1
|
Xie Z, Zhou Q, Hu J, He L, Meng H, Liu X, Sun G, Luo Z, Feng Y, Li L, Chu X, Du C, Yang D, Yang X, Zhang J, Ge C, Zhang X, Chen S, Geng M. Integrated omics profiling reveals systemic dysregulation and potential biomarkers in the blood of patients with neuromyelitis optica spectrum disorders. J Transl Med 2024; 22:989. [PMID: 39487546 PMCID: PMC11529322 DOI: 10.1186/s12967-024-05801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood. METHODS To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP). RESULTS Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. CONCLUSIONS Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.
Collapse
Affiliation(s)
- Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jin Hu
- Department of Neurology, Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Huangyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xiaoni Liu
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, 200040, China
| | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Yuan Feng
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xingkun Chu
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Dabing Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xinying Yang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co., Ltd, Shanghai, 201203, China
| | - Xiang Zhang
- Department of Neurology, Huashan Hospital Fudan University and Institute of Neurology, Fudan University, Shanghai, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Neurology, Xinrui Hospital, Wuxi, China.
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, Shandong, China.
| |
Collapse
|
2
|
Sasaki T, Oyama M, Kubota M, Isshiki Y, Takeuchi T, Tanaka T, Tanikawa T, Tamura M, Arata Y, Hatanaka T. Galectin-2 Agglutinates Helicobacter pylori via Lipopolysaccharide Containing H Type I Under Weakly Acidic Conditions. Int J Mol Sci 2024; 25:8725. [PMID: 39201412 PMCID: PMC11354322 DOI: 10.3390/ijms25168725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Galectins are β-galactoside-binding animal lectins involved in various biological functions, such as host defense. Galectin-2 and -3 are members of the galectin family that are expressed in the stomach, including the gastric mucosa and surface mucous cells. Galectin-3 exhibits aggregation and bactericidal activity against Helicobacter pylori in a β-galactoside-dependent manner. We previously reported that galectin-2 has the same activity under neutral pH conditions. In this study, the H. pylori aggregation activity of galectin-2 was examined under weakly acidic conditions, in which H. pylori survived. Galectin-2 agglutinated H. pylori even at pH 6.0, but not at pH 5.0, correlating with its structural stability, as determined using circular dichroism. Additionally, galectin-2 binding to the lipopolysaccharide (LPS) of H. pylori cultured under weakly acidic conditions was investigated using affinity chromatography and Western blotting. Galectin-2 could bind to H. pylori LPS containing H type I, a Lewis antigen, in a β-galactoside-dependent manner. In contrast, galectin-3 was structurally more stable than galectin-2 under acidic conditions and bound to H. pylori LPS containing H type I and Lewis X. In conclusion, galectin-2 and -3 might function cooperatively in the defense against H. pylori in the stomach under different pH conditions.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Midori Oyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Mao Kubota
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Yasunori Isshiki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Tomoharu Takeuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
- School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Toru Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Takashi Tanikawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
| | - Mayumi Tamura
- Faculty of Pharmaceutical Sciences, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (Y.A.)
| | - Yoichiro Arata
- Faculty of Pharmaceutical Sciences, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (Y.A.)
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan; (T.S.); (M.O.); (M.K.); (Y.I.); (T.T.); (T.T.); (T.T.)
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
3
|
Tamura M, Arata Y. Analysis of the Interaction Between Mucin and Green Fluorescent Protein (GFP)-Tagged Galectin-2 Using a 96-Well Plate. Methods Mol Biol 2024; 2763:311-319. [PMID: 38347420 DOI: 10.1007/978-1-0716-3670-1_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Due to a significant proportion of glycans binding to the peptide (constituting approximately 50-90% of the molecular weight), analyzing the interaction between the entire mucin molecule and its recognition protein (lectin) can be challenging. To address this, we propose a semiquantitative approach for measuring the interaction between mucin and lectin, which involves immobilizing mucin in a 96-well plate and subsequently adding lectin tagged with green fluorescent protein.
