1
|
Yang Z, Wang L. Current, emerging, and potential therapies for non-alcoholic steatohepatitis. Front Pharmacol 2023; 14:1152042. [PMID: 37063264 PMCID: PMC10097909 DOI: 10.3389/fphar.2023.1152042] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been identified as the most common chronic liver disease worldwide, with a growing incidence. NAFLD is considered the hepatic manifestation of a metabolic syndrome that emerges from multiple factors (e.g., oxidative stress, metabolic disorders, endoplasmic reticulum stress, cell death, and inflammation). Non-alcoholic steatohepatitis (NASH), an advanced form of NAFLD, has been reported to be a leading cause of cirrhosis and hepatic carcinoma, and it is progressing rapidly. Since there is no approved pharmacotherapy for NASH, a considerable number of therapeutic targets have emerged with the deepening of the research on NASH pathogenesis. In this study, the therapeutic potential and properties of regulating metabolism, the gut microbiome, antioxidant, microRNA, inhibiting apoptosis, targeting ferroptosis, and stem cell-based therapy in NASH are reviewed and evaluated. Since the single-drug treatment of NASH is affected by individual heterogeneous responses and side effects, it is imperative to precisely carry out targeted therapy with low toxicity. Lastly, targeted therapeutic agent delivery based on exosomes is proposed in this study, such that drugs with different mechanisms can be incorporated to generate high-efficiency and low-toxicity individualized medicine.
Collapse
Affiliation(s)
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
3
|
Du W, Wang L. The Crosstalk Between Liver Sinusoidal Endothelial Cells and Hepatic Microenvironment in NASH Related Liver Fibrosis. Front Immunol 2022; 13:936196. [PMID: 35837401 PMCID: PMC9274003 DOI: 10.3389/fimmu.2022.936196] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic liver injury can be caused by many factors, including virus infection, alcohol intake, cholestasis and abnormal fat accumulation. Nonalcoholic steatohepatitis (NASH) has become the main cause of liver fibrosis worldwide. Recently, more and more evidences show that hepatic microenvironment is involved in the pathophysiological process of liver fibrosis induced by NASH. Hepatic microenvironment consists of various types of cells and intercellular crosstalk among different cells in the liver sinusoids. Liver sinusoidal endothelial cells (LSECs), as the gatekeeper of liver microenvironment, play an irreplaceable role in the homeostasis and alterations of liver microenvironment. Many recent studies have reported that during the progression of NASH to liver fibrosis, LSECs are involved in various stages mediated by a series of mechanisms. Therefore, here we review the key role of crosstalk between LSECs and hepatic microenvironment in the progression of NASH to liver fibrosis (steatosis, inflammation, and fibrosis), as well as promising therapeutic strategies targeting LSECs.
Collapse
Affiliation(s)
- Wei Du
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Xu Y, Fourniols T, Labrak Y, Préat V, Beloqui A, des Rieux A. Surface Modification of Lipid-Based Nanoparticles. ACS NANO 2022; 16:7168-7196. [PMID: 35446546 DOI: 10.1021/acsnano.2c02347] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a growing interest in the development of lipid-based nanocarriers for multiple purposes, including the recent increase of these nanocarriers as vaccine components during the COVID-19 pandemic. The number of studies that involve the surface modification of nanocarriers to improve their performance (increase the delivery of a therapeutic to its target site with less off-site accumulation) is enormous. The present review aims to provide an overview of various methods associated with lipid nanoparticle grafting, including techniques used to separate grafted nanoparticles from unbound ligands or to characterize grafted nanoparticles. We also provide a critical perspective on the usefulness and true impact of these modifications on overcoming different biological barriers, with our prediction on what to expect in the near future in this field.
