1
|
Dong X, Bae M, Le C, Aguilar Ramos MA, Balskus EP. Enantiocomplementary Gut Bacterial Enzymes Metabolize Dietary Polyphenols. J Am Chem Soc 2025; 147:7231-7244. [PMID: 39993729 PMCID: PMC11887054 DOI: 10.1021/jacs.4c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Molybdenum-dependent catechol dehydroxylases in gut Actinobacteria catalyze the removal of para-hydroxyl groups from catechols, a central reaction in the microbial metabolism of polyphenol compounds. However, the substrates of most putative catechol dehydroxylases remain unidentified due to the challenges of obtaining these enzymes from standard heterologous expression systems. In this work, we establish Gordonibacter urolithinfaciens as a versatile bacterial host to express active catechol dehydroxylases. Using this system, we rapidly deorphanize eight previously uncharacterized gut bacterial catechol dehydroxylases that selectively dehydroxylate intermediates in the gut bacterial metabolism of plant-derived catechins and lignans. Unexpectedly, we discover multiple instances of distinct catechol dehydroxylases that have evolved to selectively metabolize individual substrate enantiomers, setting the stage for future efforts to elucidate their mechanisms and evolution. Altogether, these findings greatly increase our knowledge of these metalloenzymes, illustrating the power of bacterial genetics to accelerate enzyme discovery and providing a more complete understanding of transformations relevant to the health benefits of phytochemicals.
Collapse
Affiliation(s)
- Xueyang Dong
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Minwoo Bae
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Chi Le
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Miguel A. Aguilar Ramos
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Bae M, Le C, Mehta RS, Dong X, Pieper LM, Ramirez L, Alexander M, Kiamehr S, Turnbaugh PJ, Huttenhower C, Chan AT, Balskus EP. Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme. Cell Host Microbe 2024; 32:1887-1896.e8. [PMID: 39471822 PMCID: PMC11585353 DOI: 10.1016/j.chom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (Gp Hcdh) from Gordonibacter pamelaeae that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of Gp Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.
Collapse
Affiliation(s)
- Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chi Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raaj S Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Mancin L, Rollo I, Golzato D, Segata N, Petri C, Pengue L, Vergani L, Cassone N, Corsini A, Mota JF, Sut S, Dall'Acqua S, Paoli A. Short-Term Cocoa Supplementation Influences Microbiota Composition and Serum Markers of Lipid Metabolism in Elite Male Soccer Players. Int J Sport Nutr Exerc Metab 2024; 34:349-361. [PMID: 39117304 DOI: 10.1123/ijsnem.2024-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/18/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES Dietary strategies to improve arachidonic acid:eicosapentaenoic acid (AA:EPA) ratios are of interest due to potential reductions in inflammation and oxidative stress following exercise. The aim of this study was to investigate the impact of a novel dietary intervention, that is, the ingestion of 30 g of dark chocolate, on blood lipid profiles and gut microbiota composition in elite male soccer players. METHODS Professional male soccer players were randomly assigned to the experimental group (DC) provided with 30 g of dark chocolate or to the control group (WC), provided with 30 g of white chocolate, for 30 days. Before and after intervention, blood, fecal sample, and anthropometry data were collected. For each outcome, two-way repeated-measure analysis of variance was used to identify differences between baseline and endpoint (Week 4), considering treatment (dark chocolate, white chocolate) as intersubjects' factors. Metagenomic analysis was performed following the general guidelines, which relies on the bioBakery computational environment. RESULTS DC group showed increased plasma polyphenols (from 154.7 ± 18.6 μg gallic acid equivalents/ml to 185.11 ± 57.6 μg gallic acid equivalents/ml, Δ pre vs. post = +30.41 ± 21.50) and significant improvements in lipid profiles: total cholesterol (Δ -32.47 ± 17.18 mg/dl DC vs. Δ -2.84 ± 6.25 mg/dl WC, Time × Treatment interaction p < .001), triglycerides (Δ -6.32 ± 4.96 mg/dl DC vs. Δ -0.42 ± 6.47 mg/dl WC, Time × Treatment interaction p < .001), low-density lipoprotein (Δ -18.42 ± 17.13 mg/dl vs. Δ -2.05 ± 5.19 mg/dl WC, Time × Treatment interaction p < .001), AA/EPA ratio (Δ -5.26 ± 2.35; -54.1% DC vs. Δ -0.47 ± 0.73, -6.41% WC, Time × Treatment interaction p < .001) compared with WC group. In addition, 4 weeks of intervention showed a significant increase in high-density lipoprotein concentration in DC group (Δ + 3.26 ± 4.49 mg/dl DC vs. Δ -0.79 ± 5.12 mg/dl WC). Microbial communities in the DC group maintained a slightly higher microbial stability over time (exhibiting lower within-subject community dissimilarity). CONCLUSION Ingesting 30 g of dark chocolate over 4 weeks positively improved AA:EPA ratio and maintained gut microbial stability. Dark chocolate ingestion represents an effective nutritional strategy to improve blood lipid profiles in professional soccer players. What Are the Findings? Ingesting 30 g of dark chocolate for 4 weeks positively influences blood lipid AA: EPA ratio while maintaining gut microbial stability. What This Study Adds? Dietary intake of specific foods such as dark chocolate represents an alternative strategy to support the health and recovery of elite soccer players. What Impact Might This Have on Clinical Practice in the Future? From a clinical and translational perspective, dark chocolate ingestion positively modulates favorable blood lipid profiles and polyunsaturated fatty acid metabolism while maintaining gut microbial stability. Dark chocolate ingestion may be considered as an effective nutritional strategy in elite sport environments during periods of high-intensity training and congested competitions. Further research is required to determine functional outcomes associated with the observed improvements in blood lipid profiles.
Collapse
Affiliation(s)
- Laura Mancin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
- School of Sports Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Cristian Petri
- Department of Sport and Informatics, Section of Physical Education and Sport, Pablo de Olavide University, Sevilla, Spain
- A.C.F. Fiorentina S.r.l., Florence, Italy
| | | | | | | | | | - Joao Felipe Mota
- Faculty of Nutrition, Federal University of Goias, Setor Leste Universitário, Goiânia, GO, Brazil
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Human Inspired Technology Research Center HIT, University of Padua, Padua, Italy
| |
Collapse
|
4
|
Cattero V, Roussel C, Lessard-Lord J, Roy D, Desjardins Y. Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system. MICROBIOME RESEARCH REPORTS 2024; 3:34. [PMID: 39421251 PMCID: PMC11480733 DOI: 10.20517/mrr.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background: Proanthocyanidins (PAC) and oligosaccharides from cranberry exhibit multiple bioactive health properties and persist intact in the colon post-ingestion. They display a complex bidirectional interaction with the microbiome, which varies based on both time and specific regions of the gut; the nature of this interaction remains inadequately understood. Therefore, we aimed to investigate the impact of cranberry extract on gut microbiota ecology and function. Methods: We studied the effect of a cranberry extract on six healthy participants over a two-week supplementation period using the ex vivo artificial fermentation system TWIN-M-SHIME to replicate luminal and mucosal niches of the ascending and transverse colon. Results: Our findings revealed a significant influence of cranberry extract supplementation on the gut microbiota ecology under ex vivo conditions, leading to a considerable change in bacterial metabolism. Specifically, Bifidobacterium adolescentis (B. adolescentis) flourished in the mucus of the ascending colon, accompanied by a reduced adhesion of Proteobacteria. The overall bacterial metabolism shifted from acetate to propionate and, notably, butyrate production following PAC supplementation. Although there were variations in microbiota modulation among the six donors, the butyrogenic effect induced by the supplementation remained consistent across all individuals. This metabolic shift was associated with a rise in the relative abundance of several short-chain fatty acid (SCFA)-producing bacterial genera and the formation of a consortium of key butyrogenic bacteria in the mucus of the transverse colon. Conclusions: These observations suggest that cranberry extract supplementation has the potential to modulate the gut microbiota in a manner that may promote overall gut health.
Collapse
Affiliation(s)
- Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
- Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| |
Collapse
|
5
|
Bayer J, Högger P. Review of the pharmacokinetics of French maritime pine bark extract (Pycnogenol ®) in humans. Front Nutr 2024; 11:1389422. [PMID: 38757126 PMCID: PMC11096517 DOI: 10.3389/fnut.2024.1389422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The French maritime pine bark extract Pycnogenol® is a proprietary product from Pinus pinaster Aiton. It complies with the quality specifications in the United States Pharmacopeia monograph "Pine extract" in the section of dietary supplements. Pycnogenol® is standardized to contain 65-75% procyanidins which are a variety of biopolymers consisting of catechin and epicatechin monomeric units. The effects of Pycnogenol® have been researched in a multitude of human studies. The basis for any in vivo activity is the bioavailability of constituents and metabolites of the extract. General principles of compound absorption, distribution, metabolism and elimination as well as specific data from studies with Pycnogenol® are summarized and discussed in this review. Based on plasma concentration profiles it can be concluded that low molecular weight constituents of the extract, such as catechin, caffeic and ferulic acid, taxifolin are readily absorbed from the small intestine into systemic circulation. Procyanidin oligomers and polymers are subjected to gut microbial degradation in the large intestine yielding small bioavailable metabolites such as 5-(3',4'-dihydroxyphenyl)-γ-valerolactone. After intake of Pycnogenol®, constituents and metabolites have been also detected in blood cells, synovial fluid and saliva indicating a substantial distribution in compartments other than serum. In studies simultaneously investigating concentrations in different specimen, a preferential distribution of individual compounds has been observed, e.g., of ferulic acid and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone into synovial fluid compared to serum. The main route of elimination of constituents and metabolites of the French pine bark extract is the renal excretion. The broad knowledge accumulated regarding the pharmacokinetics of compounds and metabolites of Pycnogenol® constitute a rational basis for effects characterized on a cellular level and observed in human clinical studies.
