1
|
Khakpoor M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Nasehi M. The effect of GABA-B receptors in the basolateral amygdala on passive avoidance memory impairment induced by MK-801 in rats. Behav Brain Res 2021; 409:113313. [PMID: 33891976 DOI: 10.1016/j.bbr.2021.113313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
MK-801 (dizocilpine) is a potent non-competitive N-methyl-[D]-aspartate (NMDA) receptor antagonist that affects cognitive function, learning, and memory. As we know, NMDA receptors are significantly involved in memory function, as well as GABA (Gamma-Aminobutyric acid) receptors. In this study, we aimed to discover the effect of GABA-B receptors in the basolateral amygdala (BLA) on MK-801-induced memory impairment. We used 160 male Wistar rats. The shuttle box was used to evaluate passive avoidance memory and locomotion apparatus was used to evaluate locomotor activity. MK-801 (0.125, 0.25, and 0.5 μg/rat), baclofen (GABA-B agonist, 0.0001, 0.001, and 0.01 μg/rat) and phaclofen (GABA-B antagonist, 0.0001, 0.001, and 0.01 μg/rat) were injected intra-BLA, after the training. The results showed that MK-801 at the dose of 0.5 μg/rat, baclofen at the doses of 0.001 and 0.01 μg/rat, and phaclofen at the doses of 0.001 and 0.01 μg/rat, impaired passive avoidance memory. Locomotor activity did not alter in all groups. Furthermore, the subthreshold dose of both baclofen (0.0001 μg/rat) and phaclofen (0.0001 μg/rat) restored the impairment effect of MK-801 (0.5 μg/rat) on memory. Also, both baclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 μg/rat) and phaclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 and 0.25 μg/rat) on passive avoidance memory. In conclusion, our results indicated that BLA GABA-B receptors can alter the effect of NMDA inactivation on passive avoidance memory.
Collapse
Affiliation(s)
- Mitra Khakpoor
- Department of Basic Science, Farhangian University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Shang X, You C, Li X, Yuan L, Jin M, Zhang X. Involvement of 5-HT2 serotonin receptors in cognitive defects induced by aristolochic acid I in mice. Toxicology 2020; 447:152624. [PMID: 33186629 DOI: 10.1016/j.tox.2020.152624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/15/2020] [Accepted: 11/01/2020] [Indexed: 11/17/2022]
Abstract
Aristolochic acids (AAs) are a natural bioactive substance found in Chinese herbs, which are widely used for treating diseases. Many studies have demonstrated that AAs have various pharmacological function, while increasing reports indicated its toxicity. However, the role AAs in cognition remains poorly understood. This study explored the neurotoxic effect of aristolochic acid I (AAI), the most toxic component of the AAs family, on hippocampal synaptic plasticity and spatial cognition in mice. C57BL/6 mice were exposed to 5 mg/kg AAI for 4 weeks. After chronic treatment, AAI considerably increased the level of anxiety and the degree of behavioral despair in mice. Working and reference error rates were higher in the AAI exposed mice than in the control. This was further validated by the molecular docking studies, which AAI might interact with 5-HT2 serotonin receptor (5-HT2AR). Mechanism investigation indicated that AAI triggered inflammation in the hippocampus of mice through increasing the activity of Tnf-α-NF-κB-IL-6 signaling pathway. Conclusively, chronic AAI administration causes inflammation, and it possibly also serves as a potential antagonist of 5-HT2AR to influence the cognition function in C57BL/6 mice.