Collapse
Affiliation(s)
- Yining Xu
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Thibaut Fourniols
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Yasmine Labrak
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 72 B1.72.01, 1200 Brussels, Belgium
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Avenue Mounier, 73 B1.73.12, 1200 Brussels, Belgium
| |
Collapse
|
5
|
Kumar S, Duan Q, Wu R, Harris EN, Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv Drug Deliv Rev 2021; 176:113869. [PMID: 34280515 PMCID: PMC11792083 DOI: 10.1016/j.addr.2021.113869] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease that encompasses a spectrum of pathological conditions, ranging from simple steatosis (NAFL), nonalcoholic steatohepatitis (NASH), fibrosis/cirrhosis which can further progress to hepatocellular carcinoma and liver failure. The progression of NAFL to NASH and liver fibrosis is closely associated with a series of liver injury resulting from lipotoxicity, oxidative stress, redox imbalance (excessive nitric oxide), ER stress, inflammation and apoptosis that occur sequentially in different liver cells which ultimately leads to the activation of liver regeneration and fibrogenesis, augmenting collagen and extracellular matrix deposition and promoting liver fibrosis and cirrhosis. Type 2 diabetes is a significant risk factor in NAFLD development by accelerating liver damage. Here, we overview recent findings from human study and animal models on the pathophysiological communication among hepatocytes (HCs), Kupffer cells (KCs), hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the disease development. The mechanisms of crucial signaling pathways, including Toll-like receptor, TGFβ and hedgehog mediated hepatic injury are also discussed. We further highlight the potentials of precisely targeting hepatic individual cell-type using nanotechnology as therapeutic strategy for the treatment of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Santosh Kumar
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Qihua Duan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Edward N Harris
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
6
|
Fleischmann D, Goepferich A. General sites of nanoparticle biodistribution as a novel opportunity for nanomedicine. Eur J Pharm Biopharm 2021; 166:44-60. [PMID: 34087354 DOI: 10.1016/j.ejpb.2021.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
The development of nanomedical devices has led to a considerable number of clinically applied nanotherapeutics. Yet, the overall poor translation of nanoparticular concepts into marketable systems has not met the initial expectations and led to increasing criticism in recent years. Most novel nano approaches thereby use highly refined formulations including a plethora of active targeting sequences, but ultimately fail to reach their target due to a generally high off-target deposition in organs such as the liver or kidney. In this context, we argue that initial nanoparticle (NP) development should not entirely become set on conventional formulation aspects. In contrast, we propose a change of focus towards a prior analysis of general sites of NP in vivo deposition and an assessment of how accumulation in these organs or tissues can be harnessed to develop therapies for site-related pathologies. We therefore give a comprehensive overview of existing nanotherapeutic targeting strategies for specific cell types within three of the usual suspects, i.e. the liver, kidney and the vascular system. We discuss the physiological surroundings and relevant pathologies of described tissues as well as the implications for NP-mediated drug delivery. Additionally, successful cell-selective NP concepts using active targeting strategies are assessed. By bringing together both (patho)physiological aspects and concepts for cell-selective NP formulations, we hope to show a novel opportunity for the development of more promising nanotherapeutic devices.
Collapse
Affiliation(s)
- Daniel Fleischmann
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
7
|
Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V. The Endothelium as a Driver of Liver Fibrosis and Regeneration. Cells 2020; 9:E929. [PMID: 32290100 PMCID: PMC7226820 DOI: 10.3390/cells9040929] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a common feature of sustained liver injury and represents a major public health problem worldwide. Fibrosis is an active research field and discoveries in the last years have contributed to the development of new antifibrotic drugs, although none of them have been approved yet. Liver sinusoidal endothelial cells (LSEC) are highly specialized endothelial cells localized at the interface between the blood and other liver cell types. They lack a basement membrane and display open channels (fenestrae), making them exceptionally permeable. LSEC are the first cells affected by any kind of liver injury orchestrating the liver response to damage. LSEC govern the regenerative process initiation, but aberrant LSEC activation in chronic liver injury induces fibrosis. LSEC are also main players in fibrosis resolution. They maintain liver homeostasis and keep hepatic stellate cell and Kupffer cell quiescence. After sustained hepatic injury, they lose their phenotype and protective properties, promoting angiogenesis and vasoconstriction and contributing to inflammation and fibrosis. Therefore, improving LSEC phenotype is a promising strategy to prevent liver injury progression and complications. This review focuses on changes occurring in LSEC after liver injury and their consequences on fibrosis progression, liver regeneration, and resolution. Finally, a synopsis of the available strategies for LSEC-specific targeting is provided.
