1
|
Isaiah S, Loots DT, van Furth AMT, Davoren E, van Elsland S, Solomons R, van der Kuip M, Mason S. Urinary markers of Mycobacterium tuberculosis and dysbiosis in paediatric tuberculous meningitis cases undergoing treatment. Gut Pathog 2024; 16:14. [PMID: 38475868 PMCID: PMC10936073 DOI: 10.1186/s13099-024-00609-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The pathogenesis of tuberculous meningitis (TBM) involves infection by Mycobacterium tuberculosis in the meninges and brain. However, recent studies have shown that the immune response and inflammatory processes triggered by TBM can have significant effects on gut microbiota. Disruptions in the gut microbiome have been linked to various systemic consequences, including altered immunity and metabolic dysregulation. Inflammation caused by TBM, antibiotic treatment, and changes in host immunity can all influence the composition of gut microbes. This complex relationship between TBM and the gut microbiome is of great importance in clinical settings. To gain a deeper understanding of the intricate interactions between TBM and the gut microbiome, we report innovative insights into the development of the disease in response to treatment. Ultimately, this could lead to improved outcomes, management strategies and quality of life for individuals affected by TBM. METHOD We used a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) approach to investigate metabolites associated with gut metabolism in paediatric participants by analysing the urine samples collected from a control group (n = 40), and an experimental group (n = 35) with confirmed TBM, which were subdivided into TBM stage 1 (n = 8), stage 2 (n = 11) and stage 3 (n = 16). FINDINGS Our metabolomics investigation showed that, of the 78 initially selected compounds of microbiome origin, eight unique urinary metabolites were identified: 2-methylbutyrlglycine, 3-hydroxypropionic acid, 3-methylcrotonylglycine, 4-hydroxyhippuric acid, 5-hydroxyindoleacetic acid, 5-hydroxyhexanoic acid, isobutyrylglycine, and phenylacetylglutamine as urinary markers of dysbiosis in TBM. CONCLUSION These results - which are supported by previous urinary studies of tuberculosis - highlight the importance of gut metabolism and of identifying corresponding microbial metabolites as novel points for the foundation of improved management of TBM patients.
Collapse
Affiliation(s)
- Simon Isaiah
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Du Toit Loots
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - A Marceline Tutu van Furth
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Elmarie Davoren
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Sabine van Elsland
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martijn van der Kuip
- Vrije Universiteit, Pediatric Infectious Diseases and Immunology, Amsterdam University Medical Centers, Emma Children's Hospital, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
2
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
3
|
Guo M, Nanda S, Chen S, Lü J, Yang C, Liu Z, Guo W, Qiu B, Zhang Y, Zhou X, Pan H. Oral RNAi toxicity assay suggests clathrin heavy chain as a promising molecular target for controlling the 28-spotted potato ladybird, Henosepilachna vigintioctopunctata. PEST MANAGEMENT SCIENCE 2022; 78:3871-3879. [PMID: 34398523 DOI: 10.1002/ps.6594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Use of RNA interference (RNAi) technology in effective pest management has been explored for decades. Henosepilachna vigintioctopunctata is a major solanaceous crop pest in Asia. In this study, the effects of the RNAi-mediated silencing of clathrin heavy chain in H. vigintioctopunctata were investigated. RESULTS Feeding either the in vitro-synthesized or the bacterially expressed double-stranded RNAs (dsRNAs) significantly impaired the normal physiology of H. vigintioctopunctata instars and adults. However, the bacterially expressed dsHvChc caused higher mortality than the in vitro-synthesized ones in the larvae and adults. Moreover, on evaluating the potential risk of dsHvChc on Propylea japonica, significant transcriptional effects of dsHvChc1 were observed, while the organismal level effects were not significant. On the contrary, dsHvChc2 did not affect P. japonica at either level. A similar test revealed significant transcriptional effects of dsPjChc1 on H. vigintioctopunctata, while staying ineffective at the organismal levels. Conversely, dsPjChc2 did not affect H. vigintioctopunctata at either level. Importantly, no effect of dsPjChc1 exposure on H. vigintioctopunctata suggested that other factors besides the 21-nucleotide (nt) matches between sequences were responsible. Finally, ingestion of dsHvmChc1 derived from H. vigintioctomaculata, containing 265-nt matches with dsHvChc1, caused 100% mortality in H. vigintioctopunctata. CONCLUSIONS We conclude that (i) species with numerous 21-nt matches in homologous genes are more likely to be susceptible to dsRNA; (ii) dsRNA can be safely designed to avoid negative effects on non-target organisms at both transcriptional and organismal levels; (iii) HvChc can be used as an efficient RNAi target gene to effectively manage H. vigintioctopunctata. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Satyabrata Nanda
- MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi, India
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Gut bacteria-derived 5-hydroxyindole is a potent stimulant of intestinal motility via its action on L-type calcium channels. PLoS Biol 2021; 19:e3001070. [PMID: 33481771 PMCID: PMC7857600 DOI: 10.1371/journal.pbio.3001070] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 02/03/2021] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Microbial conversion of dietary or drug substrates into small bioactive molecules represents a regulatory mechanism by which the gut microbiota alters intestinal physiology. Here, we show that a wide variety of gut bacteria can metabolize the dietary supplement and antidepressant 5-hydroxytryptophan (5-HTP) to 5-hydroxyindole (5-HI) via the tryptophanase (TnaA) enzyme. Oral administration of 5-HTP results in detection of 5-HI in fecal samples of healthy volunteers with interindividual variation. The production of 5-HI is inhibited upon pH reduction in in vitro studies. When administered orally in rats, 5-HI significantly accelerates the total gut transit time (TGTT). Deciphering the underlying mechanisms of action reveals that 5-HI accelerates gut contractility via activation of L-type calcium channels located on the colonic smooth muscle cells. Moreover, 5-HI stimulation of a cell line model of intestinal enterochromaffin cells results in significant increase in serotonin production. Together, our findings support a role for bacterial metabolism in altering gut motility and lay the foundation for microbiota-targeted interventions.
Collapse
|
5
|
Mosa A, Gerber A, Neunzig J, Bernhardt R. Products of gut-microbial tryptophan metabolism inhibit the steroid hormone-synthesizing cytochrome P450 11A1. Endocrine 2016; 53:610-4. [PMID: 26839092 DOI: 10.1007/s12020-016-0874-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/17/2016] [Indexed: 10/22/2022]
Affiliation(s)
- A Mosa
- Institute of Biochemistry, Campus B 2.2, Saarland University, 66123, Saarbrücken, Germany
| | - A Gerber
- Institute of Biochemistry, Campus B 2.2, Saarland University, 66123, Saarbrücken, Germany
| | - J Neunzig
- Institute of Biochemistry, Campus B 2.2, Saarland University, 66123, Saarbrücken, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Campus B 2.2, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
6
|
Kim HJ, Lee EK, Park MH, Ha YM, Jung KJ, Kim MS, Kim MK, Yu BP, Chung HY. Ferulate Protects the Epithelial Barrier by Maintaining Tight Junction Protein Expression and Preventing Apoptosis in Tert
-Butyl Hydroperoxide-Induced Caco-2 Cells. Phytother Res 2012; 27:362-7. [DOI: 10.1002/ptr.4717] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Hyun Jung Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Eun Kyeong Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
- Research Center; Dongnam Institute of Radiological and Medical Sciences; Busan 619-953 Korea
| | - Min Hi Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Young Mi Ha
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Kyung Jin Jung
- Biologics Center; Korea Institute of Toxicology; Daejeon 305-343 Republic of Korea
| | - Min-Sun Kim
- Department of Pharmacy; College of Pharmacy, Sunchon National University; Sunchon 540-742 Republic of Korea
| | - Mi Kyung Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| | - Byung Pal Yu
- Department of Physiology; The University of Texas Health Science Center at San Antonio; San Antonio TX 78229-3900 USA
| | - Hae Young Chung
- Molecular Inflammation Research Center for Aging Intervention (MRCA); Pusan National University; Busan Korea
- College of Pharmacy; Pusan National University; Busan 609-735 Korea
| |
Collapse
|
7
|
Jiao A, Yang N, Wang J, Xu X, Jin Z. Cyclodextrin-derived chalcogenides as glutathione peroxidase mimics and their protection of mitochondria against oxidative damage. J INCL PHENOM MACRO 2012. [DOI: 10.1007/s10847-012-0156-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Abstract
