1
|
Hu D, Fumoto S, Yoshikawa N, Peng J, Miyamoto H, Tanaka M, Nishida K. Diffusion coefficient of cationic liposomes during lipoplex formation determines transfection efficiency in HepG2 cells. Int J Pharm 2023; 637:122881. [PMID: 36963641 DOI: 10.1016/j.ijpharm.2023.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Cationic lipid-based lipoplexes are well-known for gene delivery. To determine the relationship between physicochemical characteristics and transfection efficiency, cationic liposomes of different sizes were prepared and incubated with plasmid DNA at different temperatures to form lipoplexes. We found that the liposome diffusion coefficient during lipoplex formation strongly correlated with the physicochemical characteristics of lipoplexes, accessibility of plasmid DNA in lipoplexes, and logarithm of gene expression per metabolic activity. Clathrin-mediated endocytosis was the major route for lipoplexes comprising 100 nm-liposomes, as reported previously. As liposome size increased, the major route shifted to lipid raft-mediated endocytosis. In addition, macropinocytosis was observed for all liposome sizes. The role of reactive oxygen species might depend on liposome size and endocytosis. Information from this study would be useful for understanding cationic lipoplex-mediated transfection.
Collapse
Affiliation(s)
- Die Hu
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan.
| | - Naoki Yoshikawa
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-Cho, Miyazaki 889-1692, Japan
| | - Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guian New District, Guiyang, 550025, China
| | - Hirotaka Miyamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Masakazu Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
2
|
Naidoo S, Daniels A, Habib S, Singh M. Poly-L-Lysine-Lactobionic Acid-Capped Selenium Nanoparticles for Liver-Targeted Gene Delivery. Int J Mol Sci 2022; 23:ijms23031492. [PMID: 35163414 PMCID: PMC8835765 DOI: 10.3390/ijms23031492] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Liver cancer is currently regarded as the second leading cause of cancer-related mortality globally and is the sixth most diagnosed malignancy. Selenium nanoparticles (SeNPs) have attracted favorable attention as nanocarriers for gene therapy, as they possess beneficial antioxidant and anticancer properties. This study aimed to design, functionalize and characterize SeNPs to efficiently bind, protect and deliver pCMV-Luc DNA to hepatocellular carcinoma (HepG2) cells. The SeNPs were synthesized by ascorbic acid reduction and functionalized with poly-L-lysine (PLL) to stabilize and confer positive charges to the nanoparticles. The SeNPs were further decorated with lactobionic acid (LA) to target the asialoglycoprotein receptors abundantly expressed on the surface of the hepatocytes. All SeNPs were spherical, in the nanoscale range (<130 nm) and were capable of successfully binding, compacting and protecting the pDNA against nuclease degradation. The functionalized SeNP nanocomplexes exhibited minimal cytotoxicity (<30%) with enhanced transfection efficiency in the cell lines tested. Furthermore, the targeted SeNP (LA-PLL-SeNP) nanocomplex showed significant (* p < 0.05, ** p < 0.01, **** p < 0.0001) transgene expression in the HepG2 cells compared to the receptor-negative embryonic kidney (HEK293) cells, confirming receptor-mediated endocytosis. Overall, these functionalized SeNPs exhibit favorable features of suitable gene nanocarriers for the treatment of liver cancer.
