1
|
Icard P, Alifano M, Simula L. Citrate oscillations during cell cycle are a targetable vulnerability in cancer cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189313. [PMID: 40216092 DOI: 10.1016/j.bbcan.2025.189313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
Cell cycle progression is timely interconnected with oscillations in cellular metabolism. Here, we first describe how these metabolic oscillations allow cycling cells to meet the bioenergetic needs specifically for each phase of the cell cycle. In parallel, we highlight how the cytosolic level of citrate is dynamically regulated during these different phases, being low in G1 phase, increasing in S phase, peaking in G2/M, and decreasing in mitosis. Of note, in cancer cells, a dysregulation of such citrate oscillation can support cell cycle progression by promoting a deregulated Warburg effect (aerobic glycolysis), activating oncogenic signaling pathways (such as PI3K/AKT), and promoting acetyl-CoA production via alternative routes, such as overconsumption of acetate. Then, we review how administration of sodium citrate (at high doses) arrests the cell cycle in G0/G1 or G2/M, inhibits glycolysis and PI3K/AKT, induces apoptosis, and significantly reduces tumor growth in various in vivo models. Last, we reason on the possibility to implement citrate administration to reinforce the effectiveness of cell cycle inhibitors to better cure cancer.
Collapse
Affiliation(s)
- Philippe Icard
- Université de Normandie, UNICAEN, Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France.
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP-Centre, Université Paris-Descartes, Paris, France; Inserm U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Luca Simula
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris-Cité, Paris 75014, France
| |
Collapse
|
2
|
Uta D, Nakamura H, Maruo K, Matsumura K, Usami Y, Kume T. Potassium/Sodium Citrate Attenuates Paclitaxel-Induced Peripheral Neuropathy. Int J Mol Sci 2025; 26:3329. [PMID: 40244201 PMCID: PMC11989248 DOI: 10.3390/ijms26073329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a significant adverse event with unclear mechanisms and limited treatment alternatives. This study aimed to investigate the efficacy of two alkalizing agents, a mixture of potassium citrate and sodium citrate (K/Na citrate) or sodium bicarbonate (NaHCO3), in preventing and treating paclitaxel (PTX)-induced mechanical allodynia in rodents. The results from rodent models demonstrated that repeated prophylactic administration of K/Na citrate or NaHCO3 could inhibit the development of PTX-induced mechanical allodynia. Moreover, K/Na citrate was effective in preventing the PTX-induced exacerbation of mechanical allodynia, even when treatment was initiated immediately after the onset of allodynia. K/Na citrate also reduced the levels of the plasma complement component anaphylatoxin C3a in a PTX-induced CIPN rat model. Complement activation, resulting in the production of C3a, has been implicated in the pathogenesis of this model. Additionally, pretreatment with Na citrate significantly prevented the reduction in neurite outgrowth caused by PTX. Furthermore, K/Na citrate inhibited spontaneous and mechanical stimuli-induced firing in spinal dorsal horn neurons. These findings indicate that K/Na citrate may regulate the development of PTX-induced mechanical allodynia by modulating complement activation and providing neuroprotection against PTX-induced peripheral nerve injury. This study implies that alkalization could help prevent PTX-induced peripheral neuropathy and mitigate its exacerbation.
Collapse
Affiliation(s)
- Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
| | - Hideki Nakamura
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Kengo Maruo
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Kanoko Matsumura
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Yohei Usami
- Discovery Research Laboratories, Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan; (H.N.); (K.M.); (K.M.); (Y.U.)
