1
|
Badran M, Puech C, Barrow MB, Runion AR, Gozal D. Solriamfetol enhances wakefulness and improves cognition and anxiety in a murine model of OSA. Sleep Med 2023; 107:89-99. [PMID: 37137196 PMCID: PMC11556240 DOI: 10.1016/j.sleep.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH). Excessive daytime sleepiness (EDS) is a common consequence of OSA and is associated with cognitive deficits and anxiety. Modafinil (MOD) and Solriamfetol (SOL) are potent wake-promoting agents clinically used to improve wakefulness in OSA patients with EDS. METHODS Male C57Bl/6J mice were exposed to either IH or room air (RA) controls during the light phase for 16 weeks. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg) or vehicle (VEH) for 9 days while continuing IH exposures. Sleep/wake activity was assessed during the dark (active) phase. Novel object recognition (NOR), elevated-plus maze test (EPMT), and forced swim test (FST) were performed before and after drug treatment. RESULTS IH exposure increased dark phase sleep percentage and reduced wake bouts lengths and induced cognitive deficits and anxiogenic effects. Both SOL and MOD treatments decreased sleep propensity under IH conditions, but only SOL promoted improvements in NOR performance (explicit memory) and reduced anxiety-like behaviors. CONCLUSION Chronic IH, a hallmark feature of OSA, induces EDS in young adult mice that is ameliorated by both SOL and MOD. SOL, but not MOD, significantly improves IH-induced cognitive deficits and promotes anxiolytic effects. Thus, SOL could potentially benefit OSA patients beyond EDS management.
Collapse
Affiliation(s)
- Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
2
|
Puech C, Badran M, Barrow MB, Runion AR, Gozal D. Solriamfetol improves chronic sleep fragmentation-induced increases in sleep propensity and ameliorates explicit memory in male mice. Sleep 2023; 46:zsad057. [PMID: 36866452 PMCID: PMC10413435 DOI: 10.1093/sleep/zsad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a highly prevalent condition characterized by episodes of partial or complete breath cessation during sleep that induces sleep fragmentation (SF). One of the frequent manifestations of OSA is the presence of excessive daytime sleepiness (EDS) associated with cognitive deficits. Solriamfetol (SOL) and modafinil (MOD) are wake-promoting agents commonly prescribed to improve wakefulness in OSA patients with EDS. This study aimed to assess the effects of SOL and MOD in a murine model of OSA characterized by periodic SF. Male C57Bl/6J mice were exposed to either control sleep (SC) or SF (mimicking OSA) during the light period (06:00 h to 18:00 h) for 4 weeks, which consistently induces sustained excessive sleepiness during the dark phase. Both groups were then randomly assigned to receive once-daily intraperitoneal injections of SOL (200 mg/kg), MOD (200 mg/kg), or vehicle for 1 week while continuing exposures to SF or SC. Sleep/wake activity and sleep propensity were assessed during the dark phase. Novel Object Recognition test, Elevated-Plus Maze Test, and Forced Swim Test were performed before and after treatment. SOL or MOD decreased sleep propensity in SF, but only SOL induced improvements in explicit memory, while MOD exhibited increased anxiety behaviors. Chronic SF, a major hallmark of OSA, induces EDS in young adult mice that is mitigated by both SOL and MOD. SOL, but not MOD, significantly improves SF-induced cognitive deficits. Increased anxiety behaviors are apparent in MOD-treated mice. Further studies aiming to elucidate the beneficial cognitive effects of SOL are warranted.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, University of Missouri School of Medicine, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, USA
| |
Collapse
|
3
|
Puech C, Badran M, Runion AR, Barrow MB, Qiao Z, Khalyfa A, Gozal D. Explicit memory, anxiety and depressive like behavior in mice exposed to chronic intermittent hypoxia, sleep fragmentation, or both during the daylight period. Neurobiol Sleep Circadian Rhythms 2022; 13:100084. [PMID: 36254342 PMCID: PMC9568859 DOI: 10.1016/j.nbscr.2022.100084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), and can lead to a vast array of end-organ morbidities, particularly affecting cardiovascular, metabolic and neurobehavioral functioning. OSA can induce cognitive and behavioral and mood deficits. Male C57Bl/6J 8-week-old mice were housed in custom-designed cages with a silent motorized mechanical sweeper