Collapse
Affiliation(s)
| | - Petra Högger
- Institut für Pharmazie und Lebensmittelchemie, Universität Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Hu J, Mesnage R, Tuohy K, Heiss C, Rodriguez-Mateos A. (Poly)phenol-related gut metabotypes and human health: an update. Food Funct 2024; 15:2814-2835. [PMID: 38414364 DOI: 10.1039/d3fo04338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dietary (poly)phenols have received great interest due to their potential role in the prevention and management of non-communicable diseases. In recent years, a high inter-individual variability in the biological response to (poly)phenols has been demonstrated, which could be related to the high variability in (poly)phenol gut microbial metabolism existing within individuals. An interplay between (poly)phenols and the gut microbiota exists, with (poly)phenols being metabolised by the gut microbiota and their metabolites modulating gut microbiota diversity and composition. A number of (poly)phenol metabolising phenotypes or metabotypes have been proposed, however, potential metabotypes for most (poly)phenols have not been investigated, and the relationship between metabotypes and human health remains ambiguous. This review presents updated knowledge on the reciprocal interaction between (poly)phenols and the gut microbiome, associated gut metabotypes, and subsequent impact on human health.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Robin Mesnage
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Kieran Tuohy
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
7
|
Wang L, Liu R, Yan F, Chen W, Zhang M, Lu Q, Huang B, Liu R. A newly isolated intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and the antioxidant activity of the metabolites. Food Funct 2024; 15:580-590. [PMID: 37927225 DOI: 10.1039/d3fo03601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Flavan-3-ols are an important class of secondary metabolites in many plants. Their bioavailability and bioactivity are largely determined by the metabolism of intestinal microbiota. However, little is known about the intestinal bacteria involved in the metabolism of flavan-3-ols and the activities of the metabolites. C-ring cleavage is the initial and key step in the metabolism of flavan-3-ol monomers. Here, we isolated a strain from porcine cecum content, which is capable of cleaving the heterocyclic C-ring to form 1-(3',4'-dihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl)propan-2-ol from (+)-catechin and (-)-epicatechin, and 1-(3',4',5'-trihydroxyphenyl)-3-(2'',4'',6''-trihydroxyphenyl) propan-2-ol from (-)-epigallocatechin. The strain was identified as Streptococcus pasteurianus (Streptococcus gallolyticus subsp. Pasteurianus, designated as F32-1) based on 16S rDNA similarity and MALDI-TOF-MS identification. The formation of the C-ring cleavage structural unit by the F32-1 strain enhanced the chemical antioxidant ability and altered the cellular antioxidant activity of (+)-catechin, (-)-epicatechin and (-)-epigallocatechin. Overall, in this study we isolated a new intestinal bacterium involved in the C-ring cleavage of flavan-3-ol monomers and elucidated the bioactivity of their metabolites.
Collapse
Affiliation(s)
- Li Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Ruonan Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Wanbing Chen
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guang Dong 430073, China
| | - Mo Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
| | - Bijun Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wu Han 430000, China.
- Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wu Han 430000, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, P. R. China
| |
Collapse
|
8
|
Choi SR, Lee H, Singh D, Cho D, Chung JO, Roh JH, Kim WG, Lee CH. Bidirectional Interactions between Green Tea (GT) Polyphenols and Human Gut Bacteria. J Microbiol Biotechnol 2023; 33:1317-1328. [PMID: 37435870 PMCID: PMC10619559 DOI: 10.4014/jmb.2306.06014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Green tea (GT) polyphenols undergo extensive metabolism within gastrointestinal tract (GIT), where their derivatives compounds potentially modulate the gut microbiome. This biotransformation process involves a cascade of exclusive gut microbial enzymes which chemically modify the GT polyphenols influencing both their bioactivity and bioavailability in host. Herein, we examined the in vitro interactions between 37 different human gut microbiota and the GT polyphenols. UHPLC-LTQ-Orbitrap-MS/MS analysis of the culture broth extracts unravel that genera Adlercreutzia, Eggerthella and Lactiplantibacillus plantarum KACC11451 promoted C-ring opening reaction in GT catechins. In addition, L. plantarum also hydrolyzed catechin galloyl esters to produce gallic acid and pyrogallol, and also converted flavonoid glycosides to their aglycone derivatives. Biotransformation of GT polyphenols into derivative compounds enhanced their antioxidant bioactivities in culture broth extracts. Considering the effects of GT polyphenols on specific growth rates of gut bacteria, we noted that GT polyphenols and their derivate compounds inhibited most species in phylum Actinobacteria, Bacteroides, and Firmicutes except genus Lactobacillus. The present study delineates the likely mechanisms involved in the metabolism and bioavailability of GT polyphenols upon exposure to gut microbiota. Further, widening this workflow to understand the metabolism of various other dietary polyphenols can unravel their biotransformation mechanisms and associated functions in human GIT.
Collapse
Affiliation(s)
- Se Rin Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyunji Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Donghyun Cho
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Jin-Oh Chung
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific R&I Center, Yonggu-daero, Yongin, Republic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Lessard-Lord J, Roussel C, Guay V, Desjardins Y. Characterization of the Interindividual Variability Associated with the Microbial Metabolism of (-)-Epicatechin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13814-13827. [PMID: 37683128 PMCID: PMC10516121 DOI: 10.1021/acs.jafc.3c05491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
Although the relationship between gut microbiota and flavan-3-ol metabolism differs greatly between individuals, the specific metabolic profiles, known as metabotypes, have not yet been clearly defined. In this study, fecal batch fermentations of 34 healthy donors inoculated with (-)-epicatechin were stratified into groups based on their conversion rate of (-)-epicatechin and their quali-quantitative metabolic profile. Fast and slow converters of (-)-epicatechin, high producers of 1-(3'-hydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol (3-HPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-DHPVL) were identified. Fecal microbiota analysis revealed that fast conversion of (-)-epicatechin was associated with short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibacterium spp. and Bacteroides spp., and higher levels of acetate, propionate, butyrate, and valerate were observed for fast converters. Other bacteria were associated with the conversion of 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol into 3-HPP-2-ol (Lachnospiraceae UCG-010 spp.) and 3,4-DHPVL (Adlercreutzia equolifaciens). Such stratification sheds light on the mechanisms of action underlying the high interindividual variability associated with the health benefits of flavan-3-ols.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and
Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440
Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Quebec, Canada G1V 0A6
| | - Charlène Roussel
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and
Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440
Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Canada
Excellence Research Chair on the Microbiome-Endocannabinoidome Axis
in Metabolic Health, Laval University, 2440 Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
| | - Valérie Guay
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and
Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440
Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
| | - Yves Desjardins
- Institute
of Nutrition and Functional Foods (INAF), Faculty of Agriculture and
Food Sciences, Laval University, 2440 Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Nutrition,
Health and Society Centre (NUTRISS), INAF, Laval University, 2440
Boulevard Hochelaga, Québec, Quebec, Canada G1V 0A6
- Department
of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, 2425 Rue de l’Agriculture, Québec, Quebec, Canada G1V 0A6
| |
Collapse
|
10
|
Das T, Chatterjee N, Capanoglu E, Lorenzo JM, Das AK, Dhar P. The synergistic ramification of insoluble dietary fiber and associated non-extractable polyphenols on gut microbial population escorting alleviation of lifestyle diseases. Food Chem X 2023; 18:100697. [PMID: 37206320 PMCID: PMC10189415 DOI: 10.1016/j.fochx.2023.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/21/2023] Open
Abstract
Most of the pertinent research which aims at exploring the therapeutic effects of polyphenols usually misapprehends a large fraction of non-extractable polyphenols due to their poor aqueous-organic solvent extractability. These polymeric polyphenols (i.e., proanthocyanins, hydrolysable tannins and phenolic acids) possess a unique property to adhere to the food matrix polysaccharides and protein sowing to their structural complexity with high glycosylation, degree of polymerization, and plenty of hydroxyl groups. Surprisingly resistance to intestinal absorption does not hinder its bioactivity but accelerates its functionality manifolds due to the colonic microbial catabolism in the gastrointestinal tract, thereby protecting the body from local and systemic inflammatory diseases. This review highlights not only the chemistry, digestion, colonic metabolism of non-extractable polyphenols (NEPP) but also summarises the synergistic effect of matrix-bound NEPP exerting local as well as systemic health benefits.
Collapse
Affiliation(s)
- Trina Das
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, India
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical & Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, 32004 Ourense, Spain
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| | - Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, Department of Home Science, University of Calcutta, 20B Judges Court Road, Alipore, Kolkata 700027, West Bengal, India
- Corresponding authors at: Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain (E. Capanoglu).
| |
Collapse
|
11
|
Salomon JD, Qiu H, Feng D, Owens J, Khailova L, Osorio Lujan S, Iguidbashian J, Chhonker YS, Murry DJ, Riethoven JJ, Lindsey ML, Singh AB, Davidson JA. Piglet cardiopulmonary bypass induces intestinal dysbiosis and barrier dysfunction associated with systemic inflammation. Dis Model Mech 2023; 16:dmm049742. [PMID: 36426663 PMCID: PMC9844230 DOI: 10.1242/dmm.049742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
The intestinal microbiome is essential to human health and homeostasis, and is implicated in the pathophysiology of disease, including congenital heart disease and cardiac surgery. Improving the microbiome and reducing inflammatory metabolites may reduce systemic inflammation following cardiac surgery with cardiopulmonary bypass (CPB) to expedite recovery post-operatively. Limited research exists in this area and identifying animal models that can replicate changes in the human intestinal microbiome after CPB is necessary. We used a piglet model of CPB with two groups, CPB (n=5) and a control group with mechanical ventilation (n=7), to evaluate changes to the microbiome, intestinal barrier dysfunction and intestinal metabolites with inflammation after CPB. We identified significant changes to the microbiome, barrier dysfunction, intestinal short-chain fatty acids and eicosanoids, and elevated cytokines in the CPB/deep hypothermic circulatory arrest group compared to the control group at just 4 h after intervention. This piglet model of CPB replicates known human changes to intestinal flora and metabolite profiles, and can be used to evaluate gut interventions aimed at reducing downstream inflammation after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Jeffrey D. Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68102, USA
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Dan Feng
- Department of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Jacob Owens
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | | | - John Iguidbashian
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68102, USA
| | - Daryl J. Murry
- Department of Pharmacy Practice, University of Nebraska Medical Center College of Pharmacy, Omaha, NE 68102, USA
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Merry L. Lindsey
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Amar B. Singh
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68102, USA
| | - Jesse A. Davidson
- Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Liu C, Gan RY, Chen D, Zheng L, Ng SB, Rietjens IMCM. Gut microbiota-mediated metabolism of green tea catechins and the biological consequences: An updated review. Crit Rev Food Sci Nutr 2023; 64:7067-7084. [PMID: 38975869 DOI: 10.1080/10408398.2023.2180478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Multiple beneficial effects have been attributed to green tea catechins (GTCs). However, the bioavailability of GTCs is generally low, with only a small portion directly absorbed in the small intestine. The majority of ingested GTCs reaches the large intestinal lumen, and are extensively degraded via biotransformation by gut microbiota, forming many low-molecular-weight metabolites such as phenyl-γ-valerolactones, phenolic acids, butyrate, and acetate. This process not only improves the overall bioavailability of GTC-derived metabolites but also enriches the biological activities of GTCs. Therefore, the intra- and inter-individual differences in human gut microbiota as well as the resulting biological contribution of microbial metabolites are crucial for the ultimate health benefits. In this review, the microbial degradation of major GTCs was characterized and an overview of the in vitro models used for GTC metabolism was summarized. The intra- and inter-individual differences of human gut microbiota composition and the resulting divergence in the metabolic patterns of GTCs were highlighted. Moreover, the potential beneficial effects of GTCs and their gut microbial metabolites were also discussed. Overall, the microbial metabolites of GTCs with higher bioavailability and bioactive potency are key factors for the observed beneficial effects of GTCs and green tea consumption.
