1
|
Han YR, Lee SB. Synthesis of versatile fluorescent isoquinolinium salts and their applications. J Mater Chem B 2025. [PMID: 40331316 DOI: 10.1039/d5tb00286a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Isoquinolinium salts are well-known N-heterocyclic cationic compounds that have been applied in various research fields, such as materials chemistry and pharmaceutical applications. In particular, isoquinolinium salts with polyaromatic structures have been widely investigated due to their intrinsic photophysical properties, including fluorescence emission maxima, fluorescence lifetime, and quantum yield. Notably, fluorescent isoquinolinium salts have been synthesized via various synthetic strategies, such as alkylation of isoquinoline, oxidation of dihydropyridines, rearrangement reactions, and transition-metal-catalyzed C-H activation. In this review, we summarize the synthetic methodologies for diverse fluorescent isoquinolinium salts and their applications in pharmaceutical applications, materials chemistry, theranostics, DNA binding, fluorescent sensing, and bioimaging.
Collapse
Affiliation(s)
- Ye Ri Han
- Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea.
| | - Sang Bong Lee
- SimVista, A-13, 194-25, Osongsaengmueong1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
- Department of Biomedical Sciences, Chonnam National University Medical School 264, Hwasun-eup, Hwasun 58128, Republic of Korea
| |
Collapse
|
2
|
Tsuji K, Tamamura H, Burke TR. Application of a Fluorescence Recovery-Based Polo-Like Kinase 1 Binding Assay to Polo-Like Kinase 2 and Polo-Like Kinase 3. Biol Pharm Bull 2024; 47:1282-1287. [PMID: 38987177 DOI: 10.1248/bpb.b24-00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Assay systems for evaluating compound protein-binding affinities are essential for developing agonists and/or antagonists. Targeting individual members of a protein family can be extremely important and for this reason it is critical to have methods for evaluating selectivity. We have previously reported a fluorescence recovery assay that employs a fluorescein-labelled probe to determine IC50 values of ATP-competitive type 1 inhibitors of polo-like kinase 1 (Plk1). This probe is based on the potent Plk1 inhibitor BI2536 [fluorescein isothiocyanate (FITC)-polyethylene glycol (PEG)-lysine (Lys) (BI2536) 1]. Herein, we extend this approach to the highly homologous Plk2 and Plk3 members of this kinase family. Our results suggest that this assay system is suitable for evaluating binding affinities against Plk2 and Plk3 as well as Plk1. The new methodology represents the first example of evaluating N-terminal catalytic kinase domain (KD) affinities of Plk2 and Plk3. It represents a simple and cost-effective alternative to traditional kinase assays to explore the KD-binding compounds against Plk2 and Plk3 as well as Plk1.
Collapse
Affiliation(s)
- Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health
| |
Collapse
|
3
|
A concise synthesis of carbasugars isolated from Streptomyces lincolnensis. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Alverez CN, Park JE, Toti KS, Xia Y, Krausz KW, Rai G, Bang JK, Gonzalez FJ, Jacobson KA, Lee KS. Identification of a New Heterocyclic Scaffold for Inhibitors of the Polo-Box Domain of Polo-like Kinase 1. J Med Chem 2020; 63:14087-14117. [PMID: 33175530 PMCID: PMC7769008 DOI: 10.1021/acs.jmedchem.0c01669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a mitotic-specific target widely deregulated in various human cancers, polo-like kinase 1 (Plk1) has been extensively explored for anticancer activity and drug discovery. Although multiple catalytic domain inhibitors were tested in preclinical and clinical studies, their efficacies are limited by dose-limiting cytotoxicity, mainly from off-target cross reactivity. The C-terminal noncatalytic polo-box domain (PBD) of Plk1 has emerged as an attractive target for generating new protein-protein interaction inhibitors. Here, we identified a 1-thioxo-2,4-dihydro-[1,2,4]triazolo[4,3-a]quinazolin-5(1H)-one scaffold that efficiently inhibits Plk1 PBD but not its related Plk2 and Plk3 PBDs. Structure-activity relationship studies led to multiple inhibitors having ≥10-fold higher inhibitory activity than the previously characterized Plk1 PBD-specific phosphopeptide, PLHSpT (Kd ∼ 450 nM). In addition, S-methyl prodrugs effectively inhibited mitotic progression and cell proliferation and their metabolic stability was determined. These data describe a novel class of small-molecule inhibitors that offer a promising avenue for future drug discovery against Plk1-addicted cancers.
Collapse
Affiliation(s)
- Celeste N Alverez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jung-Eun Park
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kiran S Toti
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yangliu Xia
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kristopher W Krausz
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ganesha Rai
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Jeong K Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Frank J Gonzalez
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung S Lee
- Chemistry Section, Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
Kim KU, Lee JH, Lee MY, Chae CH, Lee JH, Lee BH, Oh KS. DITMD-induced mitotic defects and apoptosis in tumor cells by blocking the polo-box domain-dependent functions of polo-like kinase 1. Eur J Pharmacol 2019; 847:113-122. [PMID: 30689997 DOI: 10.1016/j.ejphar.2019.01.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 11/29/2022]
Abstract
DITMD (1, 3- Dioxolo[4,5-g] isoquinolinium 5, 6, 7, 8- tetrahydro- 4- methoxy- 6, 6- dimethyl- 5- [2- oxo- 2- (2-pyridinyl)ethyl] - iodide) is a natural product-like compound with a hydrocotarnine moiety. The aim of this study was to investigate the anticancer effects of DITMD including mitotic arrest, apoptosis, radiosensitization, and to further explore its possible mechanism. DITMD (3-30 µM) induced an obvious cell cycle delay at G2/M transition and apoptosis in HeLa cells. In a validation study, DITMD caused chromosome alignment defects and accumulation of mitotic markers such as polo-like kinase 1, cyclin B1, and phospho-histone H3. DITMD pre-treatment for 11 h also significantly decreased the cells' survival after X-ray irradiation. In mechanism studies, DITMD inhibited the polo-box domain of polo-like kinase 1 but not the conserved kinase domain. Molecular modeling also suggests that DITMD binds at the phosphate group recognition site and inhibits the action on phospho-peptide ligands. In addition, DITMD was analyzed as a PLHSpT competitive inhibitor with an IC50 value of 2.1 μM and exhibited good selectivity against 105 distinct kinases. Taken together, these results indicate that DITMD induced chromosome alignment defects, apoptosis and radio-sensitization, and suggest that one mechanism underlying these anticancer effects involves inhibiting the polo-box domain-dependent functions of polo-like kinase 1.
Collapse
Affiliation(s)
- Ka-Ul Kim
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Ju Hee Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Mi Young Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Chong Hak Chae
- Chemical simulation Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Jeong Hyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea
| | - Byung Ho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong, Daejeon 34183, Republic of Korea
| | - Kwang-Seok Oh
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea; Department of Medicinal and Pharmaceutical Chemistry, University of Science and Technology, 176 Gajeong-ro, Yuseong, Daejeon 34129, Republic of Korea.
| |
Collapse
|