Collapse
Affiliation(s)
- Xueliang Shang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| | - Congying You
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO. 44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Lu Yuan
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, PR China.
| | - Xiujun Zhang
- School of Psychology and Mental Health, North China University of Science and Technology, 21 Bohai Road, Tang'shan 063210, Hebei Province, PR China.
| |
Collapse
|
3
|
Sharifi KA, Rezayof A, Alijanpour S, Zarrindast MR. GABA-cannabinoid interplays in the dorsal hippocampus and basolateral amygdala mediate morphine-induced amnesia. Brain Res Bull 2020; 157:61-68. [DOI: 10.1016/j.brainresbull.2020.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/22/2022]
|
4
|
Ebrahimi-Ghiri M, Rostampour M, Jamshidi-Mehr M, Nasehi M, Zarrindast MR. Role of CA1 GABAA and GABAB receptors on learning deficit induced by D-AP5 in passive avoidance step-through task. Brain Res 2018; 1678:164-173. [DOI: 10.1016/j.brainres.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/24/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
|
5
|
Sharifi KA, Rezayof A, Torkaman-Boutorabi A, Zarrindast MR. The major neurotransmitter systems in the basolateral amygdala and the ventral tegmental area mediate morphine-induced memory consolidation impairment. Neuroscience 2017; 353:7-16. [DOI: 10.1016/j.neuroscience.2017.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/11/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
|
6
|
Agusti A, Llansola M, Hernández-Rabaza V, Cabrera-Pastor A, Montoliu C, Felipo V. Modulation of GABAA receptors by neurosteroids. A new concept to improve cognitive and motor alterations in hepatic encephalopathy. J Steroid Biochem Mol Biol 2016; 160:88-93. [PMID: 26307490 DOI: 10.1016/j.jsbmb.2015.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022]
Abstract
Hepatic encephalopathy (HE) is a complex neuropsychiatric syndrome affecting patients with liver diseases, mainly those with liver cirrhosis. The mildest form of HE is minimal HE (MHE), with mild cognitive impairment, attention deficit, psychomotor slowing and impaired visuo-motor and bimanual coordination. MHE may progress to clinical HE with worsening of the neurological alterations which may lead to reduced consciousness and, in the worse cases, may progress to coma and death. HE affects several million people in the world and is a serious health, social and economic problem. There are no specific treatments for the neurological alterations in HE. The mechanisms underlying the cognitive and motor alterations in HE are beginning to be clarified in animal models. These studies have allowed to design and test in animal models of HE new therapeutic approaches which have successfully restored cognitive and motor function in rats with HE. In this article we review the evidences showing that.
Collapse
Affiliation(s)
- Ana Agusti
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
7
|
Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, Feng H, Chen Z, Zhu G. Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res 2015; 1601:92-101. [PMID: 25598203 DOI: 10.1016/j.brainres.2015.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/07/2015] [Accepted: 01/10/2015] [Indexed: 11/24/2022]
Abstract
With the rapid increase in the number of mobile phone users, the potential adverse effects of the electromagnetic field radiation emitted by a mobile phone has become a serious concern. This study demonstrated, for the first time, the blood-brain barrier and cognitive changes in rats exposed to 900 MHz electromagnetic field (EMF) and aims to elucidate the potential molecular pathway underlying these changes. A total of 108 male Sprague-Dawley rats were exposed to a 900 MHz, 1 mW/cm(2) EMF or sham (unexposed) for 14 or 28 days (3h per day). The specific energy absorption rate (SAR) varied between 0.016 (whole body) and 2 W/kg (locally in the head). In addition, the Morris water maze test was used to examine spatial memory performance determination. Morphological changes were investigated by examining ultrastructural changes in the hippocampus and cortex, and the Evans Blue assay was used to assess blood brain barrier (BBB) damage. Immunostaining was performed to identify heme oxygenase-1 (HO-1)-positive neurons and albumin extravasation detection. Western blot was used to determine HO-1 expression, phosphorylated ERK expression and the upstream mediator, mkp-1 expression. We found that the frequency of crossing platforms and the percentage of time spent in the target quadrant were lower in rats exposed to EMF for 28 days than in rats exposed to EMF for 14 days and unexposed rats. Moreover, 28 days of EMF exposure induced cellular edema and neuronal cell organelle degeneration in the rat. In addition, damaged BBB permeability, which resulted in albumin and HO-1 extravasation were observed in the hippocampus and cortex. Thus, for the first time, we found that EMF exposure for 28 days induced the expression of mkp-1, resulting in ERK dephosphorylation. Taken together, these results demonstrated that exposure to 900 MHz EMF radiation for 28 days can significantly impair spatial memory and damage BBB permeability in rat by activating the mkp-1/ERK pathway.