| | - Toshiaki Kume
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan;
| |
Collapse
|
3
|
Xie Q, Sun T, Zhang L, Gong M, Zhang W, Liu X, Zhao Y, Wang M, Yang X, Zhang Z, Liu G, Zhou C, Zhang D. Responsive plasmonic hybrid nanorods enables metabolism reprogramming via cuproptosis-photothermal combined cancer therapy. Biomaterials 2025; 315:122971. [PMID: 39577035 DOI: 10.1016/j.biomaterials.2024.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Abnormal tumor metabolism leads to tumor growth, metastasis, and recurrence, reprogramming tumor metabolism and activating potent anti-tumor immune response have been demonstrated to have good therapeutic effects on tumor elimination. Copper-based nanomaterials involved in cuproptosis show great prospects in these two aspects, but their efficiency is restricted by Cu homeostasis and the toxicity of the chelator. Here, the pH-responsive AuNRs@Cu2O core-shell plasmonic hybrid nanorods (ACNRs) have been successfully fabricated to realize microenvironment-controlled release at the tumor site for the combined therapy of cuproptosis and photothermal treatment. The AuNRs core exhibited excellent NIR-II photothermal property, which boost the intracellular concentration of copper to trigger severe cuproptosis and induce immunogenic cell death of tumor cells. In vivo studies demonstrated the ACNR exhibited efficient tumor therapy for primary, metastatic, and recurrent tumors. ACNRs-induced cuproptosis and PTT were capable of reprogramming energy metabolism, leading to a decreased production of lactic acid. This potential of metabolic reprogramming assisted in reshaping the immunosuppressive tumor microenvironment to facilitate the infiltration of immune cells and boost the immune responses triggered by PTT. The therapeutic mechanism was further verified by metabolomics analysis, which indicated that ACNRs + PTT treatment led to the inhibition of the Pentose Phosphate Pathway and Glycolysis pathways in tumor cells. The suppression of glycolytic reduced ATP synthesis, thereby hindering energy-dependent copper efflux, which in turn promoted cuproptosis. Taken together, this study offers promising insights for cuproptosis-based cancer treatment and sheds new light on nanomedicine-mediated metabolic modulation for future tumor therapy.
Collapse
Affiliation(s)
- Qian Xie
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Tao Sun
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Liang Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Mingfu Gong
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Wansu Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xu Liu
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yue Zhao
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Miaomiao Wang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiaofeng Yang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhipeng Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chunyu Zhou
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
4
|
Karimi S, Bakhshali R, Bolandi S, Zahed Z, Mojtaba Zadeh SS, Kaveh Zenjanab M, Jahanban Esfahlan R. For and against tumor microenvironment: Nanoparticle-based strategies for active cancer therapy. Mater Today Bio 2025; 31:101626. [PMID: 40124335 PMCID: PMC11926801 DOI: 10.1016/j.mtbio.2025.101626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is challenged by the tumor microenvironment (TME), which promotes drug resistance and cancer cell growth. This review offers a comprehensive and innovative perspective on how nanomedicine can modify the TME to enhance therapy. Strategies include using nanoparticles to improve oxygenation, adjust acidity, and alter the extracellular matrix, making treatments more effective. Additionally, nanoparticles can enhance immune responses by activating immune cells and reducing suppression within tumors. By integrating these approaches with existing therapies, such as chemotherapy and radiotherapy, nanoparticles show promise in overcoming traditional treatment barriers. The review discusses how changes in the TME can enhance the effectiveness of nanomedicine itself, creating a reciprocal relationship that boosts overall efficacy. We also highlight novel strategies aimed at exploiting and overcoming the TME, leveraging nanoparticle-based approaches for targeted cancer therapy through precise TME modulation.
Collapse
Affiliation(s)
- Soroush Karimi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Zahra Zahed
- Department of Medical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Jahanban Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hiruma K, Bilim V, Kazama A, Shirono Y, Murata M, Tomita Y. Acidic Microenvironment Enhances Cisplatin Resistance in Bladder Cancer via Bcl-2 and XIAP. Curr Issues Mol Biol 2025; 47:43. [PMID: 39852158 PMCID: PMC11763506 DOI: 10.3390/cimb47010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Cisplatin (CDDP) remains a key drug for patients with advanced bladder cancer (BC), despite the emergence of new therapeutic agents; thus, the identification of factors contributing to CDDP treatment resistance is crucial. As acidity of the tumor microenvironment has been reported to be associated with treatment resistance and poor prognosis across various cancer types, our objectives in this study were to investigate the effects of an acidic environment on BC cells and elucidate the mechanisms behind CDDP resistance. Our findings show that BC cells cultured under acidic conditions developed cisplatin resistance as acidity increased. Notably, CDDP administered to BC cells in a pH 6.0 environment required double the concentration, compared to those in a pH 7.5 environment, to achieve equivalent toxicity. Using chloroquine and navitoclax, we identified the involvement of the Bcl-2 and LC3B pathways in the acquisition of CDDP resistance under acidic conditions. A Western blot analysis revealed that the activations of Bcl-2 and XIAP expression appear to inhibit both apoptotic and autophagic cell death. Taken together, these results suggest that alleviating the acidity of the tumor microenvironment in clinical settings might enhance BC sensitivity to CDDP.