Collapse
Affiliation(s)
- Chen Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Liang Zheng
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, the Netherlands
| |
Collapse
|
13
|
Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients 2023; 15:nu15040844. [PMID: 36839202 PMCID: PMC9966200 DOI: 10.3390/nu15040844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Beer is one of the most consumed drinks worldwide. It contains numerous categories of antioxidants, phenolic products, traces of group B vitamins, minerals (selenium, silicon, potassium), soluble fibers and microorganisms. Low or moderate beer consumption, with or without alcohol, showed positive effects on health by stimulating the development of a healthy microbiota. In the present review we focused on four components responsible with interaction with gut microbiota: microorganisms, polyphenols, fiber and melanoidins, their presence in usual beers and on perspectives of development of fortified beers with enhanced effects on gut microbiota. Though microorganisms rarely escape pasteurization of beer, there are new unpasteurized types that might bring strains with probiotic effects. The polyphenols from beer are active on the gut microbiota stimulating its development, with consequent local anti-inflammatory and antioxidant effects. Their degradation products have prebiotic action and may combat intestinal dysbiosis. Beer contains dietary fiber such as non-starchy, non-digestible carbohydrates (β-glucans, arabinoxylans, mannose, fructose polymers, etc.) that relate with gut microbiota through fermentation, serving as a nutrient substrate. Another type of substances that are often considered close to fiber because they have an extremely low digestibility, melanoidins (melanosaccharides), give beer antioxidant and antibacterial properties. Though there are not many research studies in this area, the conclusion of this review is that beer seems a good candidate for a future functional food and that there are many pathways by which its ingredients can influence in a positive manner the human gut microbiota. Of course, there are many technological hinderances to overcome. However, designing functional beers fortified with fiber, antioxidants and probiotics, with a very low or no alcoholic content, will counteract the negative perception of beer consumption, will nullify the negative effects of alcohol, while simultaneously exerting a positive action on the gut microbiota.
Collapse
|
14
|
Zhang S, Mao B, Cui S, Zhang Q, Zhao J, Tang X, Chen W. Absorption, metabolism, bioactivity, and biotransformation of epigallocatechin gallate. Crit Rev Food Sci Nutr 2023; 64:6546-6566. [PMID: 36728926 DOI: 10.1080/10408398.2023.2170972] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigallocatechin gallate (EGCG), a typical flavone-3-ol polyphenol containing eight free hydroxyl groups, is associated with a variety of bioactivities, such as antioxidant, anti-inflammatory, anti-cancer, and antibacterial activities. However, the poor bioavailability of EGCG restricts its use. In this review, we discuss the processes involved in the absorption and metabolism of EGCG, with a focus on its metabolic interactions with the gut microbiota. Next, we summarize the bioactivities of some key metabolites, describe the biotransformation of EGCG by different microorganisms, and discuss its catabolism by specific bacteria. A deeper understanding of the absorption, metabolism, and biotransformation of EGCG may enable its disease-preventive and therapeutic properties to be better utilized. This review provides a theoretical basis for further development and utilization of EGCG and its metabolites for improving the gut microbiota and physiological health.
Collapse
Affiliation(s)
- Shuling Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
15
|
Li Q, Van Herreweghen F, Onyango SO, De Mey M, Van de Wiele T. In Vitro Microbial Metabolism of (+)-Catechin Reveals Fast and Slow Converters with Individual-Specific Microbial and Metabolite Markers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10405-10416. [PMID: 35420423 DOI: 10.1021/acs.jafc.2c00551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioavailability of catechin highly relies on gut microbiota which may determine its metabolic profile, resulting in different health outcomes. Here, we investigated in vitro (+)-catechin metabolism by human microbial communities. There were substantial interindividual differences in the metabolic profiles of (+)-catechin, with 5-(3',4'-dihydroxyphenyl)-γ-valerolactone being the major contributor. Furthermore, the microbial metabolic rate of catechin enabled stratification of 12 participants (fast, medium, and slow converters), despite the interference from the strong intrinsic interindividual variability in fecal microbiota. Correlations were established between this stratified population and microbiota features, such as ecosystem diversity. Additionally, fast converters had significantly higher prevalences of amplicon sequence variants (ASVs) with potential capacity of C-ring cleavage (ASV233_Eggerthella and ASV402_Eubacterium), B-ring dihydroxylation (ASV402_Eubacterium), and short-chain fatty acid (SCFA)-producing ASVs. In conclusion, metabolic-capability-based stratification allows us to uncover differences in microbial composition between fast and slow converters, which could help to elucidate interindividual variabilities in the health benefits of catechins.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Florence Van Herreweghen
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Stanley Omondi Onyango
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
16
|
Xiao L, Sun Y, Tsao R. Paradigm Shift in Phytochemicals Research: Evolution from Antioxidant Capacity to Anti-Inflammatory Effect and to Roles in Gut Health and Metabolic Syndrome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8551-8568. [PMID: 35793510 DOI: 10.1021/acs.jafc.2c02326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food bioactive components, particularly phytochemicals with antioxidant capacity, have been extensively studied over the past two decades. However, as new analytical and molecular biological tools advance, antioxidants related research has undergone significant paradigm shifts. This review is a high-level overview of the evolution of phytochemical antioxidants research. Early research used chemical models to assess the antioxidant capacity of different phytochemicals, which provided important information about the health potential, but the results were overused and misinterpreted despite the lack of biological relevance (Antioxidants v1.0). This led to findings in the anti-inflammatory properties and modulatory effects of cell signaling of phytochemicals (Antioxidants v2.0). Recent advances in the role of diet in modulating gut microbiota have suggested a new phase of food bioactives research along the phytochemicals-gut microbiota-intestinal metabolites-low-grade inflammation-metabolic syndrome axis (Antioxidants v3.0). Polyphenols and carotenoids were discussed in-depth, and future research directions were also provided.
Collapse
Affiliation(s)
- Lihua Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
17
|
Liu C, Boeren S, Rietjens IMCM. Intra- and Inter-individual Differences in the Human Intestinal Microbial Conversion of (-)-Epicatechin and Bioactivity of Its Major Colonic Metabolite 5-(3′,4′-Dihydroxy-Phenyl)-γ-Valerolactone in Regulating Nrf2-Mediated Gene Expression. Front Nutr 2022; 9:910785. [PMID: 35845790 PMCID: PMC9281540 DOI: 10.3389/fnut.2022.910785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 12/28/2022] Open
Abstract
(-)-Epicatechin (EC) is one of the most popular polyphenols present in various food products in daily life. Upon intake, it is intensively metabolized by microbiota in the large intestine. In the present study, intra- and inter-individual variations in this gut microbial conversion of EC and the concomitant formation of its major metabolites, including 5-(3′,4′-dihydroxy phenyl)-γ-valerolactone (3,4-diHPV), were identified and quantified via liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) in anaerobic fecal incubations. In addition, the bioactivity of EC and 3,4-diHPV in activating Nrf2-mediated gene expression was tested quantifying their effects in the U2OS Nrf2 CALUX assay (a reporter gene assay that is used to test the potency of chemicals in activation of Nrf2 signaling), and on the expression levels of Nrf2-related proteins in Hepa1c1c7 and Caco-2 cells via nanoLC-MSMS. A quantitative real-time polymerase chain reaction (RT-qPCR) was carried out to confirm selected Nrf2-regulated gene expressions at the mRNA level. Results obtained show that both intra- and inter-individual differences exist in human gut microbial EC degradation and 3,4-diHPV formation, with inter-individual differences being more distinct than intra-individual differences. The metabolite, 3,4-diHPV, showed higher potency in the U2OS Nrf2 CALUX assay than EC itself. Among the obviously altered Nrf2-related proteins, 14 and 10 Nrf2-associated proteins were upregulated to a higher extent upon 3,4-diHPV treatment than in the EC treated group for Hepa1c1c7 and Caco-2 cells, respectively. While only three and four of these Nrf2-associated proteins were induced at a higher level upon EC than upon 3,4-diHPV treatment for Hepa1c1c7 and Caco-2 cells, respectively. RT-qPCR results showed that indeed Nrf2-mediated genes (e.g., Nqo1 and Ugt1a) were only induced significantly in 3,4-diHPV treated and not in EC treated Hepa1c1c7 cells. Taken together, the results suggest that the major colonic EC metabolite, 3,4-diHPV, was more capable of inducing Nrf2-mediated gene expression than its parent compound EC. This implies that the evident inter- and intra-individual differences in the microbial conversion of EC to this major metabolite 3,4-diHPV may affect the overall health-promoting effects of EC consumption related to the Nrf2 pathway activation.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Chen Liu
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | | |
Collapse
|
18
|
Wang M, Li J, Hu T, Zhao H. Metabolic fate of tea polyphenols and their crosstalk with gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Effect of Moderate Consumption of Different Phenolic-Content Beers on the Human Gut Microbiota Composition: A Randomized Crossover Trial. Antioxidants (Basel) 2022; 11:antiox11040696. [PMID: 35453381 PMCID: PMC9027304 DOI: 10.3390/antiox11040696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
The moderate consumption of beer has been associated with positive effects on health, and these benefits are driven, in part, by the antioxidant properties of phenolic compounds found in this beverage. However, the potential impact of beer polyphenols on the human gut microbiome and their consequences are yet to be elucidated. In this study, our aim was to evaluate the effect of three different phenolic-content beers on the gut microbiome and the potential role of the induced shifts in the antioxidant capacity of beer polyphenols. In total, 20 subjects (10 healthy volunteers and 10 individuals with metabolic syndrome) were randomly assigned in a crossover design to consume each of the different beers (alcohol-free, lager or dark beer) during a 2-week intervention. Significant changes in the relative abundance of Streptococcaceae and Streptococcus were found after beer consumption. An increased abundance of Streptococcaceae and Streptococcus was observed after the consumption of dark beer, with no detected differences between baseline and alcohol-free/lager beer intervention. Moreover, some of the detected differences appeared to be related to the metabolic status. Finally, a decrease in porphyrin metabolism and heme biosynthesis was found after the intervention, especially after the consumption of dark beer. These results show that the antioxidant capacity of beer polyphenols may induce positive shifts in gut microbiota composition, and some of the observed changes may also boost the antioxidant capacity of these compounds.