Collapse
Affiliation(s)
- Mayumi Tamura
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.
| | - Yoichiro Arata
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| |
Collapse
|
4
|
Tamura M, Fujii N, Takeuchi T, Tsuyuguchi M, Tanikawa T, Oka S, Hatanaka T, Kishimoto S, Kato R, Arata Y. Method for Preparing Recombinant Galectin-2 Protein without Escherichia coli-Specific Post-translational Modifications. Biol Pharm Bull 2023; 46:1676-1682. [PMID: 38044091 DOI: 10.1248/bpb.b23-00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Galectin-2 (Gal-2) is an animal lectin with specificity for β-galactosides. It is predominantly expressed and suggested to play a protective function in the gastrointestinal tract; therefore, it can be used as a protein drug. Recombinant proteins have been expressed using Escherichia coli and used to study the function of Gal-2. The recombinant human Gal-2 (hGal-2) protein purified via affinity chromatography after being expressed in E. coli was not completely homogeneous. Mass spectrometry confirmed that some recombinant Gal-2 were phosphogluconoylated. In contrast, the recombinant mouse Gal-2 (mGal-2) protein purified using affinity chromatography after being expressed in E. coli contained a different form of Gal-2 with a larger molecular weight. This was due to mistranslating the original mGal-2 stop codon TGA to tryptophan (TGG). In this report, to obtain a homogeneous Gal-2 protein for further studies, we attempted the following methods: for hGal-2, 1) replacement of the lysine (Lys) residues, which was easily phosphogluconoylated with arginine (Arg) residues, and 2) addition of histidine (His)-tag on the N-terminus of the recombinant protein and cleavage with protease after expression; for mGal-2, 3) changing the stop codon from TGA to TAA, which is commonly used in E. coli. We obtained an almost homogeneous recombinant Gal-2 protein (human and mouse). These results have important implications for using Gal-2 as a protein drug.
Collapse
Affiliation(s)
| | | | | | - Masato Tsuyuguchi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization KEK
| | - Takashi Tanikawa
- Faculty of Pharma-Science, Teikyo University
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
- Tokai University School of Medicine
| | - Seishi Kishimoto
- Radioisotope Research Center, Teikyo University
- Center for Promotion of Pharmaceutical Education, Showa Pharmaceutical University
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization KEK
| | | |
Collapse
|
5
|
Galectin-2 in Health and Diseases. Int J Mol Sci 2022; 24:ijms24010341. [PMID: 36613785 PMCID: PMC9820181 DOI: 10.3390/ijms24010341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Galectin-2 is a prototype member of the galactoside-binding galectin family. It is predominately expressed in the gastrointestinal tract but is also detected in several other tissues such as the placenta and in the cardiovascular system. Galectin-2 expression and secretion by epithelial cells has been reported to contribute to the strength of the mucus layer, protect the integrity of epithelia. A number of studies have also suggested the involvement of galectin-2 in tissue inflammation, immune response and cell apoptosis. Alteration of galectin-2 expression occurs in inflammatory bowel disease, coronary artery diseases, rheumatoid arthritis, cancer, and pregnancy disorders and has been shown to be involved in disease pathogenesis. This review discusses our current understanding of the role and actions of galectin-2 in regulation of these pathophysiological conditions.
Collapse
|
6
|
Lactose hydrate can increase the transcellular permeability of β-naphthol in rat jejunum and ileum. Mol Biol Rep 2022; 49:8685-8692. [PMID: 35767107 DOI: 10.1007/s11033-022-07709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND The unstirred water layer (UWL) is an integral part of the apical surface of mucosal epithelia and comprises mucins (MUC), for which there are many molecular species. Galectins, a family of β-galactoside-binding lectins, form a lattice barrier on surface epithelial cells by interacting with MUC. Lactose inhibits the galectin-MUC interaction. Therefore, the present study investigated the galectin-MUC interaction in the mucosa of the gastrointestinal tract and its role in intestinal barrier functions. MATERIALS AND RESULTS The effects of lactose hydrate (LH) on the membrane permeability of the rat small intestine and Caco-2 cells were examined. LH enhanced the membrane permeability of the rat small intestine, which contains the UWL, via a transcellular route, for which the UWL is the rate limiting factor. The membrane permeability of Caco-2 cells, in which the UWL is insufficient, was not affected by LH. The apparent permeability coefficient (Papp) of a paracellular marker was not significantly altered in the rat small intestine or Caco-2 cells treated with LH at any concentration. Furthermore, the Papp of β-naphthol which is a transcellular marker was not significantly altered in Caco-2 cells treated with LH, but was significantly increased in the rat small intestine in a LH concentration-dependent manner. CONCLUSIONS The present results demonstrate that the physical barrier has an important function in gastrointestinal membrane permeability, and LH-induced changes increase the transcellular permeability of β-naphthol in rat small intestine.
