probes the Ribosomal Tunnel during 60S Maturation. Cell 2015; 164:91-102. [PMID: 26709046 DOI: 10.1016/j.cell.2015.11.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/08/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
Eukaryotic ribosome biogenesis depends on several hundred assembly factors to produce functional 40S and 60S ribosomal subunits. The final phase of 60S subunit biogenesis is cytoplasmic maturation, which includes the proofreading of functional centers of the 60S subunit and the release of several ribosome biogenesis factors. We report the cryo-electron microscopy (cryo-EM) structure of the yeast 60S subunit in complex with the biogenesis factors Rei1, Arx1, and Alb1 at 3.4 Å resolution. In addition to the network of interactions formed by Alb1, the structure reveals a mechanism for ensuring the integrity of the ribosomal polypeptide exit tunnel. Arx1 probes the entire set of inner-ring proteins surrounding the tunnel exit, and the C terminus of Rei1 is deeply inserted into the ribosomal tunnel, where it forms specific contacts along almost its entire length. We provide genetic and biochemical evidence that failure to insert the C terminus of Rei1 precludes subsequent steps of 60S maturation.
Collapse
Affiliation(s)
- Basil Johannes Greber
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Stefan Gerhardy
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Michèle Salem
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nicolas Leulliot
- Laboratoire de Cristallographie et RMN Biologiques, UMR CNRS 8015, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie, 75006 Paris, France
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland; Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Biochemistry, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
8
|
Schmidt S, Dethloff F, Beine-Golovchuk O, Kopka J. REIL proteins of Arabidopsis thaliana interact in yeast-2-hybrid assays with homologs of the yeast Rlp24, Rpl24A, Rlp24B, Arx1, and Jjj1 proteins. PLANT SIGNALING & BEHAVIOR 2014; 9:e28224. [PMID: 24603461 PMCID: PMC4091606 DOI: 10.4161/psb.28224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The REIL1 and REIL2 proteins of Arabidopsis thaliana are evolutionarily conserved homologs of the cytosolic 60S ribosomal maturation factors Rei1 and its paralog Reh1 of Saccharomyces cerevisiae. We previously demonstrated that the REIL proteins like the yeast homologs are required for the growth of both organisms at suboptimal temperatures. In addition, the cold sensitivity of the yeast Δrei1 mutant was almost fully rescued by heterologous expression of the REIL1 protein. These phenomena and conservation of co-expressed genes linked the function of REIL proteins to the maturation of the eukaryotic ribosome in A. thaliana. Here we demonstrate that REIL proteins interact in yeast-2-hybrid assays with A. thaliana homologs of the yeast proteins, Rlp24, Rpl24A, Rlp24B, Arx1, and Jjj1. These proteins take part in the cytosolic 60S ribosomal maturation process within yeast and physically interact with Rei1. Our study does not provide proof but is consistent with a conserved role of the A. thaliana REIL proteins in ribosomal maturation and demonstrates the potential of future investigations that aim to unravel the protein interactions of REIL proteins in planta.
Collapse
|
9
|
Schmidt S, Dethloff F, Beine-Golovchuk O, Kopka J. The REIL1 and REIL2 proteins of Arabidopsis thaliana are required for leaf growth in the cold. PLANT PHYSIOLOGY 2013; 163:1623-39. [PMID: 24038679 PMCID: PMC3850186 DOI: 10.1104/pp.113.223925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/09/2013] [Indexed: 05/03/2023]
Abstract
The evolutionarily conserved proteins REI1-LIKE (REIL1) and REIL2 have four conserved zinc finger domains and are Arabidopsis thaliana homologs of the cytosolic 60S ribosomal maturation factor Rei1p (for Required for isotropic bud growth1 protein) from yeast (Saccharomyces cerevisiae) and its paralog Reh1p (for REI1 homologue1 protein). The yeast and A. thaliana paralogs result from independent gene duplications. The A. thaliana REIL paralogs are required specifically in the cold (10°C) but not for growth at optimal temperature (20°C). A reil1-1 reil2-1 double mutant is arrested at 10°C prior to the emergence of the first rosette leaf. Two allelic reil2 mutants, reil2-1 and reil2-2, form small spoon-shaped leaves at 10°C. This phenomenon reverts after emergence of the inflorescence in the cold or upon shift to 20°C. Except for a slightly delayed germination, a reil1-1 mutant shows no further growth phenotype under the currently investigated conditions. A comparative analysis demonstrates conserved coexpression of orthologous genes from yeast and A. thaliana that are coregulated with yeast rei1 or with A. thaliana REIL2, respectively. The conserved correlations point to a role of A. thaliana REIL proteins in the maturation of the eukaryotic ribosomal 60S subunit. We support this conclusion by heterologous complementation of the cold-induced growth defect of the yeast Δrei1 deletion.