Collapse
|
3
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Fumoto S, Yamamoto T, Okami K, Maemura Y, Terada C, Yamayoshi A, Nishida K. Understanding In Vivo Fate of Nucleic Acid and Gene Medicines for the Rational Design of Drugs. Pharmaceutics 2021; 13:159. [PMID: 33530309 PMCID: PMC7911509 DOI: 10.3390/pharmaceutics13020159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid and genetic medicines are increasingly being developed, owing to their potential to treat a variety of intractable diseases. A comprehensive understanding of the in vivo fate of these agents is vital for the rational design, discovery, and fast and straightforward development of the drugs. In case of intravascular administration of nucleic acids and genetic medicines, interaction with blood components, especially plasma proteins, is unavoidable. However, on the flip side, such interaction can be utilized wisely to manipulate the pharmacokinetics of the agents. In other words, plasma protein binding can help in suppressing the elimination of nucleic acids from the blood stream and deliver naked oligonucleotides and gene carriers into target cells. To control the distribution of these agents in the body, the ligand conjugation method is widely applied. It is also important to understand intracellular localization. In this context, endocytosis pathway, endosomal escape, and nuclear transport should be considered and discussed. Encapsulated nucleic acids and genes must be dissociated from the carriers to exert their activity. In this review, we summarize the in vivo fate of nucleic acid and gene medicines and provide guidelines for the rational design of drugs.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan; (T.Y.); (K.O.); (Y.M.); (C.T.); (A.Y.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Radwan SAA, El-Maadawy WH, ElMeshad AN, Shoukri RA, Yousry C. Impact of Reverse Micelle Loaded Lipid Nanocapsules on the Delivery of Gallic Acid into Activated Hepatic Stellate Cells: A Promising Therapeutic Approach for Hepatic Fibrosis. Pharm Res 2020; 37:180. [PMID: 32875435 DOI: 10.1007/s11095-020-02891-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Gallic acid (GA) is a polyphenolic compound with proven efficacy against hepatic fibrosis in experimental animals. However, it suffers from poor bioavailability and rapid clearance that hinders its clinical investigation. Accordingly, we designed and optimized reverse micelle-loaded lipid nanocapsules (RMLNC) using Box-Behnken design that can deliver GA directly into activated-hepatic stellate cells (aHSCs) aiming to suppress hepatic fibrosis progression. METHODS GA-RMLNC was prepared using soft energy, solvent free phase inversion temperature method. Effects of formulation variables on particle size, zeta potential, entrapment efficiency (EE%) and GA release were studied. In-vivo biodistribution of GA-RMLNC in rats and in-vitro activities on aHSCs were also explored. RESULTS Nano-sized GA-RMLNCs (30.35 ± 2.34 nm) were formulated with high GA-EE% (63.95 ± 2.98% w/w) and physical stability (9 months). The formulated system showed burst GA release in the first 2 h followed by sustained release profile. In-vivo biodistribution imaging revealed that RMLNC-loaded with rhodamine-B accumulated mainly in rats' livers. Relative to GA; GA-RMLNC displayed higher anti-proliferative activities, effective internalization into aHSCs, marked down-regulation in pro-fibrogenic biomarkers' expressions and elevated HSCs' apoptosis. CONCLUSIONS These findings emphasize the promising application of RMLNC as a delivery system in hepatic fibrosis treatment, where successful delivery of GA into aHSCs was ensured via increased cellular uptake and antifibrotic activities.
Collapse
Affiliation(s)
- Shaimaa Ali Ali Radwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al Aini street, PO Box 11562, Cairo, Egypt.
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza, 12411, Egypt
| | - Aliaa Nabil ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al Aini street, PO Box 11562, Cairo, Egypt
| | - Raguia Aly Shoukri
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al Aini street, PO Box 11562, Cairo, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr Al Aini street, PO Box 11562, Cairo, Egypt
| |
Collapse
|
6
|
Cwetsch AW, Pinto B, Savardi A, Cancedda L. In vivo methods for acute modulation of gene expression in the central nervous system. Prog Neurobiol 2018; 168:69-85. [PMID: 29694844 PMCID: PMC6080705 DOI: 10.1016/j.pneurobio.2018.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy.