Collapse
Affiliation(s)
- Erica Lafoz
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Maria Ruart
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Aina Anton
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Anna Oncins
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
| | - Virginia Hernández-Gea
- Unidad de Hemodinámica Hepática, Servicio de Hepatología, Hospital Clínic, Universidad de Barcelona, Instituto de Investigaciones Biomédicas Augusto Pi Suñer (IDIBAPS), 08036 Barcelona, Spain; (E.L.); (M.R.); (A.A.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
9
|
Almeida APB, Damaceno GBR, Carneiro AF, Bohr A, Gonçalves HR, Valadares MC, Nascimento TL, Lima EM. Mucopenetrating lipoplexes modified with PEG and hyaluronic acid for CD44-targeted local siRNA delivery to the lungs. J Biomater Appl 2019; 34:617-630. [PMID: 31357900 DOI: 10.1177/0885328219863291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | - Adam Bohr
- 2 Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
10
|
Szafraniec J, Błażejczyk A, Kus E, Janik M, Zając G, Wietrzyk J, Chlopicki S, Zapotoczny S. Robust oil-core nanocapsules with hyaluronate-based shells as promising nanovehicles for lipophilic compounds. NANOSCALE 2017; 9:18867-18880. [PMID: 29177344 DOI: 10.1039/c7nr05851a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The design of nanodelivery systems has been recently considered as a solution to the major challenge in pharmaceutical research - poor bioavailability of lipophilic drugs. Nanocapsules with liquid oil cores and shells based on amphiphilic polysaccharides were developed here as robust carriers of hydrophobic active compounds. A series of modified charged hyaluronates were synthesized and used as stabilizing shells ensuring also the biocompatibility of the nanocapsules that is crucial for applications related to the delivery of lipophilic drugs in vivo. Importantly, the oil nanodroplets were found to be stably suspended in water for at least 15 months without addition of low molar mass surfactants. Moreover, their size and stability may be tuned by varying the relative content of hydrophobic and hydrophilic groups in the hyaluronate derivatives as was confirmed by dynamic light scattering and nanoparticle tracking analysis as well as electron microscopy. In vivo studies demonstrated that hyaluronate-based nanocapsules accumulated preferentially in the liver as well as in the lungs. Moreover, their accumulation was dramatically potentiated in endotoxemic mice. In vitro studies showed that the nanocapsules were taken up by liver sinusoidal endothelial cells and by mouse lung vascular endothelial cells. Importantly, the capsules were found to be nontoxic in an acute oral toxicity experiment even at a dose of 2000 mg per kg b.w. Biocompatible hyaluronate-based nanocapsules with liquid cores described herein represent a promising and tunable nanodelivery system for lipophilic active compounds via both oral and intravenous administration.
Collapse
Affiliation(s)
- Joanna Szafraniec
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Martens TF, Peynshaert K, Nascimento TL, Fattal E, Karlstetter M, Langmann T, Picaud S, Demeester J, De Smedt SC, Remaut K, Braeckmans K. Effect of hyaluronic acid-binding to lipoplexes on intravitreal drug delivery for retinal gene therapy. Eur J Pharm Sci 2017; 103:27-35. [DOI: 10.1016/j.ejps.2017.02.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
|
12
|
Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R, Valla D, Rautou PE. Liver sinusoidal endothelial cells: Physiology and role in liver diseases. J Hepatol 2017; 66:212-227. [PMID: 27423426 DOI: 10.1016/j.jhep.2016.07.009] [Citation(s) in RCA: 677] [Impact Index Per Article: 84.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells representing the interface between blood cells on the one side and hepatocytes and hepatic stellate cells on the other side. LSECs represent a permeable barrier. Indeed, the association of 'fenestrae', absence of diaphragm and lack of basement membrane make them the most permeable endothelial cells of the mammalian body. They also have the highest endocytosis capacity of human cells. In physiological conditions, LSECs regulate hepatic vascular tone contributing to the maintenance of a low portal pressure despite the major changes in hepatic blood flow occurring during digestion. LSECs maintain hepatic stellate cell quiescence, thus inhibiting intrahepatic vasoconstriction and fibrosis development. In pathological conditions, LSECs play a key role in the initiation and progression of chronic liver diseases. Indeed, they become capillarized and lose their protective properties, and they promote angiogenesis and vasoconstriction. LSECs are implicated in liver regeneration following acute liver injury or partial hepatectomy since they renew from LSECs and/or LSEC progenitors, they sense changes in shear stress resulting from surgery, and they interact with platelets and inflammatory cells. LSECs also play a role in hepatocellular carcinoma development and progression, in ageing, and in liver lesions related to inflammation and infection. This review also presents a detailed analysis of the technical aspects relevant for LSEC analysis including the markers these cells express, the available cell lines and the transgenic mouse models. Finally, this review provides an overview of the strategies available for a specific targeting of LSECs.
