1
|
Jimoh YA, Lawal AO, Kade IJ, Olatunde DM, Oluwayomi O. Diphenyl diselenide modulate antioxidant status, inflammatory and redox-sensitive genes in diesel exhaust particle-induced neurotoxicity. Chem Biol Interact 2022; 367:110196. [PMID: 36174737 DOI: 10.1016/j.cbi.2022.110196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
This study seeks to determine the influence of diphenyl diselenide (DPDSe) on redox status, inflammatory and redox-sensitive genes in diesel exhaust particle (DEP)-induced neurotoxicity in male albino rats. Male Wistar albino rats were administered nasally with DEP (30 and 60 μg/kg) and treated with intraperitoneal administration of 10 mg/kg DPDSe. Non-enzymatic (lipid peroxidation and conjugated diene concentrations) and enzymatic (catalase, superoxide dismutase, glutathione peroxidase) antioxidant indices and activity of acetylcholinesterase enzyme were evaluated in brain tissues of the rats. Furthermore, the expression of genes linked to oxidative stress (HO-1, Nrf2), pro-inflammatory (NF-KB, IL-8, TNF-α) anti-inflammatory (IL-10) and brain-specific (GFAP, ENO-2) genes were also determined. The results indicated that DPDSe caused a notable reduction in the high levels of thiobarbituric acid reactive substances and conjugated diene observed in the brain of DEP-administered rats. DPDSe also reversed the observed reduction in catalase, superoxide dismutase and glutathione peroxidase enzyme activities in the brain of DEP-administered rats. Lastly, the downregulation of genes associated with redox homeostasis, anti-inflammatory and brain-specific genes and upregulation of pro-inflammatory genes observed in the DEP-treated groups were ameliorated by DPDSe. The immediate restoration of altered biochemical conditions and molecular expression in the brain of DEP-treated rats by DPDSe further validates its use as a promising therapeutic candidate for restoring neurotoxicity linked with DEP-induced oxidative stress.
Collapse
Affiliation(s)
- Yomade Ayodeji Jimoh
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | - Akeem Olalekan Lawal
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria.
| | - Ige Joseph Kade
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| | | | - Oluwafunso Oluwayomi
- Department of Biochemistry, Federal University of Technology, Akure, 340252, Nigeria
| |
Collapse
|
2
|
de Aquino Silva D, Silva MRP, Guerra GP, do Sacramento M, Alves D, Prigol M. 7-chloro-4-(phenylselanyl) quinoline co-treatment prevent oxidative stress in diabetic-like phenotype induced by hyperglycidic diet in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108892. [PMID: 32931926 DOI: 10.1016/j.cbpc.2020.108892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 09/06/2020] [Indexed: 01/03/2023]
Abstract
The goals of this work were to evaluate the effects produced by a hyperglycidic diet (HD) on Drosophila melanogaster and to verify the protective effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) on this model. Adult flies were divided into eight groups of 50 flies each: (1) RD, (regular diet) (2) RD + 4-PSQ (25 μM), (3) HD 5%, (4) HD 10%, (5) HD 30% (6) HD 5% + 4-PSQ (25 μM), (7) HD 10% + 4-PSQ (25 μM) and (8) HD 30% + 4-PSQ (25 μM). Flies were exposed to a diet containing sucrose and or 4-PSQ for ten days, according to each group. At the end of treatment survival rate, longevity, hatch rate, food intake, glucose and triglyceride levels, as well as, some markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD) and catalase (CAT) activities, protein thiol (PSH) and non-protein levels (NPSH) and cell viability assays (Resazurin and MTT) were evaluated. It was observed that HD's consumption was associated with lower survival of the flies, lower longevity, and increased levels of glucose, triglycerides, TBARS and increased SOD activities and CAT activities. Treatment with 25 μM 4-PSQ increased the satiety of flies, increased survival, reduced glucose, triglyceride and TBARS levels, increased hatching, and normalized SOD and CAT activities. These results suggest that 25 μM 4-PSQ had a potential antioxidant effect and provided greater satiety by attenuating the effects of high HD consumption on this model.
