1
|
Raza A, Mushtaq N, Jabbar A, El-Sayed Ellakwa D. Antimicrobial peptides: A promising solution to combat colistin and carbapenem resistance. GENE REPORTS 2024; 36:101935. [DOI: 10.1016/j.genrep.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Kifayat S, Yele V, Ashames A, Sigalapalli DK, Bhandare RR, Shaik AB, Nasipireddy V, Sanapalli BKR. Filamentous temperature sensitive mutant Z: a putative target to combat antibacterial resistance. RSC Adv 2023; 13:11368-11384. [PMID: 37057268 PMCID: PMC10089256 DOI: 10.1039/d3ra00013c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023] Open
Abstract
In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India
| | - Akram Ashames
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Dilep Kumar Sigalapalli
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University Vadlamudi 522213 Andhra Pradesh India
| | - Richie R Bhandare
- College of Pharmacy & Health Sciences, Ajman University PO Box 340 Ajman United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University PO Box 340 Ajman United Arab Emirates +97167056240
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada Chebrolu Guntur 522212 Andhra Pradesh India
| | | | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan Jaipur 303121 India +91-9291661992
| |
Collapse
|
3
|
Du J, Zhang C, Long Q, Zhang L, Chen W, Liu Q. Characterization of a pathway-specific activator of edeine biosynthesis and improved edeine production by its overexpression in Brevibacillus brevis. FRONTIERS IN PLANT SCIENCE 2022; 13:1022476. [PMID: 36388555 PMCID: PMC9641203 DOI: 10.3389/fpls.2022.1022476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Edeines are a group of non-ribosomal antibacterial peptides produced by Brevibacillus brevis. Due to the significant antibacterial properties of edeines, increasing edeine yield is of great interest in biomedical research. Herein, we identified that EdeB, a member of the ParB protein family, significantly improved edeine production in B. brevis. First, overexpression of edeB in B. brevis X23 increased edeine production by 92.27%. Second, in vitro bacteriostasis experiment showed that edeB-deletion mutant exhibited less antibacterial activity. Third, RT-qPCR assay demonstrated that the expression of edeA, edeQ, and edeK, which are key components of the edeine biosynthesis pathway, in edeB-deletion mutant X23(ΔedeB) was significantly lower than that in wild-type B. brevis strain X23. Finally, electrophoretic mobility shift assay (EMSA) showed that EdeB directly bound to the promoter region of the edeine biosynthetic gene cluster (ede BGC), suggesting that EdeB improves edeine production through interaction with ede BGC in B. brevis.
Collapse
Affiliation(s)
- Jie Du
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Cuiyang Zhang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Liang Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| |
Collapse
|
4
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
5
|
FtsZ inhibitors as a new genera of antibacterial agents. Bioorg Chem 2019; 91:103169. [PMID: 31398602 DOI: 10.1016/j.bioorg.2019.103169] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 11/21/2022]
Abstract
The continuous emergence and rapid spread of a multidrug-resistant strain of bacterial pathogens have demanded the discovery and development of new antibacterial agents. A highly conserved prokaryotic cell division protein FtsZ is considered as a promising target by inhibiting bacterial cytokinesis. Inhibition of FtsZ assembly restrains the cell-division complex known as divisome, which results in filamentation, leading to lysis of the cell. This review focuses on details relating to the structure, function, and influence of FtsZ in bacterial cytokinesis. It also summarizes on the recent perspective of the known natural and synthetic inhibitors directly acting on FtsZ protein, with prominent antibacterial activities. A series of benzamides, trisubstituted benzimidazoles, isoquinolene, guanine nucleotides, zantrins, carbonylpyridine, 4 and 5-Substituted 1-phenyl naphthalenes, sulindac, vanillin analogues were studied here and recognized as FtsZ inhibitors that act either by disturbing FtsZ polymerization and/or GTPase activity. Doxorubicin, from a U.S. FDA, approved drug library displayed strong interaction with FtsZ. Several of the molecules discussed, include the prodrugs of benzamide based compound PC190723 (TXA-709 and TXA707). These molecules have exhibited the most prominent antibacterial activity against several strains of Staphylococcus aureus with minimal toxicity and good pharmacokinetics properties. The evidence of research reports and patent documentations on FtsZ protein has disclosed distinct support in the field of antibacterial drug discovery. The pressing need and interest shall facilitate the discovery of novel clinical molecules targeting FtsZ in the upcoming days.
Collapse
|
6
|
Haranahalli K, Tong S, Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 2016; 24:6354-6369. [PMID: 27189886 PMCID: PMC5157688 DOI: 10.1016/j.bmc.2016.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5years, but also includes significant findings in previous years.
Collapse
Affiliation(s)
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Pieraccini S, Rendine S, Jobichen C, Domadia P, Sivaraman J, Francescato P, Speranza G, Sironi M. Computer aided design of FtsZ targeting oligopeptides †. RSC Adv 2012; 3:1739-1743. [PMID: 30405903 DOI: 10.1039/c2ra21886k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
FtsZ is a protein involved in the bacterial division process and is thus an emerging target for antibacterial drugs. The network of interactions between FtsZ monomers necessary for exploitation of its biological function are studied here with molecular dynamics and free energy calculations. The results obtained led to the design of FtsZ targeting peptides which exhibited activity against the function of FtsZ in vitro.
Collapse
Affiliation(s)
- Stefano Pieraccini
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| | - Stefano Rendine
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Chacko Jobichen
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Prerna Domadia
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - J Sivaraman
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Pierangelo Francescato
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Giovanna Speranza
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| | - Maurizio Sironi
- Dipartimento di Chimica and INSTM - UdR, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy.,Istituto di Scienze e tecnologie molecolari del CNR (CNR-ISTM), Via Golgi 19, 20133, Milano, Italy. ;
| |
Collapse
|
8
|
Ma S, Ma S. The Development of FtsZ Inhibitors as Potential Antibacterial Agents. ChemMedChem 2012; 7:1161-72. [DOI: 10.1002/cmdc.201200156] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/05/2012] [Indexed: 11/12/2022]
|