Collapse
Affiliation(s)
- Johanne Poisson
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sara Lemoinne
- INSERM, UMRS 938, Centre de Recherche Saint-Antoine, Université Pierre et Marie Curie Paris 6, Paris, France; Service d'hépatologie, Hôpital Saint-Antoine, APHP, Paris, France
| | - Chantal Boulanger
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Durand
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Richard Moreau
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Dominique Valla
- Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France
| | - Pierre-Emmanuel Rautou
- INSERM, UMR-970, Paris Cardiovascular Research Center - PARCC, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service d'hépatologie, DHU Unity Hôpital Beaujon, APHP, Clichy, France; INSERM, UMR-1149, Centre de Recherche sur l'inflammation, Paris-Clichy, France; Université Denis Diderot-Paris 7, Sorbonne Paris Cité, 75018 Paris, France.
| |
Collapse
|
13
|
Dhaundiyal A, Jena SK, Samal SK, Sonvane B, Chand M, Sangamwar AT. Alpha-lipoic acid–stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study. J Pharm Pharmacol 2016; 68:1535-1550. [DOI: 10.1111/jphp.12644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
This study was designed to demonstrate the potential of novel α-lipoic acid–stearylamine (ALA-SA) conjugate-based solid lipid nanoparticles in modulating the pharmacokinetics and hepatotoxicity of tamoxifen (TMX).
Methods
α-lipoic acid–stearylamine bioconjugate was synthesized via carbodiimide chemistry and used as a lipid moiety for the generation of TMX-loaded solid lipid nanoparticles (TMX-SLNs). TMX-SLNs were prepared by solvent emulsification–diffusion method and optimized for maximum drug loading using rotatable central composite design. The optimized TMX-SLNs were stabilized using 10% w/w trehalose as cryoprotectant. In addition, pharmacokinetics and hepatotoxicity of freeze-dried TMX-SLNs were also evaluated in Sprague Dawley rats.
Key findings
Initial characterization with transmission electron microscopy revealed spherical morphology with smooth surface having an average particle size of 261.08 ± 2.13 nm. The observed entrapment efficiency was 40.73 ± 2.83%. In-vitro release study showed TMX release was slow and pH dependent. Pharmacokinetic study revealed a 1.59-fold increase in relative bioavailability as compared to TMX suspension. A decrease in hepatotoxicity of TMX is evidenced by the histopathological evaluation of liver tissues.
Conclusions
α-lipoic acid–stearylamine conjugate-based SLNs have a great potential in enhancing the oral bioavailability of poorly soluble drugs like TMX. Moreover, this ALA-SA nanoparticulate system could be of significant value in long-term anticancer therapy with least side effects.
Collapse
Affiliation(s)
- Ankit Dhaundiyal
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Sunil K Jena
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Sanjaya K Samal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Bhavin Sonvane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Mahesh Chand
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|
14
|
Nascimento TL, Hillaireau H, Vergnaud J, Fattal E. Lipid-based nanosystems for CD44 targeting in cancer treatment: recent significant advances, ongoing challenges and unmet needs. Nanomedicine (Lond) 2016; 11:1865-87. [DOI: 10.2217/nnm-2016-5000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Extensive experimental evidence demonstrates the important role of hyaluronic acid (HA)-CD44 interaction in cell proliferation and migration, inflammation and tumor growth. Taking advantage of this interaction, the design of HA-modified nanocarriers has been investigated for targeting CD44-overexpressing cells with the purpose of delivering drugs to cancer or inflammatory cells. The effect of such modification on targeting efficacy is influenced by several factors. In this review, we focus on the impact of HA-modification on the characteristics of lipid-based nanoparticles. We try to understand how these modifications influence particle physicochemical properties, interaction with CD44 receptors, intracellular trafficking pathways, toxicity, complement/macrophage activation and pharmacokinetics. Our aim is to provide insight in tailoring particle modification by HA in order to design more efficient CD44-targeting lipid nanocarriers.
