1
|
Storniolo CE, Sacanella I, Mitjavila MT, Lamuela-Raventos RM, Moreno JJ. Bioactive Compounds of Cooked Tomato Sauce Modulate Oxidative Stress and Arachidonic Acid Cascade Induced by Oxidized LDL in Macrophage Cultures. Nutrients 2019; 11:E1880. [PMID: 31412595 PMCID: PMC6722768 DOI: 10.3390/nu11081880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Sofrito is a mix of tomato, onion, garlic, and olive oil, which contains phenolic compounds and carotenoids. Consumption of tomato-based sofrito has been related to a lower risk of cardiovascular events, but the mechanisms behind such beneficial effects remain unclear. This study aimed to analyze the effects of representative sofrito compounds such as naringenin, hydroxytyrosol, lycopene, and β-carotene on mechanisms involved in the pathogenesis of atherosclerosis. We demonstrated that both phenolic compounds and both carotenoids studied were able to inhibit low density lipoproteins (LDL) oxidation, as well as oxidative stress and eicosanoid production induced by oxidized LDL (oxLDL) in macrophage cultures. These effects were not the consequences of disturbing oxLDL uptake by macrophages. Finally, we observed an additive effect of these sofrito compounds, as well as the activity of a main naringenin metabolite, naringenin 7-O-β-d-glucuronide on LDL oxidation and oxidative stress.
Collapse
Affiliation(s)
- Carolina E Storniolo
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08921 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - Ignasi Sacanella
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08921 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
| | - María T Mitjavila
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
- Department of Immunology, Physiology and Cell Biology, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Rosa M Lamuela-Raventos
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08921 Barcelona, Spain
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan J Moreno
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08921 Barcelona, Spain.
- Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Barcelona, Spain.
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Adenosine A(2A) receptor activation supports an atheroprotective cholesterol balance in human macrophages and endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:407-16. [PMID: 23168167 DOI: 10.1016/j.bbalip.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 11/22/2022]
Abstract
The adenosine A(2A) receptor (A(2A)R) plays an important role in the regulation of inflammatory and immune responses. Our previous work has demonstrated that A(2A)R agonists exhibit atheroprotective effects by increasing expression of reverse cholesterol transport proteins in cultured human macrophages. This study explores the impact of pharmacologic activation/inhibition and gene silencing of A(2A)R on cholesterol homeostasis in both THP-1 human monocytes/macrophages and primary human aortic endothelial cells (HAEC). THP-1 human monocytes/macrophages and HAEC exposed to the A(2A)R-specific agonist ATL313 exhibited upregulation of proteins responsible for cholesterol efflux: the ABCA1 and G1 transporters. Further, activation of A(2A)R led to upregulation of the cholesterol metabolizing enzyme P450 27-hydroxylase, accompanied by intracellular changes in level of oxysterols. We demonstrate that anti-atherogenic properties of A(2A)R activation are not limited to the regulation of lipid efflux in vasculature, but include protection from lipid overload in macrophages, particularly via suppression of the CD36 scavenger receptor. The reduced lipid accumulation manifests directly as a diminution in foam cell transformation. In THP-1 macrophages, either A(2A)R pharmacological blockade or gene silencing promote lipid accumulation and enhance foam cell transformation. Our pre-clinical data provides evidence suggesting that A(2A)R stimulation by ATL313 has the potential to be a viable therapeutic strategy for cardiovascular disease prevention, particularly in patients with elevated risk due to immune/inflammatory disorders.