Collapse
Affiliation(s)
- Daiane de Aquino Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Márcia Rósula Poetini Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil
| | - Manoela do Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos - CCQFA, Universidade Federal de Pelotas, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas aplicadas às Moléculas Bioativas - Unipampa, Universidade Federal do Pampa - Campus Itaqui, Itaqui, RS 97650-000, Brazil.
| |
Collapse
|
3
|
Hypothalamic pathways regulate the anorectic action of p-chloro-diphenyl diselenide in rats. Eur J Pharmacol 2017; 815:241-250. [PMID: 28943102 DOI: 10.1016/j.ejphar.2017.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
Behavioral studies have suggested that (p-ClPhSe)2 elicits an anorectic-like action in rats by inducing multiple effects such as satiety-enhancing effect, malaise and specific flavor; however, the molecular mechanisms underlying its anorexigenic action remain unclarified. Here, male Sprague-Dawley rats received acute and sub-chronic intraperitoneal treatments with (p-ClPhSe)2; thereafter, in vivo and ex vivo analyses were carried out. The present study reveals that the reduction of food intake resulting from a single treatment with (p-ClPhSe)2 (1mg/kg, i.p.) was associated with decreased hypothalamic levels of pro-melanin-concentrating hormone (pro-MCH) and orexin precursor. In addition, repeated administrations of (p-ClPhSe)2 (10mg/kg; i.p.) for 7 days induced sustained food intake suppression, body weight loss and white fat reduction. Measurements of brown adipose tissue content and temperature as well as data obtained from a pair-fed group indicated that the effects of (p-ClPhSe)2 on the body weight are closely related to its anorexigenic actions, ruling out the possibility of increased thermogenesis. Furthermore, (p-ClPhSe)2 reduced the hypothalamic orexin precursor levels when repeatedly administered to rats. Sub-chronic treatment with (p-ClPhSe)2 caused a decrease of serum triglyceride levels and down-regulation of hepatic cholesterol content. Therefore, the current study characterized the anorectic and reducing body weight actions of (p-ClPhSe)2 in Sprague-Dawley rats. Besides, the set of results suggests that food intake suppressant effects triggered after (p-ClPhSe)2 administration to rats are mainly related with the lower orexin levels in hypothalamus after acute and sub-chronic treatments.
Collapse
|
4
|
Effects of diphenyl and p-chloro-diphenyl diselenides on feeding behavior of rats. Psychopharmacology (Berl) 2015; 232:2239-49. [PMID: 25563236 DOI: 10.1007/s00213-014-3856-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/20/2014] [Indexed: 01/23/2023]
Abstract
RATIONALE The searching for safe and effective antiobesity drugs has been the subject of intense research. Previous studies have shown several pharmacological applications of organoselenium compounds; however, their possible anorectic-like actions have not been investigated. OBJECTIVE This study aims to investigate the effects of (PhSe)2 and (p-ClPhSe)2 on feeding behavior of rats and their potential as weight-reducing agents. METHODS The effects of intraperitoneal administration of diselenides were investigated through the microstructural pattern of feeding behavior, behavioral satiety sequence (BSS), hypothalamic serotonin (5-HT) uptake, body weight, and epididymal fat content of male rats. RESULTS Our findings demonstrated that food intake of fasted rats was reduced by both diselenides (1 and 10 mg/kg). Diphenyl diselenide [(PhSe)2] (1 mg/kg) and p-chloro-diphenyl diselenide [(p-ClPhSe)2] (10 mg/kg) decreased the frequency, mean duration, and mean size of meals compared with the control treatment. The BSS structure was preserved when organoselenium compounds (1 mg/kg) were administered, and it was associated to a displacement to the left when the resting period started indicating a satiating action. Inhibition of 5-HT uptake in the hypothalamus (∼20 %) was also found in rats treated with low doses of (PhSe)2 and (p-ClPhSe)2 (1 mg/kg). Treatments with a high dose of both diselenides (10 mg/kg) carried out for 7 days induced weight loss and epididymal fat reduction in sated rats. CONCLUSION This study suggests that diselenides caused a satiating action in rats that could be partially explained by the inhibition of hypothalamic 5-HT uptake. These organoselenium compounds were potential weight-reducing agents when repeatedly administered.