Collapse
Affiliation(s)
- Thais Leite Nascimento
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CAPES Foundation, Ministry of Education of Brazil, Brasília – DF 70040-020, Brazil
| | - Hervé Hillaireau
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Juliette Vergnaud
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| | - Elias Fattal
- Institut Galien Paris-Sud, Faculté de pharmacie, Université Paris-Sud, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
- CNRS, UMR 8612, 5 rue JB Clément, 92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
15
|
Dosio F, Arpicco S, Stella B, Fattal E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv Drug Deliv Rev 2016; 97:204-36. [PMID: 26592477 DOI: 10.1016/j.addr.2015.11.011] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 01/06/2023]
Abstract
Hyaluronic acid (HA) is widely used in anticancer drug delivery, since it is biocompatible, biodegradable, non-toxic, and non-immunogenic; moreover, HA receptors are overexpressed on many tumor cells. Exploiting this ligand-receptor interaction, the use of HA is now a rapidly-growing platform for targeting CD44-overexpressing cells, to improve anticancer therapies. The rationale underlying approaches, chemical strategies, and recent advances in the use of HA to design drug carriers for delivering anticancer agents, are reviewed. Comprehensive descriptions are given of HA-based drug conjugates, particulate carriers (micelles, liposomes, nanoparticles, microparticles), inorganic nanostructures, and hydrogels, with particular emphasis on reports of preclinical/clinical results.
Collapse
|
16
|
Balbino TA, Correa GS, Favaro MT, Toledo MA, Azzoni AR, de la Torre LG. Physicochemical and in vitro evaluation of cationic liposome, hyaluronic acid and plasmid DNA as pseudo-ternary complexes for gene delivery. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Urbiola K, Sanmartín C, Blanco-Fernández L, Tros de Ilarduya C. Efficient targeted gene delivery by a novel PAMAM/DNA dendriplex coated with hyaluronic acid. Nanomedicine (Lond) 2014; 9:2787-801. [DOI: 10.2217/nnm.14.45] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To design and develop a novel target-specific DNA-delivery system using hyaluronic acid (HA)–polyamidoamine (PAMAM) conjugates (P–HA). Materials & methods: The coupling of HA to the PAMAM dendrimer was analyzed by 1H-NMR and elemental analysis (CHN). Their properties were characterized in terms of size and zeta-potential and evaluated for in vitro and in vivo transfection efficiency. Results: The designed covalent HA-dendriplexes enhanced gene transfection of pCMV-Luc reporter gene in overexpressing CD44-receptor cancer cells. They were also more efficient in transfecting MDA-MB231 cells than conventional PEI-polyplexes. The cytotoxicity of the covalent HA-dendriplexes was lower than when using conventional polyethylenimine-polyplexes. In vivo studies showed that these targeted complexes were also efficient for delivering pCMVLuc in different organs of healthy mice, as well as in tumors of C57BL/6 animals. Conclusions: The HA-dendriplexes developed in this work may offer an advantageous alternative to conventional cationic polymer-based formulations for DNA delivery into cancer cells in an efficient and safe manner.
Collapse
Affiliation(s)
- Koldo Urbiola
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, 31080 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Organic & Pharmaceutical Chemistry, University of Navarra, Spain
| | - Laura Blanco-Fernández
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, 31080 Pamplona, Spain
| | - Conchita Tros de Ilarduya
- Department of Pharmacy & Pharmaceutical Technology, School of Pharmacy, University of Navarra, C/Irunlarrea 1, 31080 Pamplona, Spain
| |
Collapse
|
18
|
Liu H, Li K, Lan L, Ma J, Zeng Y, Xu L, Wu D. Double-layered hyaluronic acid/stearic acid-modified polyethyleneimine nanoparticles encapsulating (-)-gossypol: a nanocarrier for chiral anticancer drugs. J Mater Chem B 2014; 2:5238-5248. [PMID: 26893903 DOI: 10.1039/c4tb00539b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This study aimed to enhance the water solubility and antitumor efficacy of (-)-gossypol. Polyethyleneimine conjugated with stearic acid (PgS) was used for loading and protecting (-)-gossypol through hydrogen bonding. Double-layered hyaluronic acid (HA)-modified PgS nanoparticles encapsulating (-)-gossypol [(-)-G-PgSHAs] were prepared through a two-step fabrication process. The nanoparticles possessed a uniform spherical shape with a dynamic size of 110.9 ± 2.4 nm, which was determined through transmission electron microscopy and dynamic light scattering analysis. The encapsulation efficiency and drug-loading capacity of (-)-G-PgSHAs