Collapse
Affiliation(s)
- Kaede Hiruma
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
| | - Vladimir Bilim
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
- Department of Urology, Kameda Daiichi Hospital, Niigata 950-0165, Japan
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuko Shirono
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
- Department of Urology, Niigata Cancer Center Hospital, Niigata 951-8133, Japan
| | - Masaki Murata
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
- Department of Urology, Niigata Prefectural Central Hospital, Niigata 943-0192, Japan
| | - Yoshihiko Tomita
- Department of Urology, Division of Molecular Oncology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; (V.B.)
| |
Collapse
|
6
|
Icard P, Prieto M, Coquerel A, Fournel L, Gligorov J, Noel J, Mouren A, Dohan A, Alifano M, Simula L. Why and how citrate may sensitize malignant tumors to immunotherapy. Drug Resist Updat 2025; 78:101177. [PMID: 39612545 DOI: 10.1016/j.drup.2024.101177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
Immunotherapy, either alone or in combination with chemotherapy, has demonstrated limited efficacy in a variety of solid cancers. Several factors contribute to explaining primary or secondary resistance. Among them, cancer cells, whose metabolism frequently relies on aerobic glycolysis, promote exhaustion of cytotoxic immune cells by diverting the glucose in the tumor microenvironment (TME) to their own profit, while secreting lactic acid that sustains the oxidative metabolism of immunosuppressive cells. Here, we propose to combine current treatment based on the use of immune checkpoint inhibitors (ICIs) with high doses of sodium citrate (SCT) because citrate inhibits cancer cell metabolism (by targeting both glycolysis and oxidative metabolism) and may active anti-tumor immune response. Indeed, as showed in preclinical studies, SCT reduces cancer cell growth, promoting cell death and chemotherapy effectiveness. Furthermore, since the plasma membrane citrate carrier pmCIC is mainly expressed in cancer cells and low or not expressed in immune and non-transformed cells, we argue that the inhibition of cancer cell metabolism by SCT may increase glucose availability in the TME, thus promoting functionality of anti-tumor immune cells. Concomitantly, the decrease in the amount of lactic acid in the TME may reduce the functionality of immunosuppressive cells. Preclinical studies have shown that SCT can enhance the anti-tumor immune response through an enhancement of T cell infiltration and activation, and a repolarization of macrophages towards a TAM1-like phenotype. Therefore, this simple and cheap strategy may have a major impact to increase the efficacy of current immunotherapies in human solid tumors and we encourage testing it in clinical trials.
Collapse
Affiliation(s)
- Philippe Icard
- INSERM U1086 ANTICIPE, Interdisciplinary Research Unit for Cancers Prevention and Treatment, BioTICLA Laboratory, Université de Caen Normandie, Caen, France; Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France.
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Antoine Coquerel
- INSERM U1075, COMETE « Mobilités: Attention, Orientation, Chronobiologie », Université Caen, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris
| | - Joseph Gligorov
- Oncology Department, Tenon Hospital, Pierre et Marie Curie University, Paris
| | - Johanna Noel
- Oncology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Adrien Mouren
- Département d'Innovation Thérapeutique et d´Essais Précoces (DITEP), Institut Gustave Roussy, Villejuif 94805, France
| | - Anthony Dohan
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France; Radiology Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, Paris-Descartes University, Paris, France
| | - Luca Simula
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Cité, Paris 75014, France.
| |
Collapse
|
7
|
Kim W, Park S, Park T, Kim S, Kim J, Bong JH, Lee M. Anticancer effects of high-dose extracellular citrate treatment in pancreatic cancer cells under different glucose concentrations. Heliyon 2024; 10:e37917. [PMID: 39315179 PMCID: PMC11417537 DOI: 10.1016/j.heliyon.2024.e37917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor. Recently, the uptake of extracellular citrate by the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, has been demonstrated to exert profound effects on cancer cell metabolism. However, research on the function of extracellular citrate in PDAC pathogenesis and the relationship between NaCT expression and the tumor metabolic microenvironment is limited. Therefore, we aimed to evaluate the expression of citrate transporters across a spectrum of glucose concentrations in pancreatic cancer and systematically explore the effects of sodium citrate treatment on pancreatic cancer cells at different glucose concentrations. We observed a positive correlation between glucose concentration and NaCT expression in PDAC cell lines. Extracellular sodium citrate significantly reduced cell viability partially due to reduction in intracellular Ca2+ levels and decreased the migration of human PDAC cells. Furthermore, we observed a decrease in the levels of the stem cell marker prominin I (CD133) following sodium citrate treatment. Notably, the combination treatment of gemcitabine and extracellular sodium citrate exhibited a synergistic anticancer effect in both two-dimensional (2D) and three-dimensional (3D) culture systems. Additionally, we confirmed that pH slightly increased upon administration of sodium citrate, indicating that this could potentially augment the efficacy of gemcitabine. Altogether, these findings suggest that exogenous sodium citrate treatment, particularly in combination with gemcitabine, may represent a novel therapeutic strategy for treating PDAC. This approach holds promise for disrupting PDAC cell metabolism and inhibiting tumor progression.