Collapse
|
3
|
Wang YQ, Dai M, Zhong JC, Yin DK. Paeonol inhibits oxidized low density lipoprotein-induced monocyte adhesion to vascular endothelial cells by inhibiting the mitogen activated protein kinase pathway. Biol Pharm Bull 2012; 35:767-72. [PMID: 22687414 DOI: 10.1248/bpb.35.767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by increased expression of adhesion molecules, which contribute to monocytes adhesion to vascular endothelial cells (VECs). Paeonol, an active compound isolated from cortex Moutan, has been shown to have therapeutic effects on atherosclerotic animals. The present study aims to investigate whether paeonol can inhibit monocyte adhesion to vascular endothelial cells induced by oxidized Low-Density Lipoprotein (ox-LDL) and its possible therapeutic molecular mechanism. Exposure to ox-LDL (50, 100 µg/mL) induced damaged to VECs leading to decreased survival rates (p<0.01). Paeonol (7.2-18.0 µM) partially restored survival and reduced lactate dehydrogenase (LDH) release in VECs in a concentration-dependent manner (p<0.01). Adhesion of monocytes to VECs was dramatically prevented by paeonol at 21.6 and 25.2 μM (p<0.01). In addition, paeonol (14.4-21.6 μM) repressed the expression of vascular cell adhesion molecule-1 (VCAM-1) and lowered the levels of phosphor-c-Jun N-terminal kinase (P-JNK)1/2, phosphor-extracellular signal-regulated kinase (P-ERK)1/2 and P-p38 in a dose-dependent manner. The molecular effects of paeonol were more pronouced when companied with mitogen activated protein kinases (MAPKs) inhibitors. These data suggest that paeonol (10.8-25.2 μM), at certain concentrations, prevents monocyte adhesion to VEC induced by ox-LDL, probably by means of blocking one or more target proteins on MAPKs signaling pathway. These results indicate that paeonol has potential protective effects on the development of atherosclerosis.
Collapse
Affiliation(s)
- Yue-Qin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Experimental Center for Scientific Research, Hefei, Anhui, China
| | | | | | | |
Collapse
|
4
|
Voloshyna I, Hai O, Littlefield MJ, Carsons S, Reiss AB. Resveratrol mediates anti-atherogenic effects on cholesterol flux in human macrophages and endothelium via PPARγ and adenosine. Eur J Pharmacol 2012; 698:299-309. [PMID: 23041272 DOI: 10.1016/j.ejphar.2012.08.024] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 08/15/2012] [Accepted: 08/27/2012] [Indexed: 12/23/2022]
Abstract
Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Known cardioprotective and anti-inflammatory properties of resveratrol have spurred investigation of the mechanisms involved. The present study explored potential atheroprotective actions of resveratrol on cholesterol metabolism in cells of the arterial wall, including human macrophages and arterial endothelium. Using QRT-PCR and Western blotting techniques, we measured expression of the proteins involved in reverse cholesterol transport (ABCA1, ABCG1 and SR-B1) and the scavenger receptors responsible for uptake of modified cholesterol (CD36, SR-A1 and LOX-1). We analyzed the effect of resveratrol on apoA-1-and HDL-mediated cholesterol efflux in human THP-1 macrophages. The effect of resveratrol on oxLDL internalization and foam cell formation were evaluated using confocal and light microscopy. Our data indicate that resveratrol regulates expression of major proteins involved in cholesterol transport, promotes apoA-1 and HDL-mediated efflux, downregulates oxLDL uptake and diminishes foam cell formation. Mechanistically, resveratrol effects were dependent upon PPAR-γ and adenosine 2A receptor pathways. For the first time we demonstrate that resveratrol regulates expression of the cholesterol metabolizing enzyme cytochrome P450 27-hydroxylase, providing efficient cholesterol elimination via formation of oxysterols. This study establishes that resveratrol attenuates lipid accumulation in cultured human macrophages via effects on cholesterol transport. Further in vivo studies are needed to determine whether resveratrol may be an additional resource available to reduce lipid deposition and atherosclerosis in humans.
Collapse
Affiliation(s)
- Iryna Voloshyna
- Winthrop Research Institute, Department of Medicine, Winthrop University Hospital, 222 Station Plaza, North, Suite 511B, Mineola, NY 11501, USA.