Collapse
|
20
|
Farag MA, Shakour ZTA, Elmassry MM, Donia MS. Metabolites profiling reveals gut microbiome-mediated biotransformation of green tea polyphenols in the presence of N-nitrosamine as pro-oxidant. Food Chem 2022; 371:131147. [PMID: 34808759 DOI: 10.1016/j.foodchem.2021.131147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 01/23/2023]
Abstract
The gut microbiome contributes to host physiology and nutrition metabolism. The interaction between nutrition components and the gut microbiota results in thousands of metabolites that can contribute to various health and disease outcomes. In parallel, the interactions between foods and their toxicants have captured increasing interest due to their impact on human health. Taken together, investigating dietary interactions with endogenous and exogenous factors and detecting interaction biomarkers in a specific and sensitive manner is an important task. The present study sought to identify for the first time the metabolites produced during the interaction of diet-derived toxicants e.g., N-nitrosamines with green tea polyphenols, using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). In addition, the metabolic products resulting from the incubation of green tea with a complex gut microbiome in the presence of N-nitrosamine were assessed in the same manner. The quinone products of (epi)catechin, quercetin, and kaempferol were identified when green tea was incubated with N-nitrosamine only; whereas, incubation of green tea with N-nitrosamine and a complex gut microbiome prevented the formation of these metabolites. This study provides a new perspective on the role of gut microbiome in protecting against potential negative interactions between food-derived toxicants and dietary polyphenols.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo, Egypt.
| | - Zeinab T Abdel Shakour
- Laboratory of Phytochemistry, Egyptian Drug Authority (Former; National Organization for Drug Control and Research), Cairo, Egypt
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
21
|
Sirven MA, Venancio VP, Shankar S, Klemashevich C, Castellón-Chicas MJ, Fang C, Mertens-Talcott SU, Talcott ST. Ulcerative colitis results in differential metabolism of cranberry polyphenols by the colon microbiome in vitro. Food Funct 2021; 12:12751-12764. [PMID: 34847216 DOI: 10.1039/d1fo03047g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microbiome plays a major role in polyphenol metabolism, producing metabolites that are bioavailable and potentially more bioactive than the compounds from which they are derived. However, the microbiome can vary among individuals, and especially for those with co-morbidities, such as ulcerative colitis. In subjects with ulcerative colitis, the consequence of a 'dysbiotic' microbiome is characterized by decreased diversity of microbiota that may impact their capability to metabolize polyphenols into bioavailable metabolites. On this premise, the microbiome metabolism of cranberry polyphenols between healthy individuals and those with ulcerative colitis was compared in vitro. Fecal samples from volunteers, with or without diagnosed ulcerative colitis, were cultured anaerobically in the presence of cranberry polyphenols. The resulting metabolites were then quantified via LC-ESI-MS/MS. 16S rRNA metagenomics analysis was also utilized to assess differences in microbiota composition between healthy and ulcerative colitis microbiomes and the modulatory effects of cranberry polyphenols on microbiota composition. Healthy microbiomes produced higher (p < 0.05) concentrations of 5-(3',4'-dihydroxyphenyl)-gamma-valerolactone and 3-hydroxyphenylacetic acid in comparison to ulcerative colitis microbiomes. Additionally, healthy microbiomes contained a higher (p < 0.05) abundance of Ruminococcaceae, which could explain their ability to produce higher concentrations of cranberry polyphenol metabolites. Health status and the presence of cranberry polyphenols also significantly impacted the production of several short-chain and branched-chain fatty acids. These results suggest that efficiency of polyphenol metabolism is dependent on microbiota composition and future works should include metabolite data to account for inter-individual differences in polyphenol metabolism.
Collapse
Affiliation(s)
- Maritza Ashton Sirven
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | - Vinicius Paula Venancio
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | - Smriti Shankar
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX, USA
| | - Cory Klemashevich
- Integrated Metabolomics Analysis Core, Texas A&M University, College Station, TX, USA
| | | | - Chuo Fang
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| | | | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA.
| |
Collapse
|
22
|
Metabotypes of flavan-3-ol colonic metabolites after cranberry intake: elucidation and statistical approaches. Eur J Nutr 2021; 61:1299-1317. [PMID: 34750642 PMCID: PMC8921115 DOI: 10.1007/s00394-021-02692-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022]
Abstract
Purpose Extensive inter-individual variability exists in the production of flavan-3-ol metabolites. Preliminary metabolic phenotypes (metabotypes) have been defined, but there is no consensus on the existence of metabotypes associated with the catabolism of catechins and proanthocyanidins. This study aims at elucidating the presence of different metabotypes in the urinary excretion of main flavan-3-ol colonic metabolites after consumption of cranberry products and at assessing the impact of the statistical technique used for metabotyping. Methods Data on urinary concentrations of phenyl-γ-valerolactones and 3-(hydroxyphenyl)propanoic acid derivatives from two human interventions has been used. Different multivariate statistics, principal component analysis (PCA), cluster analysis, and partial least square-discriminant analysis (PLS-DA), have been considered. Results Data pre-treatment plays a major role on resulting PCA models. Cluster analysis based on k-means and a final consensus algorithm lead to quantitative-based models, while the expectation–maximization algorithm and clustering according to principal component scores yield metabotypes characterized by quali-quantitative differences in the excretion of colonic metabolites. PLS-DA, together with univariate analyses, has served to validate the urinary metabotypes in the production of flavan-3-ol metabolites and to confirm the robustness of the methodological approach. Conclusions This work proposes a methodological workflow for metabotype definition and highlights the importance of data pre-treatment and clustering methods on the final outcomes for a given dataset. It represents an additional step toward the understanding of the inter-individual variability in flavan-3-ol metabolism. Trial registration The acute study was registered at clinicaltrials.gov as NCT02517775, August 7, 2015; the chronic study was registered at clinicaltrials.gov as NCT02764749, May 6, 2016. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02692-z.
Collapse
|
23
|
Knezevic S, Ghafoor A, Mehri S, Barazi A, Dziura M, Trant JF, Dieni CA. Catechin and other catechol-containing secondary metabolites: Bacterial biotransformation and regulation of carbohydrate metabolism. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
25
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
26
|
Borgonovi TF, Casarotti SN, Penna ALB. Lacticaseibacillus casei SJRP38 and buriti pulp increased bioactive compounds and probiotic potential of fermented milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Sallam IE, Abdelwareth A, Attia H, Aziz RK, Homsi MN, von Bergen M, Farag MA. Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications. Microorganisms 2021; 9:965. [PMID: 33947064 PMCID: PMC8145700 DOI: 10.3390/microorganisms9050965] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Tannins represent a heterogeneous group of high-molecular-weight polyphenols that are ubiquitous among plant families, especially in cereals, as well as in many fruits and vegetables. Hydrolysable and condensed tannins, in addition to phlorotannins from marine algae, are the main classes of these bioactive compounds. Despite their low bioavailability, tannins have many beneficial pharmacological effects, such as anti-inflammatory, antioxidant, antidiabetic, anticancer, and cardioprotective effects. Microbiota-mediated hydrolysis of tannins produces highly bioaccessible metabolites, which have been extensively studied and account for most of the health effects attributed to tannins. This review article summarises the effect of the human microbiota on the metabolism of different tannin groups and the expected health benefits that may be induced by such mutual interactions. Microbial metabolism of tannins yields highly bioaccessible microbial metabolites that account for most of the systemic effects of tannins. This article also uses explainable artificial intelligence to define the molecular signatures of gut-biotransformed tannin metabolites that are correlated with chemical and biological activity. An understanding of microbiota-tannin interactions, tannin metabolism-related phenotypes (metabotypes) and chemical tannin-metabolites motifs is of great importance for harnessing the biological effects of tannins for drug discovery and other health benefits.
Collapse
Affiliation(s)
- Ibrahim E. Sallam
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City 12566, Egypt;
| | - Amr Abdelwareth
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Heba Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (H.A.); (R.K.A.)