Collapse
Affiliation(s)
- Wonjin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Taehyun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Ji-Hong Bong
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, 22012, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, 22012, Republic of Korea
| |
Collapse
|
8
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Okamoto T, Wada H. Exploring the Potential Use of Natural Products Together with Alkalization in Cancer Therapy. Pharmaceutics 2024; 16:787. [PMID: 38931908 PMCID: PMC11207558 DOI: 10.3390/pharmaceutics16060787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer treatment is a significant focus in medicine, owing to the increasing global incidence of cancers. Patients with advanced cancers that do not respond to conventional therapies have limited options and an unfavorable prognosis. Consequently, researchers are investigating complementary approaches to conventional treatments. One such approach is alkalization therapy, which aims to neutralize the acidic tumor microenvironment (TME) by increasing its pH level. The acidic TME promotes inflammation, tumor progression, and drug resistance. Alkalization therapy has been demonstrated to be effective for various cancers. In addition, natural products, such as triterpenoids, parthenolides, fulvic acid, Taxus yunnanensis, and apple pectin have the potential to alleviate symptoms, maintain physical fitness, and improve treatment outcomes of cancer patients through their anti-inflammatory, antioxidant, and anticancer properties. In this review, we focus on the effects of alkalization therapy and natural products on cancer. Furthermore, we present a case series of advanced cancer patients who received alkalization therapy and natural products alongside standard treatments, resulting in long-term survival. We posit that alkalization therapy together with supplementation with natural products may confer benefits to cancer patients, by mitigating the side effects of chemotherapy and complementing standard treatments. However, further research is warranted to validate these clinical findings.
Collapse
Affiliation(s)
- Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| |
Collapse
|
9
|
Dang Q, Li B, Jin B, Ye Z, Lou X, Wang T, Wang Y, Pan X, Hu Q, Li Z, Ji S, Zhou C, Yu X, Qin Y, Xu X. Cancer immunometabolism: advent, challenges, and perspective. Mol Cancer 2024; 23:72. [PMID: 38581001 PMCID: PMC10996263 DOI: 10.1186/s12943-024-01981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
For decades, great strides have been made in the field of immunometabolism. A plethora of evidence ranging from basic mechanisms to clinical transformation has gradually embarked on immunometabolism to the center stage of innate and adaptive immunomodulation. Given this, we focus on changes in immunometabolism, a converging series of biochemical events that alters immune cell function, propose the immune roles played by diversified metabolic derivatives and enzymes, emphasize the key metabolism-related checkpoints in distinct immune cell types, and discuss the ongoing and upcoming realities of clinical treatment. It is expected that future research will reduce the current limitations of immunotherapy and provide a positive hand in immune responses to exert a broader therapeutic role.
Collapse
Affiliation(s)
- Qin Dang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Bing Jin
- School of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xin Lou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Pan
- Department of Hepatobiliary Surgery, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Qiangsheng Hu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chenjie Zhou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
11
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Okamoto T, Wada H. Potential of Alkalization Therapy for the Management of Metastatic Pancreatic Cancer: A Retrospective Study. Cancers (Basel) 2023; 16:61. [PMID: 38201489 PMCID: PMC10777900 DOI: 10.3390/cancers16010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Current treatments for patients with pancreatic cancer offer limited benefits. In this study, we applied alkalization therapy, which was efficacious for other solid tumors at our clinic, to stage 4 pancreatic cancer patients, and investigated its effect on disease prognosis. Patients with metastatic pancreatic cancer who were treated at Karasuma Wada Clinic in Kyoto, Japan, between January 2011 and April 2022, were included in the study. All patients received alkalization therapy (a combination of an alkaline diet, bicarbonate, and citric acid administration), alongside standard chemotherapy. Urine samples were collected to assess urine pH as a marker of whole-body alkalization. In the 98 patients analyzed, the median overall survival (OS) from the time of diagnosis was 13.2 months. Patients with a mean urine pH of 7.5 or greater had a median OS of 29.9 months, compared with 15.2 months for those with a mean urine pH of 6.5 to 7.5, and 8.0 months for those with a mean urine pH of less than 6.5, which suggests a trend of a longer OS in patients with a higher urine pH (p = 0.0639). Alkalization therapy may offer a viable approach to extending the survival of stage 4 pancreatic cancer patients, who typically have an unfavorable prognosis.