Collapse
Affiliation(s)
- Stefanie Schmidt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Frederik Dethloff
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Olga Beine-Golovchuk
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D–14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Buttery SM, Kono K, Stokasimov E, Pellman D. Regulation of the formin Bnr1 by septins anda MARK/Par1-family septin-associated kinase. Mol Biol Cell 2012; 23:4041-53. [PMID: 22918953 PMCID: PMC3469519 DOI: 10.1091/mbc.e12-05-0395] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The septin-associated kinase Gin4 is required for the localization and activation of Bnr1, and the septin Shs1 is essential for Bnr1 activation. The loss of Gin4 or Shs1 phenocopies the loss of Bnr1; these defects are suppressed by constitutive activation of Bnr1. The data reveal novel regulatory links between the actin and septin cytoskeletons. Formin-family proteins promote the assembly of linear actin filaments and are required to generate cellular actin structures, such as actin stress fibers and the cytokinetic actomyosin contractile ring. Many formin proteins are regulated by an autoinhibition mechanism involving intramolecular binding of a Diaphanous inhibitory domain and a Diaphanous autoregulatory domain. However, the activation mechanism for these Diaphanous-related formins (DRFs) is not completely understood. Although small GTPases play an important role in relieving autoinhibition, other factors likely contribute. Here we describe a requirement for the septin Shs1 and the septin-associated kinase Gin4 for the localization and in vivo activity of the budding yeast DRF Bnr1. In budding yeast strains in which the other formin, Bni1, is conditionally inactivated, the loss of Gin4 or Shs1 results in the loss of actin cables and cell death, similar to the loss of Bnr1. The defects in these strains can be suppressed by constitutive activation of Bnr1. Gin4 is involved in both the localization and activation of Bnr1, whereas the septin Shs1 is required for Bnr1 activation but not its localization. Gin4 promotes the activity of Bnr1 independently of the Gin4 kinase activity, and Gin4 lacking its kinase domain binds to the critical localization region of Bnr1. These data reveal novel regulatory links between the actin and septin cytoskeletons.
Collapse
Affiliation(s)
- Shawnna M Buttery
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
11
|
Meyer AE, Hoover LA, Craig EA. The cytosolic J-protein, Jjj1, and Rei1 function in the removal of the pre-60 S subunit factor Arx1. J Biol Chem 2009; 285:961-8. [PMID: 19901025 DOI: 10.1074/jbc.m109.038349] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the biogenesis of ribosomal subunits occurs predominantly in the nucleus, final remodeling steps take place in the cytosol. One cytosolic step has two components: 1) the removal of the maturation factor Arx1, which transits from the nucleus to the cytosol with the pre-60 S subunit, and 2) its subsequent transport back into the nucleus. Two cytosolic proteins, Rei1 and Jjj1, are required, but their individual contributions to this step are not understood. Here we report that Rei1 and Jjj1 directly interact. This interaction is mediated by a C-terminal segment of Jjj1 encompassing a region rich in charged residues, flanked by C(2)H(2)-type zinc fingers. Deletion of the charged region results in defects in 60 S subunit biogenesis in vivo. In addition, we report resolution of an apparent contradiction in the literature regarding the association of Arx1 with the pre-60 S subunit in the absence of Rei1. The association of Arx1 with ribosomes is sensitive to the concentration of magnesium ions when Rei1 is absent. At near physiological concentrations, Arx1 remains associated with the pre-60 S particle, as it does in the absence of Jjj1; at higher concentrations, Arx1 dissociates in the absence of Rei1 but not in the absence of Jjj1. As both Rei1 and Jjj1 are required for dissociation of Arx1 from the pre-60 S subunit, and the region of Jjj1 that mediates interaction with Rei1 is required in vivo for 60 S subunit biogenesis, our data support the idea that the primary role of both Rei1 and Jjj1 is the first step of the Arx1 removal/recycling process.