Collapse
Affiliation(s)
- Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liming Yang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Liang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Yuan S, Zhang X, Bo Y, Li W, Zhang H, Jiang Q. The effects of electroacupuncture treatment on the postoperative cognitive function in aged rats with acute myocardial ischemia-reperfusion. Brain Res 2014; 1593:19-29. [PMID: 25446007 DOI: 10.1016/j.brainres.2014.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/05/2014] [Accepted: 10/01/2014] [Indexed: 01/06/2023]
Abstract
Many literatures have proven that postoperative cognitive dysfunction (POCD) was very common in old patients after the injury of acute myocardial ischemia-reperfusion (AMIR) clinically such as the off-pump coronary artery bypass surgery (OPCAB) without definite mechanism; however, reports on the animal experiments were rarely seen. We hypothesized that AMIR could contribute to cognitive dysfunction, and this severe injury might be impeded by EA via hindering neuroinflammation and oxidative stress response as well as modulating the balance of the autonomic nervous system. The aged male Sprague Dawley rats were randomly assigned into three experimental groups: sham (sham operation), AMIR, and EA (electroacupunture treatment, acupoints GV20 and ST36+AMIR) groups. The survival rate, heart rate variability analysis, examination of pathology within the hippocampal CA1, oxidative stress, systemic inflammation and the behavior testing were evaluated by their corresponding methods. The results showed that the rats subjected to AMIR had lower survival rates, higher malondialdehyde (MDA), decreased superoxide dismutase (SOD) activity, more microglial activation, and presented evidence of severe brain injury and cognitive dysfunction on the 1st, 3rd, 7th days after reperfusion compared to sham-operated controls. Most important of all, the above damages induced by the AMIR were significantly improved by the EA treatment. Our findings indicated that EA treatment could be a neuroprotective therapy for the cognitive dysfunction induced by the AMIR event, which might be attributablefor balancing the autonomic nervous system, inhibiting the neuronic apoptosis, hindering microglial activation, attenuating oxidative stress and restraining the central and peripheral inflammation reactions.
Collapse
Affiliation(s)
- Shaoting Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China.
| | - Xuezhong Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China
| | - Yulong Bo
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China
| | - Wenzhi Li
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China.
| | - Hongyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China
| | - Qiliang Jiang
- Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, The Hei Long Jiang Province Key Lab of Research on Anesthesiology and Critical Care Medicine,Harbin 150081, China
| |
Collapse
|
9
|
Torkaman-Boutorabi A, Soltani S, Oryan S, Ebrahimi-Ghiri M, Torabi-Nami M, Zarrindast MR. Involvement of the dorsal hippocampal GABA-A receptors in histamine-induced facilitation of memory in the Morris water maze. Pharmacol Biochem Behav 2013; 105:142-50. [PMID: 23438692 DOI: 10.1016/j.pbb.2013.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 01/31/2023]
Abstract
Several types of learning and memory processes are regulated by the hippocampus which is an important subcortical structure in the mammalians' brain. Previous investigations have shown that different receptor systems in the CA1 region of hippocampus are involved in learning and memory functions. Investigating the possible influence of dorsal hippocampal GABA-A receptors on histamine-induced spatial facilitation in adult male Wistar rats was the focus of the current study. Rats were bilaterally implanted with dorsal hippocampal (CA1) cannulae, recovered from surgery and then trained in Morris water maze (MWM) for 4 consecutive days. A block of four trials was given each day. All drugs were injected into CA1 regions, 5min before training. Pre-training intra-CA1 microinjection of muscimol, a GABA-A receptor agonist, at the dose of 0.01 or 0.02μg/rat, increased the traveled distance or the escape latency and traveled distance to the hidden platform, respectively, indicating a water maze spatial acquisition impairment. Intra-CA1 administration of bicuculline, a GABA-A receptor antagonist however, significantly decreased the escape latency and traveled distance to the hidden platform, suggesting a spatial learning facilitation. On the other hand, pre-training intra-CA1 microinjection of the subthreshold dose of muscimol plus different doses of histamine (0.025, 0.05 and 0.1μg/rat) did not alter the histamine response. Meanwhile, the co-administration of the ineffective dose of bicuculline together with histamine potentiated the spatial learning. Moreover, bilateral infusion of histamine (0.025, 0.05 and 0.1μg/rat) by itself, facilitated the spatial learning. Notably, the drug injections had no effect on swimming speed during the MWM training sessions. Our results suggest that the dorsal hippocampal (CA1) GABA-A mechanism(s) may influence the histamine-induced facilitation of spatial acquisition.