Collapse
Affiliation(s)
- Andrzej W Cwetsch
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Bruno Pinto
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Bio@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Annalisa Savardi
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; Università degli Studi di Genova, Via Balbi, 5, 16126 Genova, Italy
| | - Laura Cancedda
- Local Micro-environment and Brain Development Laboratory, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy; DulbeccoTelethon Institute, Italy.
| |
Collapse
|
7
|
Mkhwanazi NK, de Koning CB, van Otterlo WAL, Ariatti M, Singh M. PEGylation potentiates hepatoma cell targeted liposome-mediated in vitro gene delivery via the asialoglycoprotein receptor. ACTA ACUST UNITED AC 2017; 72:293-301. [PMID: 28063265 DOI: 10.1515/znc-2016-0172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/24/2016] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma is a burgeoning health issue in sub-Saharan Africa and East Asia where it is most prevalent. The search for gene medicine treatment modalities for this condition represents a novel departure from current treatment options and is gaining momentum. Here we report on nonPEGylated and on sterically stabilized PEGylated cationic liposomes decorated with D-galacto moieties linked to 24.1 Å spacers for asialoglycoprotein receptor (ASGP-R)-targeted vehiculation of pCMV-luc plasmid DNA. Cargo DNA is fully liposome associated at N/P ratio=3:1 and is partially protected from the effects of serum nucleases. Moreover, at this ratio, lipoplex dimensions (89-97 nm) are compatible with the requirements for extravasation in vivo. Ethidium displacement assays show that the reporter DNA is in a less condensed state when bound to PEGylated liposomes than with nonPEGylated liposomes. PEGylated lipoplexes were well tolerated by both HEK293 (ASGP-R-negative) and HepG2 (ASGP-R-positive) cell lines and delivered DNA to the human hepatoma cell line HepG2 by ASGP-R mediation at levels three-fold greater than nonPEGylated lipoplexes. PEGylated ASGP-R-targeted liposomes reported in this study possess the required characteristics for hepatotropic gene delivery and may be considered for further application in vivo.
Collapse
Affiliation(s)
- Nkosiyethu K Mkhwanazi
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa
| | - Charles B de Koning
- Molecular Sciences Institute, Department of Chemistry, University of the Witwatersrand, P. Bag 3, Wits 2050, South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Sciences, Stellenbosch University, P. Bag X1, Matieland 7602, South Africa
| | - Mario Ariatti
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa, Phone: +27 31 2607981, Fax: +27 31 2607942
| | - Moganavelli Singh
- Non-viral Gene Delivery Laboratory, Discipline of Biochemistry, Westville Campus, University of KwaZulu-Natal, P. Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
8
|
Govender D, Islam RU, De Koning CB, van Otterlo WAL, Arbuthnot P, Ariatti M, Singh M. Stealth lipoplex decorated with triazole-tethered galactosyl moieties: a strong hepatotropic gene vector. Biotechnol Lett 2014; 37:567-75. [DOI: 10.1007/s10529-014-1729-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
9
|
Kurosaki T, Kawanabe S, Kodama Y, Fumoto S, Nishida K, Nakagawa H, Higuchi N, Nakamura T, Kitahara T, Sasaki H. Hepatic Gene Delivery System Electrostatically Assembled with Glycyrrhizin. Mol Pharm 2014; 11:1369-77. [DOI: 10.1021/mp400398f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tomoaki Kurosaki
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Saki Kawanabe
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Yukinobu Kodama
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shintaro Fumoto
- Department
of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Koyo Nishida
- Department
of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroo Nakagawa
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Norihide Higuchi
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Tadahiro Nakamura
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takashi Kitahara
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hitoshi Sasaki
- Department
of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| |
Collapse
|
10
|
Doss CGP, Debottam S, Debajyoti C. Glutathione-responsive nano-transporter-mediated siRNA delivery: silencing the mRNA expression of Ras. PROTOPLASMA 2013; 250:787-792. [PMID: 22968632 DOI: 10.1007/s00709-012-0451-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