Collapse
Affiliation(s)
- Alison E Meyer
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
12
|
Functional redundancy of yeast proteins Reh1 and Rei1 in cytoplasmic 60S subunit maturation. Mol Cell Biol 2009; 29:4014-23. [PMID: 19433447 DOI: 10.1128/mcb.01582-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The biogenesis of the large (60S) ribosomal subunit in eukaryotes involves nucleolar, nucleoplasmic, and cytoplasmic steps. The cytoplasmic protein Rei1, found in all eukaryotes, was previously shown to be necessary for the nuclear reimport of 60S subunit export factor Arx1. In this study we investigate the function of Reh1, a protein with high sequence similarity to Rei1. We demonstrate an overlapping function for Reh1 and Rei1 in the cytoplasmic maturation of the 60S subunit that is independent of Arx1 recycling. We observe that strains lacking both Reh1 and Rei1 accumulate salt-labile 60S subunits, suggesting that Reh1/Rei1 is necessary for the cytoplasmic 60S subunit to adopt its mature, stable form.
Collapse
|
13
|
Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 2009; 141:109-17. [DOI: 10.1016/j.jbiotec.2009.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 03/12/2009] [Accepted: 03/20/2009] [Indexed: 11/19/2022]
|
14
|
Calvert ME, Lannigan JA, Pemberton LF. Optimization of yeast cell cycle analysis and morphological characterization by multispectral imaging flow cytometry. Cytometry A 2008; 73:825-33. [PMID: 18613038 PMCID: PMC2586416 DOI: 10.1002/cyto.a.20609] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Budding yeast Saccharoymyces cerevisiae is a powerful model system for analyzing eukaryotic cell cycle regulation. Yeast cell cycle analysis is typically performed by visual analysis or flow cytometry, and both have limitations in the scope and accuracy of data obtained. This study demonstrates how multispectral imaging flow cytometry (MIFC) provides precise quantitation of cell cycle distribution and morphological phenotypes of yeast cells in flow. Cell cycle analysis of wild-type yeast, nap1Delta, and yeast overexpressing NAP1, was performed visually, by flow cytometry and by MIFC. Quantitative morphological analysis employed measurements of cellular length, thickness, and aspect ratio in an algorithm to calculate a novel feature, bud length. MIFC demonstrated reliable quantification of the yeast cell cycle compared to morphological and flow cytometric analyses. By employing this technique, we observed both the G2/M delay and elongated buds previously described in the nap1Delta strain. Using MIFC, we demonstrate that overexpression of NAP1 causes elongated buds yet only a minor disruption in the cell cycle. The different effects of NAP1 expression level on cell cycle and morphology suggests that these phenotypes are independent. Unlike conventional yeast flow cytometry, MIFC generates complete cell cycle profiles and concurrently offers multiple parameters for morphological analysis.
Collapse
Affiliation(s)
- Meredith E.K. Calvert
- Center for Cell Signaling, Charlottesville, Virginia 22908
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| | - Joanne A. Lannigan
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| | - Lucy F. Pemberton
- Center for Cell Signaling, Charlottesville, Virginia 22908
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
15
|
Iwase M, Luo J, Bi E, Toh-e A. Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae. Genetics 2007; 177:215-29. [PMID: 17603111 PMCID: PMC2013704 DOI: 10.1534/genetics.107.073007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7) form the septin ring at the bud neck during vegetative growth. We show here that disruption of SHS1 caused cold-sensitive growth in the W303 background, with cells arrested in chains, indicative of a cytokinesis defect. Surprisingly, the other four septins appeared to form an apparently normal septin ring in shs1Delta cells grown under the restrictive condition. We found that Myo1 and Iqg1, two components of the actomyosin contractile ring, and Cyk3, a component of the septum formation, were either delocalized or mislocalized in shs1Delta cells, suggesting that Shs1 plays supportive roles in cytokinesis. We also found that deletion of SHS1 enhanced or suppressed the septin defect in cdc10Delta and cdc11Delta cells, respectively, suggesting that Shs1 is involved in septin organization, exerting different effects on septin-ring assembly, depending on the composition of the septin subunits. Furthermore, we constructed an shs1-100c allele that lacks the coding sequence for the C-terminal 32 amino acids. This allele still displayed the genetic interactions with the septin mutants, but did not show cytokinesis defects as described above, suggesting that the roles of Shs1 in septin organization and cytokinesis are separable.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
16
|
Gao XD, Sperber LM, Kane SA, Tong Z, Tong AHY, Boone C, Bi E. Sequential and distinct roles of the cadherin domain-containing protein Axl2p in cell polarization in yeast cell cycle. Mol Biol Cell 2007; 18:2542-60. [PMID: 17460121 PMCID: PMC1924817 DOI: 10.1091/mbc.e06-09-0822] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 04/10/2007] [Accepted: 04/18/2007] [Indexed: 11/11/2022] Open
Abstract
Polarization of cell growth along a defined axis is essential for the generation of cell and tissue polarity. In the budding yeast Saccharomyces cerevisiae, Axl2p plays an essential role in polarity-axis determination, or more specifically, axial budding in MATa or alpha cells. Axl2p is a type I membrane glycoprotein containing four cadherin-like motifs in its extracellular domain. However, it is not known when and how Axl2p functions together with other components of the axial landmark, such as Bud3p and Bud4p, to direct axial budding. Here, we show that the recruitment of Axl2p to the bud neck after S/G2 phase of the cell cycle depends on Bud3p and Bud4p. This recruitment is mediated via an interaction between Bud4p and the central region of the Axl2p cytoplasmic tail. This region of Axl2p, together with its N-terminal region and its transmembrane domain, is sufficient for axial budding. In addition, our work demonstrates a previously unappreciated role for Axl2p. Axl2p interacts with Cdc42p and other polarity-establishment proteins, and it regulates septin organization in late G1 independently of its role in polarity-axis determination. Together, these results suggest that Axl2p plays sequential and distinct roles in the regulation of cellular morphogenesis in yeast cell cycle.