Collapse
Affiliation(s)
- Anahita Torkaman-Boutorabi
- Department of Neuroscience, School of Advanced Technologies in medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
10
|
Cooperative interaction between the basolateral amygdala and ventral tegmental area modulates the consolidation of inhibitory avoidance memory. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:54-61. [PMID: 23063440 DOI: 10.1016/j.pnpbp.2012.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/16/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
Abstract
The aim of the current study was to examine the existence of a cooperative interaction between the basolateral nucleus of amygdala (BLA) and the ventral tegmental area (VTA) in inhibitory avoidance task. The BLA and the VTA regions of adult male Wistar rats were simultaneously cannulated and memory consolidation was measured in a step-through type inhibitory avoidance apparatus. Post-training microinjection of muscimol, a potent GABA-A receptor agonist (0.01-0.02 μg/rat), into the VTA impaired memory in a dose-dependent manner. Post-training intra-BLA microinjection of NMDA (0.02-0.04 μg/rat), 5 min before the intra-VTA injection of muscimol (0.02 μg/rat), attenuated muscimol-induced memory impairment. Microinjection of a NMDA receptor antagonist, D-AP5 (0.02-0.06 μg/rat) into the BLA inhibited NMDA effect on the memory impairment induced by intra-VTA microinjection of muscimol. On the other hand, post-training intra-BLA microinjection of muscimol (0.02-0.04 μg/rat) dose-dependently decreased step-through latency, indicating an impairing effect on memory. This impairing effect was however significantly attenuated by intra-VTA microinjection of NMDA (0.01-0.03 μg/rat). Intra-VTA microinjection of D-AP5 (0.02-0.08 μg/rat), 5 min prior to NMDA injection, inhibited NMDA response on the impairing effect induced by intra-BLA microinjection of muscimol. It should be considered that post-training microinjection of the same doses of NMDA or D-AP5 into the BLA or the VTA alone had no effect on memory consolidation. The data suggest that the relationship between the BLA and the VTA in mediating memory consolidation in inhibitory avoidance learning may be dependent on a cooperative interaction between the glutamatergic and GABAergic systems via NMDA and GABA-A receptors.
Collapse
|
11
|
Hao D, Yang L, Chen S, Tian Y, Wu S. 916 MHz electromagnetic field exposure affects rat behavior and hippocampal neuronal discharge. Neural Regen Res 2012; 7:1488-92. [PMID: 25657684 PMCID: PMC4308780 DOI: 10.3969/j.issn.1673-5374.2012.19.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 05/16/2012] [Indexed: 11/23/2022] Open
Abstract
Wistar rats were exposed to a 916 MHz, 10 W/m2 mobile phone electromagnetic field for 6 hours a day, 5 days a week. Average completion times in an eight-arm radial maze were longer in the exposed rats than control rats after 4–5 weeks of exposure. Error rates in the exposed rats were greater than the control rats at 6 weeks. Hippocampal neurons from the exposed rats showed irregular firing patterns during the experiment, and they exhibited decreased spiking activity 6–9 weeks compared with that after 2–5 weeks of exposure. These results indicate that 916 MHz electromagnetic fields influence learning and memory in rats during exposure, but long-term effects are not obvious.