- Microbiology and Immunology Research Program, Children’s Cancer Hospital Egypt 57357, Cairo 11617, Egypt
| | - Masun Nabhan Homsi
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
| | - Martin von Bergen
- Helmholtz-Centre for Environmental Research-UFZ GmbH, Department of Molecular Systems Biology, 04318 Leipzig, Germany;
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Talstraße 33, 04103 Leipzig, Germany
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
28
|
Mikami A, Ogita T, Namai F, Shigemori S, Sato T, Shimosato T. Oral Administration of Flavonifractor plautii, a Bacteria Increased With Green Tea Consumption, Promotes Recovery From Acute Colitis in Mice via Suppression of IL-17. Front Nutr 2021; 7:610946. [PMID: 33614691 PMCID: PMC7890079 DOI: 10.3389/fnut.2020.610946] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Flavonifractor plautii (FP) has been reported to participate in the metabolism of catechins in the human gut. However, there is limited information on the immune regulatory effects of this bacterium. We confirmed that the administration of green tea increases the abundance of FP in the gut microbiota and investigated the effect of FP in a mouse colitis model. Mice were orally administered FP for 10 consecutive days; colonic inflammation was evaluated daily on the basis of stool consistency, gross rectal bleeding, and body weight. In the dextran sodium sulfate model, FP-exposed animals exhibited lower levels of inflammation and strong inhibition of interleukin (IL)-17 signaling. Moreover, lipoteichoic acid from FP was identified as the active component mediating IL-17 suppression. Thus, oral administration of FP appears to modulate gut inflammation and represents a viable and inexpensive oral microbial therapeutic.
Collapse
Affiliation(s)
- Ayane Mikami
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Tasuku Ogita
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Fu Namai
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Suguru Shigemori
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takashi Sato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| | - Takeshi Shimosato
- Department of Biomolecular Innovation, Institute for Biomedical Sciences, Shinshu University, Nagano, Japan
| |
Collapse
|
29
|
Mithul Aravind S, Wichienchot S, Tsao R, Ramakrishnan S, Chakkaravarthi S. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Res Int 2021; 142:110189. [PMID: 33773665 DOI: 10.1016/j.foodres.2021.110189] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The beneficial health roles of dietary polyphenols in preventing oxidative stress related chronic diseases have been subjected to intense investigation over the last two decades. As our understanding of the role of gut microbiota advances our knowledge of the antioxidant and anti-inflammatory functions of polyphenols accumulates, there emerges a need to examine the prebiotic role of dietary polyphenols. This review focused onthe role of different types and sources of dietary polyphenols on the modulation of the gut microbiota, their metabolites and how they impact on host health benefits. Inter-dependence between the gut microbiota and polyphenol metabolites and the vital balance between the two in maintaining the host gut homeostasis were discussed with reference to different types and sources of dietary polyphenols. Similarly, the mechanisms behind the health benefits by various polyphenolic metabolites bio-transformed by gut microbiota were also explained. However, further research should focus on the importance of human trials and profound links of polyphenols-gut microbiota-nerve-brain as they provide the key to unlock the mechanisms behind the observed benefits of dietary polyphenols found in vitro and in vivo studies.
Collapse
Affiliation(s)
- S Mithul Aravind
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India
| | - Santad Wichienchot
- Center of Excellence in Functional Food and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Korhong, Hat Yai, Songkhla 90110, Thailand
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada.
| | - S Ramakrishnan
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - S Chakkaravarthi
- Department of Basic and Applied Sciences, National Institute of Food Technology and Entrepreneurship Management, Haryana, India.
| |
Collapse
|
30
|
Liu C, Vervoort J, van den Elzen J, Beekmann K, Baccaro M, de Haan L, Rietjens IMCM. Interindividual Differences in Human In Vitro Intestinal Microbial Conversion of Green Tea (‐)‐Epigallocatechin‐3‐
O
‐Gallate and Consequences for Activation of Nrf2 Mediated Gene Expression. Mol Nutr Food Res 2020. [PMCID: PMC7900971 DOI: 10.1002/mnfr.202000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Scope An in vitro faecal incubation model combined with reporter gene assay based testing strategy is developed to characterize interindividual differences in the gut microbial conversion of (‐)‐epigallocatechin‐3‐O‐gallate (EGCG) and its consequences for potential activation of Nrf2‐mediated gene expression. Method & Results Anaerobic human faecal incubations are performed to characterize the microbial metabolism of EGCG including interindividual variability. EGCG derived intestinal microbial metabolite patterns show substantial interindividual differences that are correlated to relative microbial abundances determined by 16S rRNA sequencing. Results obtained show the time‐dependent formation of gallic acid, pyrogallol, phenylpropane‐2‐ols, phenyl‐γ‐valerolactones, and 5‐(3′,5′‐dihydroxyphenyl)valeric acid as the major metabolites, with substantial interindividual differences. The activity of the formed metabolites in the activation of EpRE‐mediated gene expression is tested by EpRE‐LUX reporter gene assay. In contrast to EGCG, at low micromolar concentrations, especially gallic acid, pyrogallol, and catechol induce significant activity in the EpRE‐LUX assay. Conclusions Given these results and taking the level of formation into account, it is concluded that especially gallic acid and pyrogallol contribute to the EpRE‐mediated beneficial effects of EGCG. The interindividual differences in the formation may result in interindividual differences in the beneficial effects of EGCG and green tea consumption.
Collapse
Affiliation(s)
- Chen Liu
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Jacques Vervoort
- Laboratory of Biochemistry Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Joris van den Elzen
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Karsten Beekmann
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Marta Baccaro
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | - Laura de Haan
- Division of Toxicology Wageningen University and Research Wageningen 6708 WE The Netherlands
| | | |
Collapse
|
31
|
Singh B, Mal G, Sharma D, Sharma R, Antony CP, Kalra RS. Gastrointestinal biotransformation of phytochemicals: Towards futuristic dietary therapeutics and functional foods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Liu C, Vervoort J, Beekmann K, Baccaro M, Kamelia L, Wesseling S, Rietjens IMCM. Interindividual Differences in Human Intestinal Microbial Conversion of (-)-Epicatechin to Bioactive Phenolic Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14168-14181. [PMID: 33216536 PMCID: PMC7716348 DOI: 10.1021/acs.jafc.0c05890] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
To quantify interindividual differences in the human intestinal microbial metabolism of (-)-epicatechin (EC), in vitro anaerobic incubations with fecal inocula from 24 healthy donors were conducted. EC-derived colonic microbial metabolites were qualitatively and quantitively analyzed by liquid chromatography triple quadrupole mass spectrometry (LC-TQ-MS) and liquid chromatography time-of-flight mass spectrometry (LC-TOF-MS). Quantitative microbiota characterization was achieved by 16S rRNA analysis. The results obtained show 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-dihydroxyphenyl)-2-propanol (3,4-diHPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-diHPV) to be key intermediate microbial metabolites of EC and also revealed the substantial interindividual differences in both the rate of EC conversion and the time-dependent EC metabolite pattern. Furthermore, substantial differences in microbiota composition among different individuals were detected. Correlations between specific microbial phylotypes and formation of certain metabolites were established. It is concluded that interindividual differences in the intestinal microbial metabolism of EC may contribute to interindividual differences in potential health effects of EC-abundant dietary foods or drinks.
Collapse
Affiliation(s)
- Chen Liu
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Jacques Vervoort
- Laboratory
of Biochemistry, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Karsten Beekmann
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Marta Baccaro
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Lenny Kamelia
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | - Sebas Wesseling
- Division
of Toxicology, Wageningen University and
Research, Wageningen 6708 WE, The Netherlands
| | | |
Collapse
|
33
|
Adami GR, Tangney C, Schwartz JL, Dang KC. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020; 25:molecules25204753. [PMID: 33081212 PMCID: PMC7594096 DOI: 10.3390/molecules25204753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of green tea (GT) and GT polyphenols has prevented a range of cancers in rodents but has had mixed results in humans. Human subjects who drank GT for weeks showed changes in oral microbiome. However, GT-induced changes in RNA in oral epithelium were subject-specific, suggesting GT-induced changes of the oral epithelium occurred but differed across individuals. In contrast, studies in rodents consuming GT polyphenols revealed obvious changes in epithelial gene expression. GT polyphenols are poorly absorbed by digestive tract epithelium. Their metabolism by gut/oral microbial enzymes occurs and can alter absorption and function of these molecules and thus their bioactivity. This might explain the overall lack of consistency in oral epithelium RNA expression changes seen in human subjects who consumed GT. Each human has different gut/oral microbiomes, so they may have different levels of polyphenol-metabolizing bacteria. We speculate the similar gut/oral microbiomes in, for example, mice housed together are responsible for the minimal variance observed in tissue GT responses within a study. The consistency of the tissue response to GT within a rodent study eases the selection of a dose level that affects tumor rates. This leads to the theory that determination of optimal GT doses in a human requires knowledge about the gut/oral microbiome in that human.
Collapse
Affiliation(s)
- Guy R. Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
- Correspondence: ; Tel.: +1-312-996-6251
| | - Christy Tangney
- Department of Clinical Nutrition, College of Health Sciences, Rush University Medical Center, 600 South Paulina St, Room 716 AAC, Chicago, IL 60612, USA;
| | - Joel L. Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| | - Kim Chi Dang
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| |
Collapse
|
34
|
Hodges JK, Sasaki GY, Bruno RS. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: lessons learned from preclinical and human studies. J Nutr Biochem 2020; 85:108478. [PMID: 32801031 DOI: 10.1016/j.jnutbio.2020.108478] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which is the most prevalent hepatic disorder worldwide, affecting 25% of the general population, describes a spectrum of progressive liver conditions ranging from relatively benign liver steatosis and advancing to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Hallmark features of NASH are fatty hepatocytes and inflammatory cell infiltrates in association with increased activation of hepatic nuclear factor kappa-B (NFκB) that exacerbates liver injury. Because no pharmacological treatments exist for NAFLD, emphasis has been placed on dietary approaches to manage NASH risk. Anti-inflammatory bioactivities of catechin-rich green tea extract (GTE) have been well-studied, especially in preclinical models that have detailed its effects on inflammatory responses downstream of NFκB activation. This review will therefore discuss the experimental evidence that has advanced an understanding of the mechanisms by which GTE, either directly through its catechins or potentially indirectly through microbiota-derived metabolites, limits NFκB activation and NASH-associated liver injury. Specifically, it will describe the hepatic-level benefits of GTE that attenuate intracellular redox distress and pro-inflammatory signaling from extracellular receptors that otherwise activate NFκB. In addition, it will discuss the anti-inflammatory activities of GTE on gut barrier function as well as prebiotic and antimicrobial effects on gut microbial ecology that help to limit the translocation of gut-derived endotoxins (e.g. lipopolysaccharides) to the liver where they otherwise upregulate NFκB activation by Toll-like receptor-4 signaling. This summary is therefore expected to advance research translation of the hepatic- and intestinal-level benefits of GTE and its catechins to help manage NAFLD-associated morbidity.