Gene therapy through antisense technology via intracellular delivery of a gene-silencing element is a promising approach to treat critical diseases like cancers. Ras acts as molecular switch, considered as one of the proto-oncogenes whose modification or mutation may promote tumor formation. The recent trends of nano-carrier-based drug delivery have gained superiority and proved to be 100 times more potent in drug delivery compared to standard therapies. The nano-based drug delivery has provided the basis of achieving successful target-specific drug delivery. Glutathione (GSH) is considered as one of the best and ubiquitous internal stimulus for swift destabilization of nano-transporters inside cells to accomplish proficient intracellular drug release. This concept has given a new hope to oncologists of modifying the existing drugs to be delivered to their desired destination. RNA interference is a primary tool in functional genomics to selectively silence messenger RNA (mRNA) expression, which can be exploited quickly to develop novel drugs against lethal disease target. Silencing of mRNA molecules using siRNA has also come of age to become one of the latest weapons developed in the concept of gene therapy. However, this strategy has severely failed to achieve target specificity especially to a tumor cell. In this context, we have proposed the incorporation of an antisense siRNA packed inside a GSH-responsive nano-transporter to be delivered specifically to a tumor cell against the sense mRNA of the Ras protein. It will limit the Ras-mediated activation of other proteins and transcription factors. Thus, it will knock down several differential gene expressions being regulated by Ras-activated pathways like enzyme-linked receptor kinase pathway. Henceforth, gene silencing technology through nano-drug delivery can be combined as a single weapon to terminate malignancy.
Collapse
Affiliation(s)
- C George Priya Doss
- Centre for Nanobiotechnology, Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
11
|
Chandra PK, Kundu AK, Hazari S, Chandra S, Bao L, Ooms T, Morris GF, Wu T, Mandal TK, Dash S. Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes. Mol Ther 2012; 20:1724-1736. [PMID: 22617108 PMCID: PMC3437587 DOI: 10.1038/mt.2012.107] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 04/23/2012] [Indexed: 02/07/2023] Open
Abstract
Sustained antiviral responses of chronic hepatitis C virus (HCV) infection have improved recently by the use of direct-acting antiviral agents along with interferon (IFN)-α and ribavirin. However, the emergence of drug-resistant variants is expected to be a major problem. We describe here a novel combinatorial small interfering RNA (siRNA) nanosome-based antiviral approach to clear HCV infection. Multiple siRNAs targeted to the highly conserved 5'-untranslated region (UTR) of the HCV genome were synthesized and encapsulated into lipid nanoparticles called nanosomes. We show that siRNA can be repeatedly delivered to 100% of cells in culture using nanosomes without toxicity. Six siRNAs dramatically reduced HCV replication in both the replicon and infectious cell culture model. Repeated treatments with two siRNAs were better than a single siRNA treatment in minimizing the development of an escape mutant, resulting in rapid inhibition of viral replication. Systemic administration of combinatorial siRNA-nanosomes is well tolerated in BALB/c mice without liver injury or histological toxicity. As a proof-of-principle, we showed that systemic injections of siRNA nanosomes significantly reduced HCV replication in a liver tumor-xenotransplant mouse model of HCV. Our results indicate that systemic delivery of combinatorial siRNA nanosomes can be used to minimize the development of escape mutants and inhibition of HCV infection.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Anup K Kundu
- Center for Nanomedicine and Drug Delivery, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Sidhartha Hazari
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Sruti Chandra
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Lili Bao
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tara Ooms
- Department of Comparative Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Gilbert F Morris
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tarun K Mandal
- Center for Nanomedicine and Drug Delivery, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| |
Collapse
|
12
|
Narainpersad N, Singh M, Ariatti M. Novel neo glycolipid: formulation into pegylated cationic liposomes and targeting of DNA lipoplexes to the hepatocyte-derived cell line HepG2. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:206-23. [PMID: 22356236 DOI: 10.1080/15257770.2011.649331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Liver parenchymal cells are an important target for the treatment of several metabolic and viral disorders. Corrective gene delivery for this purpose is an avenue that is receiving increasing attention. In the present study, we report a novel neo glycolipid that may be formulated into cationic liposomes with or without poly(ethylene glycol) decoration. Lipoplexes formed with plasmid DNA are nuclease resistant and are targeted to the human hepatoblastoma cell line HepG2 by selective asialoglycoprotein receptor mediation. Transfection levels achieved by lipoplexes containing the targeting ligand cholesteryl-3β-N-(4-aminophenyl-β-D-galactopyranosyl) carbamate were sixfold greater than those obtained with similar but untargeted lipoplexes.