traversing the cage floor at 2-min intervals (SF) during daylight for four weeks. Sleep control (SC) consisted of keeping sweeper immobile. IH consisted of cycling FiO2 21% 90 seconds-6.3% 90s or room air (RA; FiO2 21%) for sixteen weeks and combined SF-IH was conducted for nine weeks. Open field novel object recognition (NOR) testing, elevated-plus maze test (EPMT), and forced swimming test (FST) were performed. SF induced cognitive NOR performance impairments in mice along with reduced anxiety behaviors while IH induced deficits in NOR performance, but increased anxiety behaviors. SF-IH induced impaired performance in NOR test of similar magnitude to IH or SF alone. Combined SF-IH exposures did not affect anxiety behaviors. Thus, both SF an IH altered cognitive function while imposing opposite effects on anxiety behaviors. SF-IH did not magnify the detrimental effects of isolated SF or IH and canceled out the effects on anxiety. Based on these findings, the underlying pathophysiologic processes underlying IH and SF adverse effects on cognitive function appear to differ, while those affecting anxiety counteract each other.
Collapse
Affiliation(s)
- Clementine Puech
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Mohammad Badran
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Alexandra R Runion
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Max B Barrow
- Undergraduate Student Research Program, University of Missouri, Columbia, MO, USA
| | - Zhuanhong Qiao
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Abdelnaby Khalyfa
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Child Health Research Institute, Department of Child Health, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Chen HL, Gao JX, Chen YN, Xie JF, Xie YP, Spruyt K, Lin JS, Shao YF, Hou YP. Rapid Eye Movement Sleep during Early Life: A Comprehensive Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13101. [PMID: 36293678 PMCID: PMC9602694 DOI: 10.3390/ijerph192013101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The ontogenetic sleep hypothesis suggested that rapid eye movement (REM) sleep is ontogenetically primitive. Namely, REM sleep plays an imperative role in the maturation of the central nervous system. In coincidence with a rapidly developing brain during the early period of life, a remarkably large amount of REM sleep has been identified in numerous behavioral and polysomnographic studies across species. The abundant REM sleep appears to serve to optimize a cerebral state suitable for homeostasis and inherent neuronal activities favorable to brain maturation, ranging from neuronal differentiation, migration, and myelination to synaptic formation and elimination. Progressively more studies in Mammalia have provided the underlying mechanisms involved in some REM sleep-related disorders (e.g., narcolepsy, autism, attention deficit hyperactivity disorder (ADHD)). We summarize the remarkable alterations of polysomnographic, behavioral, and physiological characteristics in humans and Mammalia. Through a comprehensive review, we offer a hybrid of animal and human findings, demonstrating that early-life REM sleep disturbances constitute a common feature of many neurodevelopmental disorders. Our review may assist and promote investigations of the underlying mechanisms, functions, and neurodevelopmental diseases involved in REM sleep during early life.
Collapse
Affiliation(s)
- Hai-Lin Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Jin-Xian Gao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| | - Yu-Nong Chen
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Jun-Fan Xie
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
| | - Yu-Ping Xie
- Sleep Medicine Center of Gansu Provincial Hospital, Lanzhou 730000, China
| | - Karen Spruyt
- Université de Paris, NeuroDiderot–INSERM, 75019 Paris, France
| | - Jian-Sheng Lin
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier–Neurocampus Michel Jouvet, 95 Boulevard Pinel, CEDEX, 69675 Bron, France
| | - Yu-Feng Shao
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM U1028-CNRS UMR 5292, University Claude Bernard Lyon 1, Centre Hospitalier Le Vinatier–Neurocampus Michel Jouvet, 95 Boulevard Pinel, CEDEX, 69675 Bron, France
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Yi-Ping Hou
- Departments of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang Xi Road, Lanzhou 730000, China
- Key Lab of Neurology of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|