Collapse
|
7
|
Li Y, Li Y, Xia J, Yang Q, Chen Y, Sun H. 3'-Sulfo-TF Antigen Determined by GAL3ST2/ST3GAL1 Is Essential for Antitumor Activity of Fungal Galectin AAL/AAGL. ACS OMEGA 2021; 6:17379-17390. [PMID: 34278124 PMCID: PMC8280635 DOI: 10.1021/acsomega.1c01544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
Many lectins have been reported to have antitumor activities; identifying the glycan ligands in tumor cells of lectins is crucial for lectin clinical application. An edible mushroom galectin, Agrocybe aegerita lectin (AAL/AAGL), that has a high antitumor activity has been reported. In this paper, based on the glycan array data, it is showed that the Thomsen-Friedenreich antigen (TF antigen)-related O-glycans were found to be highly correlated with the antitumor activity of AAL/AAGL. Further glycosyltransferase quantification suggested that the ratio between GAL3ST2 and ST3GAL1 (GAL3ST2/ST3GAL1), which determined the 3'-sulfo-TF expression level, was highly correlated with the antitumor activity of AAL/AAGL. Overexpressing the enzyme of GAL3ST2 in HL60 and HeLa cell lines could increase the growth inhibition ratio of AAL/AAGL from 22.7 to 43.9% and 27.8 to 39.1%, respectively. However, ST3GAL1 in Jurkat cells could decrease the growth inhibition ratio from 44.7 to 35.6%. All the data suggested that the 3'-sulfo-TF antigen is one of the main glycan ligands that AAL/AAGL recognizes in tumor cells. AAL/AAGL may potentially serve as a reagent for cancer diagnosis and a targeted therapy for the 3'-sulfo-TF antigen.
Collapse
Affiliation(s)
- Yang Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Yan Li
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Jing Xia
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
| | - Qing Yang
- College
of Food Science and Engineering, Wuhan Polytechnic
University, Wuhan, Hubei Province 430023, P. R. China
| | - Yijie Chen
- College
of Food Science and Technology, Huazhong
Agricultural University, Wuhan, Hubei Province 430070, P. R. China
| | - Hui Sun
- College of Life Sciences, Wuhan
University, Wuhan, Hubei Province 430072, P. R. China
- Hubei
Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei Province 430072, P. R. China
| |
Collapse
|
8
|
Sasaki T, Saito R, Oyama M, Takeuchi T, Tanaka T, Natsume H, Tamura M, Arata Y, Hatanaka T. Galectin-2 Has Bactericidal Effects against Helicobacter pylori in a β-galactoside-Dependent Manner. Int J Mol Sci 2020; 21:ijms21082697. [PMID: 32295066 PMCID: PMC7215486 DOI: 10.3390/ijms21082697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is associated with the onset of gastritis, peptic ulcers, and gastric cancer. Galectins are a family of β-galactoside-binding proteins involved in diverse biological phenomena. Galectin-2 (Gal-2), a member of the galectin family, is predominantly expressed in the gastrointestinal tract. Although some galectin family proteins are involved in immunoreaction, the role of Gal-2 against H. pylori infection remains unclear. In this study, the effects of Gal-2 on H. pylori morphology and survival were examined. Gal-2 induced H. pylori aggregation depending on β-galactoside and demonstrated a bactericidal effect. Immunohistochemical staining of the gastric tissue indicated that Gal-2 existed in the gastric mucus, as well as mucosa. These results suggested that Gal-2 plays a role in innate immunity against H. pylori infection in gastric mucus.