Collapse
Affiliation(s)
- Nicolisha Narainpersad
- Department of Biochemistry, Non-Viral Gene Delivery Laboratory , University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | | | | |
Collapse
|
13
|
A carbosilane dendrimer and a silacyclopentadiene analog carrying peripheral lactoses as drug-delivery systems. Bioorg Med Chem Lett 2012; 22:3564-6. [DOI: 10.1016/j.bmcl.2012.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 11/23/2022]
|
14
|
Yoshikawa N, Sakamoto K, Mizuno S, Sakaguchi J, Miyamoto H, Mine T, Sasaki H, Fumoto S, Nishida K. Multiple components in serum contribute to hepatic transgene expression by lipoplex in mice. J Gene Med 2012; 13:632-43. [PMID: 22002583 DOI: 10.1002/jgm.1618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Interaction of cationic liposome/plasmid DNA complex (lipoplex) with serum was not a limiting factor for in vivo transfection. After intraportal injection of lipoplex, hepatic transgene expression was enhanced by interaction with serum in mice. In the present study, we analyzed the mechanism of enhanced hepatic transgene expression of lipoplex by interaction with serum components. METHODS Lipoplexes were incubated with several serum components for 5 min at 37 ° C before administration. Transfection efficiency of lipoplexes was measured 6 h after intraportal injection of lipoplex in mice. RESULTS Depletion of divalent cation from serum decreased hepatic transgene expression. The addition of calcium ion to divalent cation-depleted serum restored transgene expression. Heat-inactivated serum and bovine serum albumin diminished the enhancing effect of serum on hepatic transgene expression. On the other hand, removal of anionic proteins from serum using an anion-exchanging column was critical for the enhancing effect of serum on transgene expression. Among the serum components tested, fibronectin and complement component C3 enhanced hepatic transgene expression. CONCLUSIONS Hepatic transgene expression by lipoplex was enhanced by interaction with multiple components in serum. Interaction of lipoplex with serum could be an important factor for successful in vivo gene transfer. Hence, the information obtained in the present study is valuable for the future development of effective gene carriers.
Collapse
Affiliation(s)
- Naoki Yoshikawa
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kundu AK, Chandra PK, Hazari S, Pramar YV, Dash S, Mandal TK. Development and optimization of nanosomal formulations for siRNA delivery to the liver. Eur J Pharm Biopharm 2011; 80:257-67. [PMID: 22119665 DOI: 10.1016/j.ejpb.2011.10.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
Abstract
The objective of this study is to develop an effective siRNA delivery system for successful delivery to the liver for the treatment of HCV. Nanosize liposomes (nanosomes) have been prepared using a mixture of cholesterol and DOTAP. A functional siRNA was encapsulated into nanosomes following condensation with protamine sulfate. The delivery of siRNA was optimized in an in vitro cell culture system. The efficacy of the formulations was evaluated by measuring functional gene silencing and cytotoxicity. Encapsulation of siRNA ≥ 7.4 nM resulted in successful delivery of siRNA to nearly 100% of cells. The formulations containing lipid-to-siRNA ratio ≥ 10.56:1 instantly cleared approximately 85% of HCV while maintaining cell viability at about 90%. The formulations were sonicated to further reduce the particle size. The size of these formulations was decreased up to 100 nm. However, there were no significant changes observed in zeta potential, or in siRNA encapsulation and integrity following sonication. The sonicated formulations also showed higher liver hepatocytes deposition and gene silencing properties. This study therefore provides a novel approach of siRNA delivery to liver hepatocytes, which can also be applied to treat HCV in chronic liver diseases.