Collapse
|
5
|
Acker CI, Nogueira CW. Diphenyl diselenide protects against metabolic disorders induced by acephate acute exposure in rats. ENVIRONMENTAL TOXICOLOGY 2014; 29:665-671. [PMID: 22778074 DOI: 10.1002/tox.21793] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/04/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
The present study investigated the effect of diphenyl diselenide [(PhSe)2 ] on metabolic disorders induced by acephate acute exposure in rats. We also investigated a possible mechanism of action of (PhSe)2 against hyperglycemia induced by acephate. (PhSe)2 was administered to rats at a dose of 10 or 30 mg/kg by oral gavage (p.o.) 1 hour prior to acephate administration (140 mg/kg; p.o.). Glucose and corticosterone levels as well as the lipid status were determined in plasma of rats. Cardiovascular risk factors and the atherogenic index were calculated. Glycogen levels as well as tyrosine aminotransferase (TAT) and glucose-6-phosphatase (G6Pase) activities were determined in livers of rats. Cerebral acetylcholinesterase (AChE) activity was assayed. Acephate induced an increase in glucose and corticosterone levels as well as in TAT and G6Pase activities. AChE activity was inhibited by acephate. Triglyceride (TG) levels and the cardiovascular risk factor TG/high-density lipoprotein-cholesterol (HDL) were increased by acephate. (PhSe)2 was effective against the metabolic disorders induced by acephate acute exposure in rats.
Collapse
Affiliation(s)
- Carmine Inês Acker
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brasil
| | | |
Collapse
|
6
|
Hassan W, Silva CEB, Mohammadzai IU, da Rocha JBT, Landeira-Fernandez J. Association of oxidative stress to the genesis of anxiety: implications for possible therapeutic interventions. Curr Neuropharmacol 2014; 12:120-39. [PMID: 24669207 PMCID: PMC3964744 DOI: 10.2174/1570159x11666131120232135] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 06/16/2013] [Accepted: 11/02/2013] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress caused by reactive species, including reactive oxygen species, reactive nitrogen species, and unbound, adventitious metal ions (e.g., iron [Fe] and copper [Cu]), is an underlying cause of various neurodegenerative diseases. These reactive species are an inevitable by-product of cellular respiration or other metabolic processes that may cause the oxidation of lipids, nucleic acids, and proteins. Oxidative stress has recently been implicated in depression and anxiety-related disorders. Furthermore, the manifestation of anxiety in numerous psychiatric disorders, such as generalized anxiety disorder, depressive disorder, panic disorder, phobia, obsessive-compulsive disorder, and posttraumatic stress disorder, highlights the importance of studying the underlying biology of these disorders to gain a better understanding of the disease and to identify common biomarkers for these disorders. Most recently, the expression of glutathione reductase 1 and glyoxalase 1, which are genes involved in antioxidative metabolism, were reported to be correlated with anxiety-related phenotypes. This review focuses on direct and indirect evidence of the potential involvement of oxidative stress in the genesis of anxiety and discusses different opinions that exist in this field. Antioxidant therapeutic strategies are also discussed, highlighting the importance of oxidative stress in the etiology, incidence, progression, and prevention of psychiatric disorders.
Collapse
Affiliation(s)
- Waseem Hassan
- Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | - Imdad Ullah Mohammadzai
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Joao Batista Teixeira da Rocha
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
7
|
Chong ZZ, Maiese K. Mammalian target of rapamycin signaling in diabetic cardiovascular disease. Cardiovasc Diabetol 2012; 11:45. [PMID: 22545721 PMCID: PMC3398846 DOI: 10.1186/1475-2840-11-45] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another 200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals. Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury, and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of diabetes mellitus in the cardiovascular system.