Collapse
Affiliation(s)
- Takaharu Sasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Rei Saito
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Midori Oyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Tomoharu Takeuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Toru Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Hideshi Natsume
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
| | - Mayumi Tamura
- Faculty of Pharma-Science, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173–8605, Japan; (M.T.); (Y.A.)
| | - Yoichiro Arata
- Faculty of Pharma-Science, Teikyo University, 2–11–1 Kaga, Itabashi-ku, Tokyo 173–8605, Japan; (M.T.); (Y.A.)
| | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Saitama 350-0295, Japan; (T.S.); (R.S.); (M.O.); (T.T.); (T.T.); (H.N.)
- Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259–1193, Japan
- Correspondence: ; Tel.: +81-49-271-7675
| |
Collapse
|
9
|
Tamura M, Tanaka T, Fujii N, Tanikawa T, Oka S, Takeuchi T, Hatanaka T, Kishimoto S, Arata Y. Potential Interaction between Galectin-2 and MUC5AC in Mouse Gastric Mucus. Biol Pharm Bull 2020; 43:356-360. [PMID: 32009121 DOI: 10.1248/bpb.b19-00705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Galectins are a group of animal lectins characterized by their specificity for β-galactosides. Of these, galectin-2 (Gal-2) is predominantly expressed in the gastrointestinal tract. In the current study, we used a mouse gastric mucous fraction to investigate whether Gal-2 is secreted from epithelial cells and identify its potential ligands in gastric mucus. Gal-2 was detected in the mouse gastric mucous fraction and could be eluted from it by the addition of lactose. Affinity chromatography using recombinant mouse galectin-2 (mGal-2)-immobilized adsorbent and subsequent LC-MS/MS identified MUC5AC, one of the major gastric mucin glycoproteins, as a potential ligand of mGal-2. Furthermore, MUC5AC was detected in the mouse gastric mucous fraction by Western blotting, and recombinant mGal-2 was adsorbed to this fraction in a carbohydrate-dependent manner. These results suggested that Gal-2 and MUC5AC in mouse gastric mucus interact in a β-galactoside-dependent manner, resulting in a stronger barrier structure protecting the mucosal surface.
Collapse
Affiliation(s)
| | - Toru Tanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | | | - Takashi Tanikawa
- Faculty of Pharma-Science, Teikyo University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University
| | | | - Tomomi Hatanaka
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University.,Tokai University School of Medicine
| | | | | |
Collapse
|
10
|
Blois SM, Dveksler G, Vasta GR, Freitag N, Blanchard V, Barrientos G. Pregnancy Galectinology: Insights Into a Complex Network of Glycan Binding Proteins. Front Immunol 2019; 10:1166. [PMID: 31231368 PMCID: PMC6558399 DOI: 10.3389/fimmu.2019.01166] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/08/2019] [Indexed: 12/15/2022] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins, consisting of 15 different types, each with a specific function. Galectins contribute to placentation by regulating trophoblast development, migration, and invasion during early pregnancy. In addition, galectins are critical players regulating maternal immune tolerance to the embedded embryo. Recently, the role of galectins in angiogenesis during decidualization and in placenta formation has gained attention. Altered expression of galectins is associated with abnormal pregnancies and infertility. This review focuses on the role of galectins in pregnancy-associated processes and discusses the relevance of galectin-glycan interactions as potential therapeutic targets in pregnancy disorders.