Collapse
Affiliation(s)
- Anup K Kundu
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans 70125-1098, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sun C, Tang T, Uludağ H. Molecular Dynamics Simulations of PEI Mediated DNA Aggregation. Biomacromolecules 2011; 12:3698-707. [DOI: 10.1021/bm2009476] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chongbo Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8
| | - Hasan Uludağ
- Department of Chemical and Materials
Engineering, University of Alberta, Edmonton,
AB, Canada T6G 2G6
- Department
of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2V2
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2N8
| |
Collapse
|
17
|
Yamauchi J, Hayashi Y, Kajimoto K, Akita H, Harashima H. Comparison between a multifunctional envelope-type nano device and lipoplex for delivery to the liver. Biol Pharm Bull 2010; 33:926-9. [PMID: 20460780 DOI: 10.1248/bpb.33.926] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The utility of using a multifunctional envelope-type nano device (MEND) for delivering a gene to the liver was examined. Lipotrust, a commercially available transfection reagent whose lipid composition is DC6- 14 :DOPE: cholesterol=4 : 3 : 3, was used as a reference. When Lipotrust was administrated intravenously, luciferase activity of the lung was 25 times higher than that of the liver. The luciferase activity of the lung was greatly reduced when a MEND was administered, even though the lipid composition of the lipid envelope was the same in both devices. Furthermore, the luciferase activity of the liver was 5 times higher than that for lipotrust, suggesting that the encapsulation of plasmid DNA (pDNA) in liposomes is more advantageous for delivering pDNA to the liver than complex formation. The isolation of parenchymal cells (PCs) and non-parenchymal cells (NPCs) showed that the MEND system is capable of expressing the luciferase protein more preferentially in NPCs than the lipoplex system. In addition, when the surface was modified with a pH-sensitive fusogenic peptide (GALA) used as a device for endosomal escape, overall liver luciferase activity was greatly enhanced. This suggests that endosomal escape is a limiting step for the MEND system. In the case of the GALA-modified MEND, the luciferase activity of PCs and NPCs was 18 times and 11 times higher than MEND system, while the transfection efficiency of NPCs was significantly higher compared to that of PCs. Collectively, these data show that a GALA-modified MEND prepared with DC6-14 :DOPE: cholesterol represents a promising device for NPCtargeting gene delivery in vivo.
Collapse
Affiliation(s)
- Jun Yamauchi
- Laboratory of Innovative Nanomedicine, Graduate School of Pharmaceutical Sciences, Hokkaido University, Japan
| | | | | | | | | |
Collapse
|
18
|
Donkuru M, Badea I, Wettig S, Verrall R, Elsabahy M, Foldvari M. Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies. Nanomedicine (Lond) 2010; 5:1103-27. [DOI: 10.2217/nnm.10.80] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene therapy is a technique utilized to treat diseases caused by missing, defective or overexpressing genes. Although viral vectors transfect cells efficiently, risks associated with their use limit their clinical applications. Nonviral delivery systems are safer, easier to manufacture, more versatile and cost effective. However, their transfection efficiency lags behind that of viral vectors. Many groups have dedicated considerable effort to improve the efficiency of nonviral gene delivery systems and are investigating complexes composed of DNA and soft materials such as lipids, polymers, peptides, dendrimers and gemini surfactants. The bottom-up approach in the design of these nanoparticles combines components essential for high levels of transfection, biocompatibility and tissue-targeting ability. This article provides an overview of the strategies employed to improve in vitro and in vivo transfection, focusing on the use of cationic lipids and surfactants as building blocks for nonviral gene delivery systems.