Collapse
Affiliation(s)
- Xiang-Dong Gao
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Lauren M. Sperber
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Steven A. Kane
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Zongtian Tong
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| | - Amy Hin Yan Tong
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Erfei Bi
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058; and
| |
Collapse
|
17
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
18
|
Meyer AE, Hung NJ, Yang P, Johnson AW, Craig EA. The specialized cytosolic J-protein, Jjj1, functions in 60S ribosomal subunit biogenesis. Proc Natl Acad Sci U S A 2007; 104:1558-63. [PMID: 17242366 PMCID: PMC1785244 DOI: 10.1073/pnas.0610704104] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Indexed: 12/20/2022] Open
Abstract
J-proteins and Hsp70 chaperones function together in diverse cellular processes. We identified a cytosolic J-protein, Jjj1, of Saccharomyces cerevisiae that is associated with 60S ribosomal particles. Unlike Zuo1, a 60S subunit-associated J-protein that is a component of the chaperone machinery that binds nascent polypeptide chains upon their exit from the ribosome, Jjj1 plays a role in ribosome biogenesis. Cells lacking Jjj1 have phenotypes very similar to those lacking Rei1, a ribosome biogenesis factor associated with pre-60S ribosomal particles in the cytosol. Jjj1 stimulated the ATPase activity of the general cytosolic Hsp70 Ssa, but not Ssb, Zuo1's ribosome-associated Hsp70 partner. Overexpression of Jjj1, which is normally approximately 40-fold less abundant than Zuo1, can partially rescue the phenotypes of cells lacking Zuo1 as well as cells lacking Ssb. Together, these results are consistent with the idea that Jjj1 normally functions with Ssa in a late, cytosolic step of the biogenesis of 60S ribosomal subunits. In addition, because of its ability to bind 60S subunits, we hypothesize that Jjj1, when overexpressed, is able to partially substitute for the Zuo1:Ssb chaperone machinery by recruiting Ssa to the ribosome, facilitating its interaction with nascent polypeptide chains.
Collapse
Affiliation(s)
- Alison E. Meyer
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Peizhen Yang
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| | - Arlen W. Johnson
- Section of Molecular Genetics and Microbiology and Institute of Molecular Biology, University of Texas, Austin, TX 78712
| | - Elizabeth A. Craig
- *Department of Biochemistry, 433 Babcock Drive, University of Wisconsin, Madison, WI 53706; and
| |
Collapse
|
19
|
Asano S, Park JE, Yu LR, Zhou M, Sakchaisri K, Park CJ, Kang YH, Thorner J, Veenstra TD, Lee KS. Direct phosphorylation and activation of a Nim1-related kinase Gin4 by Elm1 in budding yeast. J Biol Chem 2006; 281:27090-8. [PMID: 16861226 DOI: 10.1074/jbc.m601483200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In budding yeast, Gin4, a Nim1-related kinase, plays an important role in proper organization of the septin ring at the mother-bud neck, a filamentous structure that is critical for diverse cellular processes including mitotic entry and cytokinesis. How Gin4 kinase activity is regulated is not known. Here we showed that a neck-associated Ser/Thr kinase Elm1, which is important for septin assembly, is critical for proper modification of Gin4 and its physiological substrate Shs1. In vitro studies with purified recombinant proteins demonstrated that Elm1 directly phosphorylates and activates Gin4, which in turn phosphorylates Shs1. Consistent with these observations, acute inhibition of Elm1 activity abolished mitotic Gin4 phosphorylation and Gin4-dependent Shs1 modification in vivo. In addition, a gin4 mutant lacking the Elm1-dependent phosphorylation sites exhibited an impaired localization to the bud-neck and, as a result, induced a significant growth defect with an elongated bud morphology. Thus, Elm1 regulates the septin assembly-dependent cellular events by directly phosphorylating and activating the Gin4-dependent pathway(s).