Collapse
|
8
|
Prauchner CA, Prestes ADS, da Rocha JBT. Effects of diphenyl diselenide on oxidative stress induced by sepsis in rats. Pathol Res Pract 2012; 207:554-8. [PMID: 21856092 DOI: 10.1016/j.prp.2011.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 06/02/2011] [Accepted: 06/08/2011] [Indexed: 01/03/2023]
Abstract
Sepsis is a potentially deadly complication that can be caused by different factors. Actually, it is known that oxidative stress is involved in the pathogenesis of sepsis. Thus, the aim of this study was to evaluate the effect of diphenyl diselenide (PhSe)(2), an emergent compound, on oxidative stress parameters induced by sepsis in rats. Animals were pre-injected with (PhSe)(2) or vehicle. Twenty-four hours later, sepsis was induced by cecal ligation puncture (CLP). After 12 h, liver was taken for thiobarbituric acid reactive species (TBARS) measurement, δ-aminolevunic acid dehydratase (δ-ALA-D), Cu/Zn superoxide dismutase (Cu/Zn SOD) and catalase (CAT) activities assay. The sepsis increased TBARS, inhibited δ-ALA-D, activated Cu/Zn SOD and had a tendency to decrease CAT activity. However, (PhSe)(2) prevented the TBARS formation, but did not prevent the inhibition of δ-ALA-D activity in the animals with damage. Thus, this study showed that (PhSe)(2) partially prevents the oxidative stress induced by sepsis, indicating the potential of this compound as a treatment for this pathology. Nevertheless, more tests should be performed to confirm the hypothesis suggested here.
Collapse
Affiliation(s)
- Carlos A Prauchner
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | |
Collapse
|
9
|
Rocha JBT, Saraiva RA, Garcia SC, Gravina FS, Nogueira CW. Aminolevulinate dehydratase (δ-ALA-D) as marker protein of intoxication with metals and other pro-oxidant situations. Toxicol Res (Camb) 2012. [DOI: 10.1039/c2tx20014g] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 2011; 85:1313-59. [DOI: 10.1007/s00204-011-0720-3] [Citation(s) in RCA: 330] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 05/18/2011] [Indexed: 02/07/2023]
|
11
|
Maiese K, Chong ZZ, Shang YC, Hou J. Novel avenues of drug discovery and biomarkers for diabetes mellitus. J Clin Pharmacol 2011; 51:128-52. [PMID: 20220043 PMCID: PMC3033756 DOI: 10.1177/0091270010362904] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Globally, developed nations spend a significant amount of their resources on health care initiatives that poorly translate into increased population life expectancy. As an example, the United States devotes 16% of its gross domestic product to health care, the highest level in the world, but falls behind other nations that enjoy greater individual life expectancy. These observations point to the need for pioneering avenues of drug discovery to increase life span with controlled costs. In particular, innovative drug development for metabolic disorders such as diabetes mellitus becomes increasingly critical given that the number of diabetic people will increase exponentially over the next 20 years. This article discusses the elucidation and targeting of novel cellular pathways that are intimately tied to oxidative stress in diabetes mellitus for new treatment strategies. Pathways that involve wingless, β-nicotinamide adenine dinucleotide (NAD(+)) precursors, and cytokines govern complex biological pathways that determine both cell survival and longevity during diabetes mellitus and its complications. Furthermore, the role of these entities as biomarkers for disease can further enhance their utility irrespective of their treatment potential. Greater understanding of the intricacies of these unique cellular mechanisms will shape future drug discovery for diabetes mellitus to provide focused clinical care with limited or absent long-term complications.