Collapse
Affiliation(s)
- McDonald Donkuru
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Ildiko Badea
- College of Pharmacy & Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Shawn Wettig
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada
| | - Mahmoud Elsabahy
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | | |
Collapse
|
19
|
Fumoto S. [Organ-, region- and cell-selective gene transfer using non-viral vectors]. YAKUGAKU ZASSHI 2009; 129:1055-61. [PMID: 19721381 DOI: 10.1248/yakushi.129.1055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Safety in gene therapy is an important issue since both viral and non-viral vectors have toxic side effects. Not only vectors themselves, but also distributions of produced proteins affect safety in gene therapy; thus, development of target-selective gene transfer methods is rational. We have developed organ-, region- and cell-selective gene transfer methods using non-viral vectors. To deliver foreign gene to liver parenchymal cells (hepatocytes), galactosylation of cationic liposome/plasmid DNA complex is useful strategy. Based on analyses for intrahepatic disposition characteristics and interaction with blood components, we formulated novel galactosylated lipoplex with regulated salt concentration to reduce particle size of lipoplex and to stabilize lipoplex simultaneously; as a consequence, we succeeded in improvement of hepatocyte-selective gene transfer after intraportal injection of the lipoplex in mice. On the other hand, administration routes are important for target-selective gene transfer. We discovered that simple instillation of naked plasmid DNA onto organ surface (the liver, kidney, spleen, stomach and lung) in mice and rats could result in effective and region-selective transgene expression. Neither physical force nor carriers are necessary for gene transfer onto organ surface mesothelial cells. To rationally improve transfection efficiency, mechanism of gene transfer should be elucidated. We clarified that Rac-mediated macropinocytosis was required for naked plasmid DNA transfer in gastric mesothelial cells.
Collapse
Affiliation(s)
- Shintaro Fumoto
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
20
|
Preparation and characterization of magnetic cationic liposome in gene delivery. Int J Pharm 2009; 366:211-7. [DOI: 10.1016/j.ijpharm.2008.09.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 08/19/2008] [Accepted: 09/07/2008] [Indexed: 11/18/2022]
|
21
|
KAWAKAMI S. Development and Application of Glycosylated Particulate Carriers for Delivery of Nucleic Acid Medicine. YAKUGAKU ZASSHI 2008; 128:1743-9. [DOI: 10.1248/yakushi.128.1743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shigeru KAWAKAMI
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
22
|
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29:3477-96. [PMID: 18499247 DOI: 10.1016/j.biomaterials.2008.04.036] [Citation(s) in RCA: 589] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 04/23/2008] [Indexed: 02/06/2023]
Abstract
Initially, gene therapy was viewed as an approach for treating hereditary diseases, but its potential role in the treatment of acquired diseases such as cancer is now widely recognized. The understanding of the molecular mechanisms involved in cancer and the development of nucleic acid delivery systems are two concepts that have led to this development. Systemic gene delivery systems are needed for therapeutic application to cells inaccessible by percutaneous injection and for multi-located tumor sites, i.e. metastases. Non-viral vectors based on the use of cationic lipids or polymers appear to have promising potential, given the problems of safety encountered with viral vectors. Using these non-viral vectors, the current challenge is to obtain a similarly effective transfection to viral ones. Based on the advantages and disadvantages of existing vectors and on the hurdles encountered with these carriers, the aim of this review is to describe the "perfect vector" for systemic gene therapy against cancer.