Collapse
Affiliation(s)
- Satoshi Asano
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lebreton A, Saveanu C, Decourty L, Rain JC, Jacquier A, Fromont-Racine M. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors. ACTA ACUST UNITED AC 2006; 173:349-60. [PMID: 16651379 PMCID: PMC2063836 DOI: 10.1083/jcb.200510080] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eukaryotic pre-ribosomes go through cytoplasmic maturation steps before entering translation. The nucleocytoplasmic proteins participating in these late stages of maturation are reimported to the nucleus. In this study, we describe a functional network focused on Rei1/Ybr267w, a strictly cytoplasmic pre-60S factor indirectly involved in nuclear 27S pre-ribosomal RNA processing. In the absence of Rei1, the nuclear import of at least three other pre-60S factors is impaired. The accumulation in the cytoplasm of a small complex formed by the association of Arx1 with a novel factor, Alb1/Yjl122w, inhibits the release of the putative antiassociation factor Tif6 from the premature large ribosomal subunits and its recycling to the nucleus. We propose a model in which Rei1 is a key factor for the coordinated dissociation and recycling of the last pre-60S factors before newly synthesized large ribosomal subunits enter translation.
Collapse
Affiliation(s)
- Alice Lebreton
- Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique URA2171, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
21
|
Hung NJ, Johnson AW. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3718-27. [PMID: 16648468 PMCID: PMC1489010 DOI: 10.1128/mcb.26.10.3718-3727.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 02/23/2006] [Indexed: 11/20/2022] Open
Abstract
Arx1 and Rei1 are found on late pre-60S ribosomal particles containing the export adaptor Nmd3. Arx1 is related to methionine aminopeptidases (MetAPs), and Rei1 is a C2H2 zinc finger protein whose function in ribosome biogenesis has not been previously characterized. Arx1 and Rei1 localized predominately to the nucleus and cytoplasm, respectively, but could be coimmunoprecipitated, suggesting that they are transiently in the same 60S complex. arx1delta mutants showed a modest accumulation of 60S subunits in the nucleus, suggesting that Arx1 enhances 60S export. Deletion of REI1 led to cold sensitivity and redistribution of Arx1 to the cytoplasm, where it remained bound to free 60S subunits. However, deletion of ARX1 or the fusion of enhanced GFP (eGFP) to Rpl25 suppressed the cold sensitivity of an rei1delta mutant. The presence of eGFP on Rpl25 or its neighboring protein Rpl35 reduced the binding of Arx1 to 60S subunits, suggesting that Arx1 binds to 60S subunits in the vicinity of the exit tunnel. Mutations in Arx1 that disrupted its binding to 60S also suppressed an rei1delta mutant and restored the normal nuclear localization of Arx1. These results indicate that the cold sensitivity of rei1delta cells is due to the persistence of Arx1 on 60S subunits in the cytoplasm. Furthermore, these results suggest that Rei1 is needed for release of Arx1 from nascent 60S subunits after export to the cytoplasm but not for the subsequent nuclear import of Arx1.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, 1 University Station, A5000, The University of Texas at Austin, Austin, Texas 78712-0162, USA
| | | |
Collapse
|
22
|
Boocock GRB, Marit MR, Rommens JM. Phylogeny, sequence conservation, and functional complementation of the SBDS protein family. Genomics 2006; 87:758-71. [PMID: 16529906 DOI: 10.1016/j.ygeno.2006.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 01/16/2006] [Accepted: 01/31/2006] [Indexed: 11/16/2022]
Abstract
The Shwachman-Bodian-Diamond syndrome (SBDS) protein family occurs widely in nature, although its function has not been determined. Comprehensive database searches revealed SBDS homologues from 159 species, including examples from all sequenced archaeal and eukaryotic genomes and all eukaryotic kingdoms. Sequence alignment with ClustalX and MUSCLE algorithms led to the identification of conserved residues that occurred predominantly in the amino-terminal FYSH domain where they appeared to contribute to protein folding or stability. Only SBDS residue Gly91 was invariant in all species. Four distantly related protists were found to have two divergent SBDS genes in their genomes. In each case, phylogenetic analyses and the identification of shared sequence features suggested that one gene was derived from lateral gene transfer. We also identified a shared C-terminal zinc finger domain fusion in flowering plants and chromalveolates that may shed light on the function of the protein family and the evolutionary histories of these kingdoms. To assess the extent of SBDS functional conservation, we carried out complementation studies of SBDS homologues and interspecies chimeras in Saccharomyces cerevisiae. We determined that the FYSH domain was widely interchangeable among eukaryotes, while domain 2 imparted species specificity to protein function. Domain 3 was largely dispensable for function in our yeast complementation assay. Overall, the phylogeny of SBDS was shared with a group of proteins that were markedly enriched for RNA metabolism and/or ribosome-associated functions. These findings link Shwachman-Diamond syndrome to other bone marrow failure syndromes with defects in nucleolus-associated processes, including Diamond-Blackfan anemia, cartilage-hair hypoplasia, and dyskeratosis congenita.