| | | | | | | | | |
Collapse
|
5
|
Saito R, Matsuzaka T, Karasawa T, Sekiya M, Okada N, Igarashi M, Matsumori R, Ishii K, Nakagawa Y, Iwasaki H, Kobayashi K, Yatoh S, Takahashi A, Sone H, Suzuki H, Yahagi N, Yamada N, Shimano H. Macrophage Elovl6 deficiency ameliorates foam cell formation and reduces atherosclerosis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31:1973-9. [PMID: 21817094 DOI: 10.1161/atvbaha.110.221663] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Elovl6, a long-chain fatty acid elongase, is a rate-limiting enzyme that elongates saturated and monounsaturated fatty acids and has been shown to be related to obesity-induced insulin resistance via modification of fatty acid composition. In this study, we investigated the roles of Elovl6 in foam cell formation in macrophages and atherosclerosis in mice. METHODS AND RESULTS To investigate the roles of Elovl6 in macrophages in the progression of atherosclerosis, we transplanted bone marrow cells of wild-type or Elovl6(-/-) mice into irradiated LDL-R(-/-) mice that were fed a western diet. Aortic atherosclerotic lesion areas and infiltration of macrophages were significantly smaller in Elovl6(-/-) bone marrow cells-transplanted LDL-R(-/-) mice than in wild-type. Accumulation of esterified cholesterol on exposure to acetylated-LDL was less severe in peritoneal macrophages from Elovl6(-/-) mice than those from wild-type. Cholesterol efflux and expression of cholesterol efflux transporters were increased in Elovl6(-/-) macrophages, although no difference in uptake of acetylated-LDL was found between the two groups. On analysis of fatty acid composition of the esterified cholesterol fraction in macrophages, n-6 polyunsaturated fatty acids were decreased by absence of Elovl6. CONCLUSIONS These findings suggest that Elovl6 in macrophages may contribute to foam cell formation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Ryo Saito
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yao W, Li K, Liao K. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells. Acta Biochim Biophys Sin (Shanghai) 2009; 41:773-80. [PMID: 19727526 DOI: 10.1093/abbs/gmp066] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The key event in the atherosclerosis development is the lipids uptake by macrophage and the formation of foam cell in subendothelial arterial space. Besides the uptake of modified low-density lipoprotein (LDL) by scavenger receptor-mediated endocytosis, macrophages possess constitutive macropinocytosis, which is capable of taking up a large quantity of solute. Macrophage foam cell formation could be induced in RAW264.7 cells by increasing the serum concentration in the culture medium. Foam cell formation induced by serum could be blocked by phosphoinositide 3-kinase inhibitor, LY294002 or wortmannin, which inhibited macropinocytosis but not receptor-mediated endocytosis. Further analysis indicated that macropinocytosis took place at the gangliosides-enriched membrane area. Cholesterol depletion by beta-methylcyclodextrin-blocked macropinocytosis without affecting scavenger receptor-mediated endocytosis of modified LDLs. These results suggested that macropinocytosis might be one of the important mechanisms for lipid uptake in macrophage. And it made significant contribution to the lipid accumulation and foam cell formation.
Collapse
Affiliation(s)
- Wenqi Yao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | |
Collapse
|
7
|
Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages. Br J Nutr 2007; 99:1199-207. [PMID: 18081942 DOI: 10.1017/s0007114507876203] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Oxidation of LDL is hypothesised as an early and critical event in atherogenesis. Oxidised LDL (oxLDL) favour the transformation of macrophages into foam cells, an important cell involved in atherosclerosis. Furthermore, oxLDL cause multiple changes in macrophage functions. Thus, oxLDL induces certain genes, suppresses others and alters cell lipid metabolism. Consumption of a Mediterranean diet is associated with a low incidence of atherosclerotic disease, but data about the specific dietary constituents involved and mechanisms conferring cardioprotection are still sparse. The aim of the present study was to determine the effect of representative minor components of wine and olive oil on reactive oxygen species and eicosanoid synthesis induced by oxLDL-stimulated macrophages. We observed that exposure to non-toxic oxLDL concentrations leads to the production of H2O2 by RAW 264.7 macrophages and this effect was reverted by apocynin, a NADPH oxidase inhibitor. Moreover, oxLDL induced arachidonic acid (AA) release, cyclo-oxygenase-2 overexpression and subsequent PGE2 release. We observed that resveratrol and tyrosol revert H2O2 production induced by oxLDL as well as AA release and PGE2 synthesis and that these effects were not as a consequence of these compounds interfering with the oxLDL binding to their receptors. Interestingly, beta-sitosterol presence enhances these polyphenol actions. Thus, we found a synergistic action of polyphenols of olive oil and wine and beta-sitosterol of olive oil led to the modulation of the effects of oxLDL on oxidative stress and PGE2 synthesis.