Collapse
Affiliation(s)
- Marie Morille
- Inserm U646, Ingénierie de la Vectorisation Particulaire, Université d'Angers, 10, rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
23
|
Higuchi Y, Kawakami S, Hashida M. [Development of cell-selective targeting systems of NFkappaB decoy for inflammation therapy]. YAKUGAKU ZASSHI 2008; 128:209-18. [PMID: 18239368 DOI: 10.1248/yakushi.128.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NFkappaB regulate several inflammatory related molecules and evoke immune and inflammatory response by several stimuli, therefore inhibition of NFkappaB activation would be a novel therapeutic strategy. To date, there are many conventional drugs including nonsteroldal or steroldal anti-inflammatory drugs or immune suppressors etc. were known to inhibit NFkappaB activation, however, several side effects were also reported. Recently, double stranded oligonucleotide including NFkappaB binding sequence, called NFkappaB decoy, was developed to prevent NFkappaB activation, which is powerful tool in a new class of anti-gene strategy for molecular therapy with low side effect. However, NFkappaB decoy is easily degraded by nuclease and rapidly excreted to urine, therefore it is necessary to develop carrier for NFkappaB decoy therapy. Here, we shall review delivery system for NFkappaB decoy and introduce our cell-selective delivery system for NFkappaB decoy using sugar decorated cationic liposomes.
Collapse
Affiliation(s)
- Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|
24
|
Shigeta K, Kawakami S, Higuchi Y, Okuda T, Yagi H, Yamashita F, Hashida M. Novel histidine-conjugated galactosylated cationic liposomes for efficient hepatocyte-selective gene transfer in human hepatoma HepG2 cells. J Control Release 2007; 118:262-70. [PMID: 17267065 DOI: 10.1016/j.jconrel.2006.12.019] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/13/2006] [Accepted: 12/14/2006] [Indexed: 11/16/2022]
Abstract
To enhance gene transfection to hepatocytes by cationic liposomes, it is necessary to overcome a number of barriers existing in the process from administration to gene expression. Recently we and other group have demonstrated that the escape of plasmid DNA (pDNA)/cationic liposome complexes (lipoplexes) from the endosome to cytoplasm was rate limiting. In this study, to enhance transfection efficiency by promoting the release of lipoplexes from the endosome to cytoplasm, we proposed utilizing the "proton sponge effect". Here, we synthesized a novel pH-sensitive histidine-modified galactosylated cholesterol derivative (Gal-His-C4-Chol), for a more efficient gene delivery to hepatocytes. Liposomes containing Gal-His-C4-Chol showed much greater transfection activity than conventional Gal-C4-Chol liposomes based on a receptor-mediated mechanism in HepG2 cells. Hence, this finding should contribute to the development of gene therapy using cationic liposomes toward their clinical application.
Collapse
Affiliation(s)
- Kosuke Shigeta
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials 2006; 28:1434-42. [PMID: 17141864 DOI: 10.1016/j.biomaterials.2006.11.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 11/07/2006] [Indexed: 11/27/2022]
Abstract
Although small interfering RNA (siRNA) is a potentially useful therapeutic approach to silence the targeted gene of a particular disease, its use is limited by its stability in vivo. For the liver parenchymal cell (PC)-selective delivery of siRNA, siRNA was complexed with galactosylated cationic liposomes. Galactosylated liposomes/siRNA complex exhibited a higher stability than naked siRNA in plasma. After intravenous administration of a galactosylated liposomes/siRNA complex, the siRNA did not undergo nuclease digestion and urinary excretion and was delivered efficiently to the liver and was detected in PC rather than liver non-parenchymal cells (NPC). Endogenous gene (Ubc13 gene) expression in the liver was inhibited by 80% when Ubc13-siRNA complexed with galactosylated liposomes was administered to mice at a dose of 0.29 nmol/g. In contrast, the bare cationic liposomes did not induce any silencing effect on Ubc13 gene expression. These results indicated that galactosylated liposomes/siRNA complex could induce gene silencing of endogenous hepatic gene expression. The interferon responses by galactosylated liposomes/siRNA complex were controlled by optimization of the sequence of siRNA. Also no liver toxicity due to galactosylated liposomes/siRNA complex was observed under any of the conditions tested. In conclusion, we demonstrated the hepatocyte-selective gene silencing by galactosylated liposomes following intravenous administration.
Collapse
Affiliation(s)
- Ayumi Sato
- GeneCare Research Institute Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa 247-0063, Japan
| | | | | | | | | |
Collapse
|