Collapse
Affiliation(s)
- G R B Boocock
- Program in Genetics and Genomic Biology, The Hospital for Sick Children, 101 College Street, East Tower, Toronto, Canada ON M5G 1L7
| | | | | |
Collapse
|
23
|
Hu B, Liao C, Millson SH, Mollapour M, Prodromou C, Pearl LH, Piper PW, Panaretou B. Qri2/Nse4, a component of the essential Smc5/6 DNA repair complex. Mol Microbiol 2005; 55:1735-50. [PMID: 15752197 DOI: 10.1111/j.1365-2958.2005.04531.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We demonstrate a role for Qri2 in the essential DNA repair function of the Smc5/6 complex in Saccharomyces cerevisiae. We generated temperature-sensitive (ts) mutants in QRI2 and characterized their properties. The mutants arrest after S phase and prior to mitosis. Furthermore, the arrest is dependant on the Rad24 checkpoint, and is also accompanied by phosphorylation of the Rad53 checkpoint effector kinase. The mutants also display genome instability and are sensitive to agents that damage DNA. Two-hybrid screens reveal a physical interaction between Qri2 and proteins that are non-Smc elements of the Smc5/6 DNA repair complex, which is why we propose the name NSE4 for the open reading frame previously known as QRI2. A key role for Nse4 in Smc5/6 function is likely, as overexpressing known subunits of the Smc5/6 complex suppresses nse4(ts) cell cycle arrest. The nse4(ts) growth arrest is non-lethal and unlike the catastrophic nuclear fragmentation phenotype of smc6(ts) mutants, the nucleus remains intact; replicative intermediates and sheared DNA are not detected. This could imply a role for Nse4 in maintenance of higher order chromosome structure.
Collapse
Affiliation(s)
- Bin Hu
- Department of Life Sciences, King's College London, London SE1 9NN, UK
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Iwase M, Okada S, Oguchi T, Toh-e A. Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae. Genes Genet Syst 2005; 79:199-206. [PMID: 15514439 DOI: 10.1266/ggs.79.199] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Septins, which are involved in cytokinesis, have been identified in a variety of fungi and animal cells. For analysis of the function of septin, drugs targeting septin would be useful; however, no such drugs have been available hitherto. By serendipity, we found that forchlorfenuron (FCF, N-(2-chloro-4-pyridyl)-N-phenylurea, 4PU300), a synthetic plant cytokinin, disturbed cytokinesis in Saccharomyces cerevisiae. Upon administration of FCF, septin structures at the bud neck became deformed and filament-like septin appeared outside of the neck. Under these conditions, the localization of actin was normal and Gin4, which is localized at the bud neck in a septin-dependent manner, was found to remain at the location of apparently normal septin at the bud neck, whereas it was not co-localized to the deformed septin at the bud neck or to septin seen outside the bud neck. FCF administration immediately induced production of sporadic septin structures outside the bud neck, and these structures disappeared promptly upon removal of the drug. Taken together, these findings indicate that FCF maybe a promising drug for investigating the structure and function of septin.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
25
|
Current awareness on yeast. Yeast 2004; 21:1233-40. [PMID: 15580707 DOI: 10.1002/yea.1096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|