were 72.6% ± 3.1% and 9.1% ± 0.42%, respectively. The IR spectra of the samples confirmed the protection effect of hydrogen bonding on the optical activity of the encapsulated (-)-gossypol. (-)-G-PgSHAs exhibited a controlled and tumor-specific release because of the high expression of HAase in the tumor region. The tumor-targeting feature of PgSHAs due to HA-receptor mediation was confirmed by in vitro cell uptake and in vivo near infrared fluorescence imaging. The in vitro test showed that the (-)-G-PgSHAs had similar cytotoxicity to free (-)-gossypol and was smaller than that of the encapsulated (±)-gossypol [(±)-G-PgSHAs]. The in vivo study of the anti-cancer effect of (-)-G-PgSHAs revealed that (-)-G-PgSHAs had a more enhanced tumor-suppression effect and reduced systemic toxicity compared with free (-)-gossypol and (±)-G-PgSHAs (P < 0.05). Therefore, PgSHA was a useful (-)-gossypol nanocarrier that exhibits high biocompatibility, tunable release of drug, and tumor-targeting characteristics for cancer treatment. In addition, this double-layered nanocarrier provided novel strategies for the encapsulation of other chiral drugs.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Tel: +86 (029) 82663941; Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA. Tel: +1 (785) 864 6319
| | - Ke Li
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Tel: +86 (029) 82663941
| | - Lan Lan
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA. Tel: +1 (785) 864 6319
| | - Jingwen Ma
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Tel: +86 (029) 82663941
| | - Yun Zeng
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Tel: +86 (029) 82663941
| | - Liang Xu
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas, USA. Tel: +1 (785) 864 6319; Department of Radiation Oncology, The University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China. Tel: +86 (029) 82663941
| |
Collapse
|
19
|
Akhter A, Hayashi Y, Sakurai Y, Ohga N, Hida K, Harashima H. A liposomal delivery system that targets liver endothelial cells based on a new peptide motif present in the ApoB-100 sequence. Int J Pharm 2013; 456:195-201. [DOI: 10.1016/j.ijpharm.2013.07.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/27/2013] [Accepted: 07/21/2013] [Indexed: 11/29/2022]
|
20
|
Lipid-Based Nanovectors for Targeting of CD44-Overexpressing Tumor Cells. JOURNAL OF DRUG DELIVERY 2013; 2013:860780. [PMID: 23533773 PMCID: PMC3606785 DOI: 10.1155/2013/860780] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 02/12/2013] [Indexed: 01/05/2023]
Abstract
Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that exists in living systems, and it is a major component of the extracellular matrix. The hyaluronic acid receptor CD44 is found at low levels on the surface of epithelial, haematopoietic, and neuronal cells and is overexpressed in many cancer cells particularly in tumour initiating cells. HA has been therefore used as ligand attached to HA-lipid-based nanovectors for the active targeting of small or large active molecules for the treatment of cancer. This paper describes the different approaches employed for the preparation, characterization, and evaluation of these potent delivery systems.
Collapse
|
21
|
Yamada Y, Hashida M, Hayashi Y, Tabata M, Hyodo M, Ara MN, Ohga N, Hida K, Harashima H. An approach to transgene expression in liver endothelial cells using a liposome-based gene vector coated with hyaluronic acid. J Pharm Sci 2013; 102:3119-27. [PMID: 23471825 DOI: 10.1002/jps.23480] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Dysfunctional sinusoidal liver endothelial cells (LECs) are associated with liver diseases, such as liver fibrosis, cirrhosis, and portal hypertension. Because of this, gene therapy targeted to LECs would be a useful and productive strategy for directly treating these diseases at the level of genes. Here, we report on the development of a transgene vector that specifically targets LECs. The vector is a liposome-based gene vector coated with hyaluronic acid (HA). HA is a natural ligand for LECs and confers desirable properties on particles, rendering them biodegradable, biocompatible, and nonimmunogenic. In this study, we constructed HA-modified carriers, and evaluated cellular uptake and transfection activity using cultured LECs from KSN nude mice (KSN-LECs). Cellular uptake analyses showed that KSN-LECs recognized the HA-modified carriers more effectively than skin endothelial cells. The transfection assay indicated that the efficient gene expression in KSN-LECs, using the HA-modified carriers, required an adequate lipid composition and a functional device to control intracellular trafficking. This finding contributes to our overall knowledge of transgene expression targeted to LECs.