Collapse
Affiliation(s)
- Sandra M Blois
- Reproductive Medicine Research Group, Division of General Internal and Psychosomatic Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, UMB, Baltimore, MD, United States
| | - Nancy Freitag
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Véronique Blanchard
- Berlin Institute of Health, Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gabriela Barrientos
- Laboratory of Experimental Medicine, Hospital Alemán, School of Medicine, University of Buenos Aires, CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Takeuchi T, Tamura M, Ishiwata K, Hamasaki M, Hamano S, Arata Y, Hatanaka T. Galectin-2 suppresses nematode development by binding to the invertebrate-specific galactoseβ1-4fucose glyco-epitope. Glycobiology 2019; 29:504-512. [DOI: 10.1093/glycob/cwz022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022] Open
Affiliation(s)
- Tomoharu Takeuchi
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
| | - Mayumi Tamura
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Kenji Ishiwata
- The Jikei University School of Medicine, Department of Tropical Medicine, 3-25-8, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Megumi Hamasaki
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Shinjiro Hamano
- Nagasaki University, Department of Parasitology, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
- Nagasaki University, Leading Program, Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, Nagasaki, Japan
| | - Yoichiro Arata
- Teikyo University, Faculty of Pharma-Science, 2-11-1 Kaga, Itabashi-ku, Tokyo, Japan
| | - Tomomi Hatanaka
- Josai University, Faculty of Pharmacy and Pharmaceutical Sciences, 1-1 Keyakidai, Sakado, Saitama, Japan
- Tokai University, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
12
|
Ekwemalor K, Adjei-Fremah S, Asiamah E, Eluka-Okoludoh E, Osei B, Worku M. Systemic expression of galectin genes in periparturient goats. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Sakakura M, Tamura M, Fujii N, Takeuchi T, Hatanaka T, Kishimoto S, Arata Y, Takahashi H. Structural mechanisms for the S-nitrosylation-derived protection of mouse galectin-2 from oxidation-induced inactivation revealed by NMR. FEBS J 2018; 285:1129-1145. [PMID: 29392834 DOI: 10.1111/febs.14397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/25/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023]
Abstract
Galectin-2 (Gal-2) is a lectin thought to play protective roles in the gastrointestinal tract. Oxidation of mouse Gal-2 (mGal-2) by hydrogen peroxide (H2 O2 ) results in the loss of sugar-binding activity, whereas S-nitrosylation of mGal-2, which does not change its sugar-binding profile, has been shown to protect the protein from H2 O2 -induced inactivation. One of the two cysteine residues, C57, has been identified as being responsible for controlling H2 O2 -induced inactivation; however, the underlying molecular mechanism has not been elucidated. We performed structural analyses of mGal-2 using nuclear magnetic resonance (NMR) and found that residues near C57 experienced significant chemical shift changes following S-nitrosylation, and that S-nitrosylation slowed the H2 O2 -induced aggregation of mGal-2. We also revealed that S-nitrosylation improves the thermal stability of mGal-2 and that the solvent accessibility and/or local dynamics of residues near C57 and the local dynamics of the core-forming residues in mGal-2 are reduced by S-nitrosylation. Structural models of Gal-2 indicated that C57 is located in a hydrophobic pocket that can be plugged by S-nitrosylation, which was supported by the NMR experiments. Based on these results, we propose two structural mechanisms by which S-nitrosylation protects mGal-2 from H2 O2 -induced aggregation without changing its sugar-binding profile: (a) stabilization of the hydrophobic pocket around C57 that prevents oxidation-induced destabilization of the pocket, and (b) prevention of oxidation of C57 during the transiently unfolded state of the protein, in which the residue is exposed to H2 O2 . DATABASE Nuclear magnetic resonance assignments for non-S-nitrosylated mGal-2 and S-nitrosylated mGal-2 have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu/) under ID code 27237 for non-S-nitrosylated mGal-2 and ID code 27238 for S-nitrosylated mGal-2.
Collapse
Affiliation(s)
- Masayoshi Sakakura
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Mayumi Tamura
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Norihiko Fujii
- Radioisotope Research Center, Teikyo University, Tokyo, Japan
| | - Tomoharu Takeuchi
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan
| | - Tomomi Hatanaka
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan.,Tokai University School of Medicine, Kanagawa, Japan
| | - Seishi Kishimoto
- Radioisotope Research Center, Teikyo University, Tokyo, Japan.,Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoichiro Arata
- School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Saitama, Japan.,Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Hideo Takahashi
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| |
Collapse
|