Collapse
Affiliation(s)
- Kenneth Maiese
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
12
|
Puntel GO, Carvalho NR, Amaral GP, Lobato LD, Silveira SO, Daubermann MF, Barbosa NV, Rocha JBT, Soares FAA. Therapeutic cold: An effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res 2010; 45:125-38. [DOI: 10.3109/10715762.2010.517252] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Maiese K, Shang YC, Chong ZZ, Hou J. Diabetes mellitus: channeling care through cellular discovery. Curr Neurovasc Res 2010; 7:59-64. [PMID: 20158461 DOI: 10.2174/156720210790820217] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/29/2009] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) impacts a significant portion of the world's population and care for this disorder places an economic burden on the gross domestic product for any particular country. Furthermore, both Type 1 and Type 2 DM are becoming increasingly prevalent and there is increased incidence of impaired glucose tolerance in the young. The complications of DM are protean and can involve multiple systems throughout the body that are susceptible to the detrimental effects of oxidative stress and apoptotic cell injury. For these reasons, innovative strategies are necessary for the implementation of new treatments for DM that are generated through the further understanding of cellular pathways that govern the pathological consequences of DM. In particular, both the precursor for the coenzyme beta-nicotinamide adenine dinucleotide (NAD(+)), nicotinamide, and the growth factor erythropoietin offer novel platforms for drug discovery that involve cellular metabolic homeostasis and inflammatory cell control. Interestingly, these agents and their tightly associated pathways that consist of cell cycle regulation, protein kinase B, forkhead transcription factors, and Wnt signaling also function in a broader sense as biomarkers for disease onset and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
14
|
Shang YC, Chong ZZ, Hou J, Maiese K. FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis. Curr Neurovasc Res 2010; 6:223-38. [PMID: 19807657 DOI: 10.2174/156720209789630302] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/31/2009] [Indexed: 12/16/2022]
Abstract
Microglia of the central nervous system have a dual role in the ability to influence the survival of neighboring cells. During inflammatory cell activation, microglia can lead to the disposal of toxic cellular products and permit tissue regeneration, but microglia also may lead to cellular destruction with phagocytic removal. For these reasons, it is essential to elucidate not only the underlying pathways that control microglial activation and proliferation, but also the factors that determine microglial survival. In this regard, we investigated in the EOC 2 microglial cell line with an oxygen-glucose deprivation (OGD) injury model of oxidative stress the role of the "O" class forkhead transcription factor FoxO3a that in some scenarios is closely linked to immune system function. We demonstrate that FoxO3a is a necessary element in the control of early and late apoptotic injury programs that involve membrane phosphatidylserine externalization and nuclear DNA degradation, since transient knockdown of FoxO3a in microglia preserves cellular survival 24 hours following OGD exposure. However, prior to the onset of apoptotic injury, FoxO3a facilitates the activation and proliferation of microglia as early as 3 hours following OGD exposure that occurs in conjunction with the trafficking of the unphosphorylated and active post-translational form of FoxO3a from the cytoplasm to the cell nucleus. FoxO3a also can modulate apoptotic mitochondrial signal transduction pathways in microglia, since transient knockdown of FoxO3a prevents mitochondrial membrane depolarization as well as the release of cytochrome c during OGD. Control of this apoptotic cascade also extends to progressive caspase activation as early as 1 hour following OGD exposure. The presence of FoxO3a is necessary for the expression of cleaved (active) caspase 3, 8, and 9, since loss of FoxO3a abrogates the induction of caspase activity. Interestingly, elimination of FoxO3a reduced caspase 9 activity to a lesser extent than that noted with caspase 3 and 8 activities, suggesting that FoxO3a in relation to caspase 9 may be more reliant upon other signal transduction pathways potentially independent from caspase 3 and 8.
Collapse
Affiliation(s)
- Yan Chen Shang
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
15
|
Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules 2009; 14:3446-85. [PMID: 19783937 PMCID: PMC2756609 DOI: 10.3390/molecules14093446] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/08/2009] [Accepted: 09/08/2009] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide, the amide form of vitamin B(3) (niacin), is changed to its mononucleotide compound with the enzyme nicotinic acide/nicotinamide adenylyltransferase, and participates in the cellular energy metabolism that directly impacts normal physiology. However, nicotinamide also influences oxidative stress and modulates multiple pathways tied to both cellular survival and death. During disorders that include immune system dysfunction, diabetes, and aging-related diseases, nicotinamide is a robust cytoprotectant that blocks cellular inflammatory cell activation, early apoptotic phosphatidylserine exposure, and late nuclear DNA degradation. Nicotinamide relies upon unique cellular pathways that involve forkhead transcription factors, sirtuins, protein kinase B (Akt), Bad, caspases, and poly (ADP-ribose) polymerase that may offer a fine line with determining cellular longevity, cell survival, and unwanted cancer progression. If one is cognizant of the these considerations, it becomes evident that nicotinamide holds great potential for multiple disease entities, but the development of new therapeutic strategies rests heavily upon the elucidation of the novel cellular pathways that nicotinamide closely governs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|