Collapse
Affiliation(s)
- Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210.
| |
Collapse
|
35
|
Zhou N, Gu X, Zhuang T, Xu Y, Yang L, Zhou M. Gut Microbiota: A Pivotal Hub for Polyphenols as Antidepressants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6007-6020. [PMID: 32394713 DOI: 10.1021/acs.jafc.0c01461] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyphenols, present in a broad range of plants, have been thought to be responsible for many beneficial health effects, such as an antidepressant. Despite that polyphenols can be absorbed in the small intestine directly, most of them have low bioavailability and reach the large intestine without any modifications due to their complex structures. The interaction between microbial communities and polyphenols in the intestine is important for the latter to exert antidepressant effects. Gut microbiota can improve the bioavailability of polyphenols; in turn, polyphenols can maintain the intestinal barrier as well as the community of the gut microbiota in normal status. Furthermore, gut microbita catabolize polyphenols to more active, better-absorbed metabolites, further ameliorating depression through the microbial-gut-brain (MGB) axis. Based on this evidence, the review illustrates the potential role of gut microbiota in the processes of polyphenols or their metabolites acting as antidepressants and further envisions the gut microbiota as therapeutic targets for depression.
Collapse
Affiliation(s)
- Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
36
|
Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, Turnbaugh PJ, Bess EN, Balskus EP. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. eLife 2020; 9:e50845. [PMID: 32067637 PMCID: PMC7028382 DOI: 10.7554/elife.50845] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Catechol dehydroxylation is a central chemical transformation in the gut microbial metabolism of plant- and host-derived small molecules. However, the molecular basis for this transformation and its distribution among gut microorganisms are poorly understood. Here, we characterize a molybdenum-dependent enzyme from the human gut bacterium Eggerthella lenta that dehydroxylates catecholamine neurotransmitters. Our findings suggest that this activity enables E. lenta to use dopamine as an electron acceptor. We also identify candidate dehydroxylases that metabolize additional host- and plant-derived catechols. These dehydroxylases belong to a distinct group of largely uncharacterized molybdenum-dependent enzymes that likely mediate primary and secondary metabolism in multiple environments. Finally, we observe catechol dehydroxylation in the gut microbiotas of diverse mammals, confirming the presence of this chemistry in habitats beyond the human gut. These results suggest that the chemical strategies that mediate metabolism and interactions in the human gut are relevant to a broad range of species and habitats.
Collapse
Affiliation(s)
- Vayu Maini Rekdal
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Paola Nol Bernadino
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Michael U Luescher
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Sina Kiamehr
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Chip Le
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| | - Jordan E Bisanz
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Peter J Turnbaugh
- Department of Microbiology and ImmunologyUniversity of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Elizabeth N Bess
- Department of Chemistry and Molecular BiologyUniversity of California, IrvineIrvineUnited States
- Department of Chemistry and Molecular BiochemistryUniversity of California, IrvineIrvineUnited States
| | - Emily P Balskus
- Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
37
|
Rodríguez-Daza MC, Daoust L, Boutkrabt L, Pilon G, Varin T, Dudonné S, Levy É, Marette A, Roy D, Desjardins Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci Rep 2020; 10:2217. [PMID: 32041991 PMCID: PMC7010699 DOI: 10.1038/s41598-020-58863-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Blueberries are a rich source of polyphenols, widely studied for the prevention or attenuation of metabolic diseases. However, the health contribution and mechanisms of action of polyphenols depend on their type and structure. Here, we evaluated the effects of a wild blueberry polyphenolic extract (WBE) (Vaccinium angustifolium Aiton) on cardiometabolic parameters, gut microbiota composition and gut epithelium histology of high-fat high-sucrose (HFHS) diet-induced obese mice and determined which constitutive polyphenolic fractions (BPF) was responsible for the observed effects. To do so, the whole extract was separated in three fractions, F1) Anthocyanins and phenolic acids, F2) oligomeric proanthocyanidins (PACs), phenolic acids and flavonols (PACs degree of polymerization DP < 4), and F3) PACs polymers (PACs DP > 4) and supplied at their respective concentration in the whole extract. After 8 weeks, WBE reduced OGTT AUC by 18.3% compared to the HFHS treated rodents and the F3 fraction contributed the most to this effect. The anthocyanin rich F1 fraction did not reproduce this response. WBE and the BPF restored the colonic mucus layer. Particularly, the polymeric PACs-rich F3 fraction increased the mucin-secreting goblet cells number. WBE caused a significant 2-fold higher proportion of Adlercreutzia equolifaciens whereas oligomeric PACs-rich F2 fraction increased by 2.5-fold the proportion of Akkermansia muciniphila. This study reveals the key role of WBE PACs in modulating the gut microbiota and restoring colonic epithelial mucus layer, providing a suitable ecological niche for mucosa-associated symbiotic bacteria, which may be crucial in triggering health effects of blueberry polyphenols.
Collapse
Affiliation(s)
- Maria-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Laurence Daoust
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Lemia Boutkrabt
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Thibault Varin
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada. .,Food Science Department, Faculty of Agriculture and Food, Laval University, Québec, QC, Canada.
| |
Collapse
|
38
|
Nakov R, Velikova T. Chemical Metabolism of Xenobiotics by Gut Microbiota. Curr Drug Metab 2020; 21:260-269. [PMID: 32124693 DOI: 10.2174/1389200221666200303113830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/05/2020] [Accepted: 02/12/2020] [Indexed: 02/08/2023]
Abstract
Among the gut microbiota's newly explored roles in human biology is the ability to modify the chemical structures of foreign compounds (xenobiotics). A growing body of evidence has now provided sufficient acumen on the role of the gut microbiota on xenobiotic metabolism, which could have an intense impact on the therapy for various diseases in the future. Gut microbial xenobiotic metabolites have altered bioavailability, bioactivity and toxicity and can intervene with the actions of human xenobiotic-metabolizing enzymes to affect the destiny of other ingested molecules. These modifications are diverse and could lead to physiologically important consequences. In the current manuscript we aim to review the data currently available on how the gut microbiota directly modifies drugs, dietary compounds, chemicals, pollutants, pesticides and herbal supplements.
Collapse
Affiliation(s)
- Radislav Nakov
- Clinic of Gastroenterology, Tsaritsa Yoanna University Hospital, Medical University of Sofia, Sofia, Bulgaria
| | | |
Collapse
|
39
|
Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G, Angelino D, Llorach R, Calani L, Brighenti F, Clifford MN, Gill CIR, Crozier A, Curti C, Del Rio D. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat Prod Rep 2019; 36:714-752. [PMID: 30468210 DOI: 10.1039/c8np00062j] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1958 to June 2018 Phenyl-γ-valerolactones (PVLs) and their related phenylvaleric acids (PVAs) are the main metabolites of flavan-3-ols, the major class of flavonoids in the human diet. Despite their presumed importance, these gut microbiota-derived compounds have, to date, in terms of biological activity, been considered subordinate to their parent dietary compounds, the flavan-3-ol monomers and proanthocyanidins. In this review, the role and prospects of PVLs and PVAs as key metabolites in the understanding of the health features of flavan-3-ols have been critically assessed. Among the topics covered, are proposals for a standardised nomenclature for PVLs and PVAs. The formation, bioavailability and pharmacokinetics of PVLs and PVAs from different types of flavan-3-ols are discussed, taking into account in vitro and animal studies, as well as inter-individual differences and the existence of putative flavan-3-ol metabotypes. Synthetic strategies used for the preparation of PVLs are considered and the methodologies for their identification and quantification assessed. Metabolomic approaches unravelling the role of PVLs and PVAs as biomarkers of intake are also described. Finally, the biological activity of these microbial catabolites in different experimental models is summarised. Knowledge gaps and future research are considered in this key area of dietary (poly)phenol research.
Collapse
Affiliation(s)
- Pedro Mena
- Department of Food & Drugs, University of Parma, Via Volturno 39, 43125 Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Quesada-Molina M, Muñoz-Garach A, Tinahones FJ, Moreno-Indias I. A New Perspective on the Health Benefits of Moderate Beer Consumption: Involvement of the Gut Microbiota. Metabolites 2019; 9:metabo9110272. [PMID: 31717482 PMCID: PMC6918268 DOI: 10.3390/metabo9110272] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Beer is the most widely consumed fermented beverage in the world. A moderate consumption of beer has been related to important healthy outcomes, although the mechanisms have not been fully understood. Beer contains only a few raw ingredients but transformations that occur during the brewing process turn beer into a beverage that is enriched in micronutrients. Beer also contains an important number of phenolic compounds and it could be considered to be a source of dietary polyphenols. On the other hand, gut microbiota is now attracting special attention due to its metabolic effects and as because polyphenols are known to interact with gut microbiota. Among others, ferulic acid, xanthohumol, catechins, epicatechins, proanthocyanidins, quercetin, and rutin are some of the beer polyphenols that have been related to microbiota. However, scarce literature exists about the effects of moderate beer consumption on gut microbiota. In this review, we focus on the relationship between beer polyphenols and gut microbiota, with special emphasis on the health outcomes.
Collapse
Affiliation(s)
- Mar Quesada-Molina
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
| | - Araceli Muñoz-Garach
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| | - Isabel Moreno-Indias
- Department of Endocrinology and Nutrition, Virgen de la Victoria Hospital (IBIMA), Malaga University, 29010 Malaga, Spain; (M.Q.-M.); (A.M.-G.)