Collapse
|
8
|
Morgan D, Cherny VV, Finnegan A, Bollinger J, Gelb MH, DeCoursey TE. Sustained activation of proton channels and NADPH oxidase in human eosinophils and murine granulocytes requires PKC but not cPLA2 alpha activity. J Physiol 2006; 579:327-44. [PMID: 17185330 PMCID: PMC2075394 DOI: 10.1113/jphysiol.2006.124248] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The prevailing hypothesis that a signalling pathway involving cPLA(2)alpha is required to enhance the gating of the voltage-gated proton channel associated with NADPH oxidase was tested in human eosinophils and murine granulocytes. This hypothesis invokes arachidonic acid (AA) liberated by cPLA(2)alpha as a final activator of proton channels. In human eosinophils studied in the perforated-patch configuration, phorbol myristate acetate (PMA) stimulation elicited NADPH oxidase-generated electron current (I(e)) and enhanced proton channel gating identically in the presence or absence of three specific cPLA(2)alpha inhibitors, Wyeth-1, pyrrolidine-2 and AACOCF(3) (arachidonyl trifluoromethyl ketone). In contrast, PKC inhibitors GFX (GF109203X) or staurosporine prevented the activation of either proton channels or NADPH oxidase. PKC inhibition during the respiratory burst reversed the activation of both molecules, suggesting that ongoing phosphorylation is required. This effect of GFX was inhibited by okadaic acid, implicating phosphatases in proton channel deactivation. Proton channel activation by AA was partially reversed by GFX or staurosporine, indicating that AA effects are due in part to activation of PKC. In granulocytes from mice with the cPLA(2)alpha gene disrupted (knockout mice), PMA or fMetLeuPhe activated NADPH oxidase and proton channels in a manner indistinguishable from the responses of control cells. Thus, cPLA(2)alpha is not essential to activate the proton conductance or for a normal respiratory burst. Instead, phosphorylation of the proton channel or an activating molecule converts the channel to its activated gating mode. The existing paradigm for regulation of the concerted activity of proton channels and NADPH oxidase must be revised.
Collapse
Affiliation(s)
- Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 West Harrison, Chicago, IL 60612 USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Living bodies may experience oxidative stress induced by reactive oxygen species and heavy metal ions, which may damage components in the body and cause aging and disorders. In addition to the known defense systems against oxidative damage, the author describes new defense systems. Lipid peroxidation in living bodies, which has hitherto been thought to increase oxidative damage, was found to attenuate oxidative stress-induced DNA damage. Red blood cells become senescent due to oxidative stress during circulation, where membrane band 3 becomes aggregated to anti-band 3 IgG and macrophages attached through poly-N-acetyllactosaminyl sugar chains, and the sugar chain attachment to macrophages is stimulated by oxidative stress in macrophages. Oxidized protein hydrolase that preferentially hydrolyzes proteins damaged by oxidative stress was newly discovered, which may play an important role in saving cells from oxidative damage.
Collapse
Affiliation(s)
- Kiyomi Kikugawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 092-0392, Japan.
| |
Collapse
|
10
|
Kikugawa K. Strategy in a Living Body to Protect against Oxidative Stress-Induced Damage. ACTA ACUST UNITED AC 2004. [DOI: 10.1248/jhs.50.443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kiyomi Kikugawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Science
| |
Collapse
|
11
|
Akiba S, Yoneda Y, Ohno S, Nemoto M, Sato T. Oxidized LDL activates phospholipase A2 to supply fatty acids required for cholesterol esterification. J Lipid Res 2003; 44:1676-85. [PMID: 12777475 DOI: 10.1194/jlr.m300012-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the roles of phospholipase A2 (PLA2) in oxidized LDL (oxLDL)-induced cholesteryl ester formation in macrophages. In [3H]oleic acid-labeled RAW264.7 cells and mouse peritoneal macrophages, oxLDL induced [3H]cholesteryl oleate formation with an increase in free [3H]oleic acid and a decrease in [3H]phosphatidylcholine. The changes in these lipids were suppressed by methyl arachidonyl fluorophosphonate (MAFP), a cytosolic PLA2 (cPLA2) inhibitor. However, MAFP had no effect on the ACAT activity or the binding and/or uptake of oxLDL. Stimulation with oxLDL in the presence of [3H]cholesterol increased [3H]cholesteryl ester bearing fatty acyl chains derived from cellular and/or exogenous (oxLDL) lipids. The formation of cholesteryl ester under this condition was also inhibited by MAFP, and the inhibitory effect was reversed by adding oleic acid. While oxLDL did not affect the activity or amounts of cPLA2, preincubation with oxLDL enhanced the release of oleic acid and arachidonic acid induced by ionomycin in RAW264.7 cells. 13(S)-hydroxyoctadecadienoic acid, but not 7-ketocholesterol, also enhanced ionomycin-induced oleic acid release. These results suggest that oxLDL induces cPLA2 activation, which contributes, at least in part, to the supply of fatty acids required for the cholesteryl esterification, probably through the acceleration by oxidized lipids of the catalytic action of cPLA2 in macrophages.
Collapse
Affiliation(s)
- Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | |
Collapse
|