Collapse
Affiliation(s)
- Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release 2012; 161:188-97. [PMID: 22370583 DOI: 10.1016/j.jconrel.2012.02.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/08/2012] [Accepted: 02/11/2012] [Indexed: 02/07/2023]
|
23
|
Veiseh M, Breadner D, Ma J, Akentieva N, Savani RC, Harrison R, Mikilus D, Collis L, Gustafson S, Lee TY, Koropatnick J, Luyt LG, Bissell MJ, Turley EA. Imaging of homeostatic, neoplastic, and injured tissues by HA-based probes. Biomacromolecules 2011; 13:12-22. [PMID: 22066590 DOI: 10.1021/bm201143c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An increase in hyaluronan (HA) synthesis, cellular uptake, and metabolism occurs during the remodeling of tissue microenvironments following injury and during disease processes such as cancer. We hypothesized that multimodality HA-based probes selectively target and detectably accumulate at sites of high HA metabolism, thus providing a flexible imaging strategy for monitoring disease and repair processes. Kinetic analyses confirmed favorable available serum levels of the probe following intravenous (i.v.) or subcutaneous (s.c.) injection. Nuclear (technetium-HA, (99m)Tc-HA, and iodine-HA, (125)I-HA), optical (fluorescent Texas Red-HA, TR-HA), and magnetic resonance (gadolinium-HA, Gd-HA) probes imaged liver ((99m)Tc-HA), breast cancer cells/xenografts (TR-HA, Gd-HA), and vascular injury ((125)I-HA, TR-HA). Targeting of HA probes to these sites appeared to result from selective HA receptor-dependent localization. Our results suggest that HA-based probes, which do not require polysaccharide backbone modification to achieve favorable half-life and distribution, can detect elevated HA metabolism in homeostatic, injured, and diseased tissues.
Collapse
Affiliation(s)
- Mandana Veiseh
- Division of Life Sciences, Lawrence Berkeley National Laboratories, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chang WK, Tai YJ, Chiang CH, Hu CS, Hong PD, Yeh MK. The comparison of protein-entrapped liposomes and lipoparticles: preparation, characterization, and efficacy of cellular uptake. Int J Nanomedicine 2011; 6:2403-17. [PMID: 22072876 PMCID: PMC3205135 DOI: 10.2147/ijn.s25646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA)-loaded polyethylene glycol (PEG)-modified liposomes and lipoparticles with high protein entrapment were developed. The lipid formula of the liposomes contained PEGylated lipids and unsaturated fatty acids for enhancing membrane fluidity and effective delivery into cells. The preparation techniques, lipid content, and PEG-modified lipoparticle ratios were evaluated. The PEG-modified lipoparticles prepared by ethanol injection extrusion (100 nm pore size) achieve a population of blank liposomes with a mean size of 125 ± 2.3 nm and a zeta potential of -12.4 ± 1.5 mV. The average particle size of the PEG-modified lipoparticles was 133.7 ± 8.6 nm with a zeta potential of +13.3 mV. Lipoparticle conformation was determined using transmission electron microscopy and field-emission scanning electron microscopy. The FITC-BSA encapsulation efficiency was dramatically increased from 19.0% for liposomes to 59.7% for lipoparticles. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results confirmed the preparation process, and an 8-hour leaching test did not harm the protein structure. Once prepared, the physical and chemical stability of the PEG-modified lipoparticle formulations was satisfactory over 90 days. In vitro retention tests indicated that the 50% retention time for the protein-containing lipoparticles was 7.9 hours, substantially longer than the liposomes at 3.3 hours. A Caco-2 cell model was used for evaluating the cytotoxicity and cell uptake efficiency of the PEG-modified lipoparticles. At a lipid content below 0.25 mM, neither the liposomes nor the lipoparticles caused significant cellular cytotoxicity (P < 0.01) and FITC-BSA was significantly taken up into cells within 60 minutes (P < 0.01).
Collapse
Affiliation(s)
- Wei-Kuo Chang
- Division of Gastroenterology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|