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 29010 Málaga, Spain
- Correspondence: (F.J.T.); (I.M.-I.); Tel.: +34-951-036-2647 (F.J.T. & I.M.-I.)
| |
Collapse
|
41
|
Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci 2019; 13:1196. [PMID: 31749681 PMCID: PMC6848798 DOI: 10.3389/fnins.2019.01196] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
The pathophysiology of depression is multifactorial yet generally aggravated by stress and its associated physiological consequences. To effectively treat these diverse risk factors, a broad acting strategy is required and is has been suggested that gut-brain-axis signaling may play a pinnacle role in promoting resilience to several of these stress-induced changes including pathogenic load, inflammation, HPA-axis activation, oxidative stress and neurotransmitter imbalances. The gut microbiota also manages the bioaccessibility of phenolic metabolites from dietary polyphenols whose multiple beneficial properties have known therapeutic efficacy against depression. Although several potential therapeutic mechanisms of dietary polyphenols toward establishing cognitive resilience to neuropsychiatric disorders have been established, only a handful of studies have systematically identified how the interaction of the gut microbiota with dietary polyphenols can synergistically alleviate the biological signatures of depression. The current review investigates several of these potential mechanisms and how synbiotics, that combine probiotics with dietary polyphenols, may provide a novel therapeutic strategy for depression. In particular, synbiotics have the potential to alleviate neuroinflammation by modulating microglial and inflammasome activation, reduce oxidative stress and balance serotonin metabolism therefore simultaneously targeting several of the major pathological risk factors of depression. Overall, synbiotics may act as a novel therapeutic paradigm for neuropsychiatric disorders and further understanding the fundamental mechanisms of gut-brain-axis signaling will allow full utilization of the gut microbiota's as a therapeutic tool.
Collapse
Affiliation(s)
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
42
|
Abstract
Flavonoids are a group of polyphenolic dietary compounds found in many different plant-based foods. There is increasing evidence that higher flavonoid intake may be causally linked to a reduced risk of cardiovascular disease and other chronic diseases. The bioactivity and bioavailability of many dietary flavonoids can be influenced by gastrointestinal microbiome metabolism. However, the role that habitual flavonoid intake plays in shaping the human gut microbiome is poorly understood. We describe an application of an ecosystem-based analytic approach to nutritional, microbiome, and questionnaire data from a cohort of more than 240 generally healthy adult males to assess the role of dietary flavonoid compounds in driving patterns of microbial community assembly. We identified six subclass-specific microbial communities (SMCs) uniquely and independently associated with intakes of the six flavonoid subclasses. Eggerthela lenta was positively associated with intakes of flavonol and flavanone, and Adlercreutzia equolifaciens was positively associated with intakes of flavonols and flavanol monomers. In contrast, for nearly all flavonoid subclasses, Flavonifractor plautii was inversely associated with subclass consumption. Consuming tea at least once per week explained 10.4% of the total variance in assembly of the 20 species comprising the flavanol monomer SMC. The novel methodology employed, necessitated by multidimensional microbiome data that consist of nonindependent features that exhibit a wide range of distributions and mean values, addresses a major challenge in our ability to understand associations of the microbiome in a wide range of clinical and epidemiologic settings.IMPORTANCE Dietary flavonoids, which have been implicated in lowering chronic disease risk and improving blood pressure, represent a diverse group of polyphenolic compounds found in many commonly consumed foods such as tea, red wine, apples, and berries. The bioactivity and bioavailability of more dietary flavonoids can be influenced by gastrointestinal microbiome metabolism. With demonstrated prebiotic and antimicrobial effects in in vitro and in animal models, it is surprising that there are not many human studies investigating the role dietary flavonoids play in shaping the gastrointestinal microbiome. Our analysis revealed patterns of community assembly that uniquely and independently characterize an individual's exposure to various flavonoid compounds. Furthermore, this study confirmed, independent from effects of other dietary and lifestyle factors included in the multivariate-adjusted model, that flavonoid intake is associated with microbial community assembly.
Collapse
|
43
|
Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites. Int J Mol Sci 2019; 20:ijms20153630. [PMID: 31349535 PMCID: PMC6696481 DOI: 10.3390/ijms20153630] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last three decades, green tea has been studied for its beneficial effects, including anti-cancer, anti-obesity, anti-diabetes, anti-inflammatory, and neuroprotective effects. At present, a number of studies that have employed animal, human and cell cultures support the potential neuroprotective effects of green tea catechins against neurological disorders. However, the concentration of (−)-epigallocatechin gallate (EGCG) in systemic circulation is very low and EGCG disappears within several hours. EGCG undergoes microbial degradation in the small intestine and later in the large intestine, resulting in the formation of various microbial ring-fission metabolites which are detectable in the plasma and urine as free and conjugated forms. Recently, in vitro experiments suggested that EGCG and its metabolites could reach the brain parenchyma through the blood–brain barrier and induce neuritogenesis. These results suggest that metabolites of EGCG may play an important role, alongside the beneficial activities of EGCG, in reducing neurodegenerative diseases. In this review, we discuss the function of EGCG and its microbial ring-fission metabolites in the brain in suppressing brain dysfunction. Other possible actions of EGCG metabolites will also be discussed.
Collapse
Affiliation(s)
- Monira Pervin
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Keiko Unno
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Akiko Takagaki
- R&D group, Mitsui Norin Co. Ltd., Shizuoka 426-0133, Japan
| | - Mamoru Isemura
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
44
|
Mena P, Ludwig IA, Tomatis VB, Acharjee A, Calani L, Rosi A, Brighenti F, Ray S, Griffin JL, Bluck LJ, Del Rio D. Inter-individual variability in the production of flavan-3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. Eur J Nutr 2019; 58:1529-1543. [PMID: 29616322 DOI: 10.1007/s00394-018-1683-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE There is much information on the bioavailability of (poly)phenolic compounds following acute intake of various foods. However, there are only limited data on the effects of repeated and combined exposure to specific (poly)phenol food sources and the inter-individual variability in their bioavailability. This study evaluated the combined urinary excretion of (poly)phenols from green tea and coffee following daily consumption by healthy subjects in free-living conditions. The inter-individual variability in the production of phenolic metabolites was also investigated. METHODS Eleven participants consumed both tablets of green tea and green coffee bean extracts daily for 8 weeks and 24-h urine was collected on five different occasions. The urinary profile of phenolic metabolites and a set of multivariate statistical tests were used to investigate the putative existence of characteristic metabotypes in the production of flavan-3-ol microbial metabolites. RESULTS (Poly)phenolic compounds in the green tea and green coffee bean extracts were absorbed and excreted after simultaneous consumption, with green tea resulting in more inter-individual variability in urinary excretion of phenolic metabolites. Three metabotypes in the production of flavan-3-ol microbial metabolites were tentatively defined, characterized by the excretion of different amounts of trihydroxyphenyl-γ-valerolactones, dihydroxyphenyl-γ-valerolactones, and hydroxyphenylpropionic acids. CONCLUSIONS The selective production of microbiota-derived metabolites from flavan-3-ols and the putative existence of characteristic metabotypes in their production represent an important development in the study of the bioavailability of plant bioactives. These observations will contribute to better understand the health effects and individual differences associated with consumption of flavan-3-ols, arguably the main class of flavonoids in the human diet.
Collapse
Affiliation(s)
- Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy.
| | - Iziar A Ludwig
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
- Food Technology Department, Universitat de Lleida-Agrotecnio Center, Lleida, Spain
| | - Virginia B Tomatis
- UK Medical Research Council Elsie Widdowson Laboratory (formerly MRC Human Nutrition Research), Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Animesh Acharjee
- UK Medical Research Council Elsie Widdowson Laboratory (formerly MRC Human Nutrition Research), Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham, UK
- Institute of Translational Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Luca Calani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy
| | - Sumantra Ray
- UK Medical Research Council Elsie Widdowson Laboratory (formerly MRC Human Nutrition Research), Cambridge, UK
| | - Julian L Griffin
- UK Medical Research Council Elsie Widdowson Laboratory (formerly MRC Human Nutrition Research), Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Les J Bluck
- UK Medical Research Council Elsie Widdowson Laboratory (formerly MRC Human Nutrition Research), Cambridge, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Medical School Building C, Via Volturno, 39, 43125, Parma, Italy.
| |
Collapse
|
45
|
Ushiroda C, Naito Y, Takagi T, Uchiyama K, Mizushima K, Higashimura Y, Yasukawa Z, Okubo T, Inoue R, Honda A, Matsuzaki Y, Itoh Y. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. J Clin Biochem Nutr 2019; 65:34-46. [PMID: 31379412 PMCID: PMC6667385 DOI: 10.3164/jcbn.18-116] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota have profound effects on bile acid metabolism by promoting deconjugation, dehydrogenation, and dehydroxylation of primary bile acids in the distal small intestine and colon. High-fat diet-induced dysbiosis of gut microbiota and bile acid dysregulation may be involved in the pathology of steatosis in patients with non-alcoholic fatty liver disease. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenolic catechin in green tea, has been widely investigated for its inhibitory or preventive effects against fatty liver. The aim of the present study was to investigate the effects of EGCG on the abundance of gut microbiota and the composition of serum bile acids in high-fat diet-fed mice and determine the specific bacterial genera that can improve the serum bile acid dysregulation associated with EGCG anti-hepatic steatosis action. Male C57BL/6N mice were fed with the control diet, high-fat diet, or high-fat diet + EGCG at a concentration of 0.32% for 8 weeks. EGCG significantly inhibited the increases in weight, the area of fatty lesions, and the triglyceride content in the liver induced by the high-fat diet. Principal coordinate analysis revealed significant differences in microbial structure among the groups. At the genus level, EGCG induced changes in the microbiota composition in high-fat diet-fed mice, showing a significantly higher abundance of Adlercreutzia, Akkermansia, Allobaculum and a significantly lower abundance of Desulfovibrionaceae. EGCG significantly reversed the decreased population of serum primary cholic acid and β-muricholic acid as well as the increased population of taurine-conjugated cholic acid, β-muricholic acid and deoxycholic acid in high-fat diet-fed mice. Finally, the correlation analysis between bile acid profiles and gut microbiota demonstrated the contribution of Akkermansia and Desulfovibrionaceae in the improvement of bile acid dysregulation in high-fat diet-fed mice by treatment with EGCG. In conclusion, the present study suggests that EGCG could alter bile acid metabolism, especially taurine deconjugation, and suppress fatty liver disease by improving the intestinal luminal environment.