Psychiatric disorders are documented to be associated with a mild pro-inflammatory state. Pro-inflammatory mediators could activate the tryptophan breakdown and kynurenine pathway with a shift toward the neurotoxic arm where excitotoxic N-methyl-D-aspartate receptor agonist quinolinic acid is formed. An unbalanced metabolism in terms of neuroprotective and neurotoxic effects, such as reduced kynurenic acid to kynurenine ratio, has been demonstrated in the major psychiatric disorders such as unipolar depression, bipolar manic-depressive disorder and schizophrenia, and in drug-induced neuropsychiatric side effects such as interferon-α treated patients. The changes in serum or plasma are shown to be associated with central changes such as in the cerebrospinal fluid and certain brain areas. While currently available antidepressants and mood stabilizers could not efficiently improve these neurochemical changes within the same period that could induce clinical improvement, some antipsychotic treatments could reverse certain metabolic imbalances. Some of these changes were tested also in animal models. In this review the role of this unbalanced kynurenine metabolism through interactions with other neurochemicals is discussed as a major contributing pathophysiological mechanism in psychiatric disorders. Moreover, the biomarker role of kynurenine metabolites and future therapeutic opportunities are also discussed.
Collapse
Affiliation(s)
- Aye M Myint
- Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
9
|
Pavlides S, Tsirigos A, Migneco G, Whitaker-Menezes D, Chiavarina B, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP. The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle 2011; 9:3485-505. [PMID: 20861672 DOI: 10.4161/cc.9.17.12721] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A loss of stromal Cav-1 in the tumor fibroblast compartment is associated with early tumor recurrence, lymph-node metastasis, and tamoxifen-resistance, resulting in poor clinical outcome in breast cancer patients. Here, we have used Cav-1 (-/-) null mice as a pre-clinical model for this "lethal tumor micro-environment." Metabolic profiling of Cav-1 (-/-) mammary fat pads revealed the upregulation of numerous metabolites (nearly 100), indicative of a major catabolic phenotype. Our results are consistent with the induction of oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy. The two most prominent metabolites that emerged from this analysis were ADMA (asymmetric dimethyl arginine) and BHB (beta-hydroxybutyrate; a ketone body), which are markers of oxidative stress and mitochondrial dysfunction, respectively. Transcriptional profiling of Cav-1 (-/-) stromal cells and human tumor stroma from breast cancer patients directly supported an association with oxidative stress, mitochondrial dysfunction, and autophagy/mitophagy, as well as ADMA and ketone production. MircoRNA profiling of Cav-1 (-/-) stromal cells revealed the upregulation of two key cancer-related miR's, namely miR-31 and miR-34c. Consistent with our metabolic findings, these miR's are associated with oxidative stress (miR-34c) or activation of the hypoxic response/HIF1a (miR-31), which is sufficient to drive authophagy/mitophagy. Thus, via an unbiased comprehensive analysis of a lethal tumor micro-environment, we have identified a number of candidate biomarkers (ADMA, ketones, and miR-31/34c) that could be used to identify high-risk cancer patients at diagnosis, for treatment stratification and/or for evaluating therapeutic efficacy during anti-cancer therapy. We propose that the levels of these key biomarkers (ADMA, ketones/BHB, miR-31, and miR-34c) could be (1) assayed using serum or plasma from cancer patients, or (2) performed directly on excised tumor tissue. Importantly, induction of oxidative stress and autophagy/mitophagy in the tumor stromal compartment provides a means by which epithelial cancer cells can directly "feed off" of stromal-derived essential nutrients, chemical building blocks (amino acids, nucleotides), and energy-rich metabolites (glutamine, pyruvate, ketones/BHB), driving tumor progression and metastasis. Essentially, aggressive cancer cells are "eating" the cancer-associated fibroblasts via autophagy/mitophagy in the tumor micro-environment. Lastly, we discuss that this "Autophagic Tumor Stroma Model of Cancer Metabolism" provides a viable solution to the "Autophagy Paradox" in cancer etiology and chemo-therapy.
Collapse
Affiliation(s)
- Stephanos Pavlides
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|