Collapse
Affiliation(s)
- Dongmei Hao
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Lei Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Su Chen
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Yonghao Tian
- College of Biomedical Engineering, South-Central University for Nationalities, Wuhan 430074, Hubei Province, China
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats. Eur J Pharmacol 2012; 683:132-9. [DOI: 10.1016/j.ejphar.2012.02.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/20/2012] [Accepted: 02/26/2012] [Indexed: 12/17/2022]
|
13
|
Effects of long-term electromagnetic field exposure on spatial learning and memory in rats. Neurol Sci 2012; 34:157-64. [PMID: 22362331 DOI: 10.1007/s10072-012-0970-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
With the development of communications industry, mobile phone plays an important role in daily life. Whether or not the electromagnetic radiation emitted by mobile phone causes any adverse effects on brain function has become of a great concern. This paper investigated the effect of electromagnetic field on spatial learning and memory in rats. 32 trained Wistar rats were divided into two groups: exposure group and control group. The exposure group was exposed to 916 MHz, 10w/m2 mobile phone electromagnetic field (EMF) 6 h a day, 5 days a week, 10 weeks. The completion time, number of total errors and the neuron discharge signals were recorded while the rats were searching for food in an eight-arm radial maze at every weekend. The neuron signals of one exposed rat and one control rat in the maze were obtained by the implanted microelectrode arrays in their hippocampal regions. It can be seen that during the weeks 4-5 of the experiment, the average completion time and error rate of the exposure group were longer and larger than that of control group (p < 0.05). During the weeks 1-3 and 6-9, they were close to each other. The hippocampal neurons showed irregular firing patterns and more spikes with shorter interspike interval during the whole experiment period. It indicates that the 916 MHz EMF influence learning and memory in rats to some extent in a period during exposure, and the rats can adapt to long-term EMF exposure.
Collapse
|
14
|
Nazari-Serenjeh F, Rezayof A, Zarrindast MR. Functional correlation between GABAergic and dopaminergic systems of dorsal hippocampus and ventral tegmental area in passive avoidance learning in rats. Neuroscience 2011; 196:104-14. [PMID: 21925239 DOI: 10.1016/j.neuroscience.2011.08.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 01/09/2023]
Abstract
The aim of the present study was to investigate the existence of possible functional correlation between GABA-A and dopamine (DA) receptors of the dorsal hippocampus and the ventral tegmental area (VTA) in passive avoidance learning. Two guide cannulas were stereotaxically implanted in the CA1 region of the dorsal hippocampus and the VTA of male Wistar rats. In order to measure memory retrieval, the animals were trained in a step-through type passive avoidance task and tested 24 h after training. Post-training intra-CA1 administration of a GABA-A receptor agonist, muscimol (0.01-0.02 μg/rat) dose-dependently impaired memory retrieval. Post-training intra-VTA administration of SCH23390 (a dopamine D1 receptor antagonist; 0.1-0.8 μg/rat) or sulpiride (a D2 receptor antagonist; 0.5-1.5 μg/rat) decreased the inhibitory effect of muscimol (0.02 μg/rat, intra-CA1) on memory retrieval. Intra-VTA administration of the same doses of SCH23390, but not sulpiride, decreased the step-through latencies. On the other hand, post-training administration of muscimol (0.02 μg/rat) into the VTA inhibited memory retrieval. The administration of SCH23390 (0.01-0.2 μg/rat) or sulpiride (0.1-1 μg/rat) into the CA1 region, immediately after training, had no effect on memory retrieval. Furthermore, the amnesic effect of intra-VTA administration of muscimol was significantly decreased by intra-CA1 administration of sulpiride (0.5 and 1 μg/rat, intra-CA1), but not SCH23390. The practical conclusion is that the relationship between the hippocampus and the VTA may regulate memory formation in passive avoidance learning. Also, the correlation between the hippocampus and VTA by a dopaminergic system may be involved in mediating muscimol-induced amnesia.
Collapse
Affiliation(s)
- F Nazari-Serenjeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | |
Collapse
|