Collapse
Affiliation(s)
- Chihiro Ushiroda
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yasuki Higashimura
- Department of Food Science, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Zenta Yasukawa
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Tsutomu Okubo
- Nutrition Division, Taiyo Kagaku Co. Ltd., 1-3 Takaramachi, Yokkaichi, Mie 510-0844, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Agricultural and Life Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Akira Honda
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Ami-machi Chuo, Inashiki-gun, Ibaraki 300-0395, Japan
| | - Yasushi Matsuzaki
- Gastroenterology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Ami-machi Chuo, Inashiki-gun, Ibaraki 300-0395, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
46
|
Le Bourvellec C, Bagano Vilas Boas P, Lepercq P, Comtet-Marre S, Auffret P, Ruiz P, Bott R, Renard CMGC, Dufour C, Chatel JM, Mosoni P. Procyanidin-Cell Wall Interactions within Apple Matrices Decrease the Metabolization of Procyanidins by the Human Gut Microbiota and the Anti-Inflammatory Effect of the Resulting Microbial Metabolome In Vitro. Nutrients 2019; 11:E664. [PMID: 30893845 PMCID: PMC6471247 DOI: 10.3390/nu11030664] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 12/23/2022] Open
Abstract
B-type oligomeric procyanidins in apples constitute an important source of polyphenols in the human diet. Their role in health is not known, although it is suggested that they generate beneficial bioactive compounds upon metabolization by the gut microbiota. During apple processing, procyanidins interact with cell-wall polysaccharides and form stable complexes. These interactions need to be taken into consideration in order to better assess the biological effects of fruit constituents. Our objectives were to evaluate the impact of these interactions on the microbial metabolization of cell walls and procyanidins, and to investigate the potential anti-inflammatory activity of the resulting metabolome, in addition to analyzing the taxonomical changes which the microbiota undergo. In vitro fermentation of three model apple matrices with microbiota from 4 healthy donors showed that the binding of procyanidins to cell-wall polysaccharides, whether covalently or non-covalently, substantially reduced procyanidin degradation. Although cell wall-unbound procyanidins negatively affected carbohydrate fermentation, they generated more hydroxyphenylvaleric acid than bound procyanidins, and increased the abundance of Adlercreutzia and Gordonibacter genera. The best results in terms of production of anti-inflammatory bioactive metabolites were observed from the apple matrix with no bonds between procyanidins and cell wall polysaccharides, although the matrix with non-covalent bonds was not far behind.
Collapse
Affiliation(s)
- Carine Le Bourvellec
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | | | - Pascale Lepercq
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Sophie Comtet-Marre
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Pauline Auffret
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
- Ifremer, UMR 241 EIO, F-98702 Tahiti, French Polynesia.
| | - Philippe Ruiz
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| | - Romain Bott
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Catherine M G C Renard
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Claire Dufour
- UMR408 SQPOV «Sécurité et Qualité des Produits d'Origine Végétale», INRA, Avignon Université, F-84000 Avignon, France.
| | - Jean-Marc Chatel
- Micalis, INRA, AgroParisTech, Université Paris-Saclay, F-7800 Jouy-en-Josas, France.
| | - Pascale Mosoni
- Université Clermont Auvergne, INRA, UMR 0454 MEDIS, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
47
|
Tomás-Barberán FA, Espín JC. Effect of Food Structure and Processing on (Poly)phenol-Gut Microbiota Interactions and the Effects on Human Health. Annu Rev Food Sci Technol 2019; 10:221-238. [PMID: 30633563 DOI: 10.1146/annurev-food-032818-121615] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The two-way interaction of food (poly)phenols with the human gut microbiota has been studied throughout the past ten years. Research has shown that this interaction can be relevant to explain the health effects of these phytochemicals. The effect of the food matrix and food processing on this interaction has only been partially studied. In this article, the studies within this field have been critically reviewed, with a special focus on the following groups of phenolic metabolites: citrus flavanones, pomegranate ellagitannins, and cocoa proanthocyanidins. The available research shows that both the food matrix and food processing can be relevant factors for gut microbiota reshaping to reach a healthier microbial ecology and for the conversion of polyphenols to bioactive and bioavailable metabolites. There are, however, some research gaps that indicate a more comprehensive research approach is needed to reach valid conclusions regarding the gut microbiota-mediated effects of polyphenols on human health.
Collapse
Affiliation(s)
| | - Juan C Espín
- Food and Health Laboratory, CEBAS-CSIC, Espinardo, Murcia 30100, Spain;
| |
Collapse
|
48
|
Ho L, Zhao D, Ono K, Ruan K, Mogno I, Tsuji M, Carry E, Brathwaite J, Sims S, Frolinger T, Westfall S, Mazzola P, Wu Q, Hao K, Lloyd TE, Simon JE, Faith J, Pasinetti GM. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. J Nutr Biochem 2018; 64:170-181. [PMID: 30530257 DOI: 10.1016/j.jnutbio.2018.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/19/2018] [Accepted: 10/16/2018] [Indexed: 12/23/2022]
Abstract
The intestinal microbiota actively converts dietary flavanols into phenolic acids, some of which are bioavailable in vivo and may promote resilience to select neurological disorders by interfering with key pathologic mechanisms. Since every person harbors a unique set of gut bacteria, we investigated the influence of the gut microbiota's interpersonal heterogeneity on the production and bioavailability of flavonoid metabolites that may interfere with the misfolding of alpha (α)-synuclein, a process that plays a central role in Parkinson's disease and other α-synucleinopathies. We generated two experimental groups of humanized gnotobiotic mice with compositionally diverse gut bacteria and orally treated the mice with a flavanol-rich preparation (FRP). The two gnotobiotic mouse groups exhibited distinct differences in the generation and bioavailability of FRP-derived microbial phenolic acid metabolites that have bioactivity towards interfering with α-synuclein misfolding or inflammation. We also demonstrated that these bioactive phenolic acids are effective in modulating the development and progression of motor dysfunction in a Drosophila model of α-synucleinopathy. Lastly, through in vitro bacterial fermentation studies, we identified select bacteria that are capable of supporting the generation of these bioavailable and bioactive phenolic acids. Outcomes from our studies provide a better understanding of how interpersonal heterogeneity in the gut microbiota differentially modulates the efficacy of dietary flavanols to protect against select pathologic mechanisms. Collectively, our findings provide the basis for future developments of probiotic, prebiotic, or synbiotic approaches for modulating the onset and/or progression of α-synucleinopathies and other neurological disorders involving protein misfolding and/or inflammation.
Collapse
Affiliation(s)
- Lap Ho
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA 10468
| | - Danyue Zhao
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Kenjiro Ono
- Department of Internal Medicine, Division of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Kai Ruan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205
| | - Ilaria Mogno
- Precision Immunology Institute and Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Mayumi Tsuji
- Department of Pharmacology, Showa University School of Medicine, Tokyo, Japan
| | - Eileen Carry
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Piscataway, NJ, USA 08854
| | - Justin Brathwaite
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Steven Sims
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Tal Frolinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Susan Westfall
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Paolo Mazzola
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Qingli Wu
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029; Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205; Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, USA, MD 21205
| | - James E Simon
- New Use Agriculture and Natural Plant Products Program, Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA 08901
| | - Jeremiah Faith
- Precision Immunology Institute and Department of Genomic Sciences, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029
| | - Giulio M Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, New York, USA 10029; Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA 10468.
| |
Collapse
|
49
|
Hara-Terawaki A, Takagaki A, Kobayashi H, Nanjo F. Inhibitory Activity of Catechin Metabolites Produced by Intestinal Microbiota on Proliferation of HeLa Cells. Biol Pharm Bull 2018; 40:1331-1335. [PMID: 28769014 DOI: 10.1248/bpb.b17-00127] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eleven kinds of catechin metabolites produced from (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCg) by intestinal microbiota were evaluated for inhibitory activity on the proliferation of HeLa cells, which are human cervical cancer cells. Among the catechin metabolites, 1-(3,4,5-trihydroxyphenyl)-3-(2,4,6-trihydroxyphenyl)propan-2-ol (EGC-M2), 4-hydroxy-5-(3,4,5-trihydroxyphenyl)valeric acid (EGC-M7), and 5-(3,4,5-trihydroxyphenyl)valeric acid (EGC-M9) were found to show inhibitory activity on HeLa cell proliferation as compared with control. The results suggested that three adjacent hydroxyl groups in the phenyl moiety may play an important role in the inhibitory activity. In addition, the inhibitory activity was also examined with four (-)-epicatechin (EC) metabolites possessing two adjacent hydroxyl groups in the phenyl moiety. Only 5-(3,4-dihydroxyphenyl)valeric acid (EC-M9) showed inhibitory activity and therefore valeric acid moiety likely contributes to the inhibitory activity. EGC-M9 showed the strongest inhibitory activity with IC50 of 5.58 µM. Thus, in this study it was found for the first time that several catechin metabolites derived from EGC, EGCg, and EC inhibit the proliferation of cervical cancer cells.
Collapse
Affiliation(s)
| | | | | | - Fumio Nanjo
- Food Research Laboratories, Mitsui Norin Co., Ltd
| |
Collapse
|
50
|
de Souza EL, de Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Crit Rev Food Sci Nutr 2018; 59:1645-1659. [PMID: 29377718 DOI: 10.1080/10408398.2018.1425285] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several foods are rich sources of phenolic compounds (PC) and their beneficial effects on human health may be increased through the action of probiotics. Additionally, probiotics may use PC as substrates, increasing their survival and functionality. This review presents available studies on the effects of PC on probiotics, including their physiological functionalities, interactions and capability of surviving during exposure to gastrointestinal conditions and when incorporated into food matrices. Studies have shown that PC can improve the adhesion capacity and survival of probiotics during exposure to conditions that mimic the gastrointestinal tract. There is strong evidence that PC can modulate the composition of the gut microbiota in hosts, improving a variety of biochemical markers and risk factors for chronic diseases. Available literature also indicates that metabolites of PC formed by intestinal microorganisms, including probiotics, exert a variety of benefits on host health. These metabolites are typically more active than parental dietary PC. The presence of PC commonly enhances probiotic survival in different foods. Finally, further clinical studies need to be developed to confirm in vitro and experimental findings concerning the beneficial interactions among different PC and probiotics.
Collapse
Affiliation(s)
- Evandro Leite de Souza
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | | | - Aldeir Sabino Dos Santos
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - Nayara Moreira Lacerda Massa
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| | - José Luiz de Brito Alves
- a Department of Nutrition , Health Sciences Center, Federal University of Paraíba , João Pessoa , Paraíba , Brazil
| |
Collapse
|