Collapse
Affiliation(s)
- Masahide Isowa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Ryoko Narui
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Hiromasa Morikawa
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| | - Toshihiro Okamoto
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA;
- Department of Inflammation and Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Transplant Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hiromi Wada
- Japanese Society on Inflammation and Metabolism in Cancer, 119 Nishioshikouji-cho, Nakagyo-ku, Kyoto 604-0842, Japan; (M.I.); (R.N.); (H.M.); (H.W.)
| |
Collapse
|
12
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Isowa M, Hamaguchi R, Narui R, Morikawa H, Wada H. Effects of alkalization therapy on hepatocellular carcinoma: a retrospective study. Front Oncol 2023; 13:1179049. [PMID: 37313464 PMCID: PMC10258336 DOI: 10.3389/fonc.2023.1179049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Background In hepatocellular carcinoma (HCC) patients, is difficult to prevent recurrence even when remission is achieved. In addition, even with the advent of drugs that are effective for the treatment of HCC, a satisfactory extension of patient survival has not been achieved. To overcome this situation, we hypothesized that the combination of alkalization therapy with standard treatments will improve the prognosis of HCC. We here report the clinical results of HCC patients treated with alkalization therapy at our clinic. Patients and methods Patients with HCC treated at Karasuma Wada Clinic (in Kyoto, Japan), from January 1, 2013, to December 31, 2020 were analyzed. Overall survival (OS) from both the time of diagnosis and the start of alkalization therapy for each patient was compared. The mean urine pH was also calculated as a surrogate marker of tumor microenvironment pH, and OS from the start of alkalization therapy was compared between patients with a mean urine pH of ≥ 7.0 and those with a mean urine pH of < 7.0. Results Twenty-three men and six women were included in the analysis, with a mean age at diagnosis of 64.1 years (range: 37-87 years). Seven of the 29 patients had extrahepatic metastases. Patients were divided into two groups according to their mean urine pH after the initiation of alkalization therapy: 12 of the 29 patients had a mean urine pH of ≥ 7.0, and 17 had a mean urine pH of < 7.0. The median OS from diagnosis was 95.6 months (95% confidence interval [CI] = 24.7-not reached), and from the start of alkalization therapy was 42.3 months (95% CI = 8.93-not reached). The median OS from the start of alkalization therapy in patients with a urine pH of ≥ 7.0 was not reached (n = 12, 95% CI = 3.0-not reached), which was significantly longer than that in patients with a pH of < 7.0 (15.4 months, n = 17, 95% CI = 5.8-not reached, p < 0.05). Conclusions The addition of alkalization therapy to standard therapies may be associated with more favorable outcomes in HCC patients with increased urine pH after alkalization therapy.
Collapse
Affiliation(s)
| | - Reo Hamaguchi
- Japanese Society on Inflammation and Metabolism in Cancer, Nakagyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
14
|
Hamaguchi R, Isowa M, Narui R, Morikawa H, Wada H. Clinical review of alkalization therapy in cancer treatment. Front Oncol 2022; 12:1003588. [PMID: 36185175 PMCID: PMC9516301 DOI: 10.3389/fonc.2022.1003588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
One of the most unique characteristics of cancer metabolism is activated aerobic glycolysis, which is called the “Warburg effect”, and is a hallmark of cancer. An acidic tumor microenvironment (TME) resulting from activated anaerobic glycolysis is associated with cancer progression, multi-drug resistance, and immune escape. Several in vitro and in vivo studies reported that neutralization of the acidic TME by alkalizing agents, such as bicarbonate, resulted in the suppression of cancer progression and a potential benefit for anti-cancer drug responses. In clinical settings, alkalizing effects were achieved not only by alkalizing agents, but also by a following a particular diet. An epidemiological study demonstrated that more fruits and vegetables and less meat and dairy products are associated with an increase in urine pH, which may reflect the alkalizing effect on the body. However, it remains unclear whether alkaline dietary intervention improves the effects of cancer treatment. Moreover, there are few clinical reports to date regarding cancer treatments being performed on patients together with alkalization therapy. In this review, we investigated whether alkalization therapy, which includes an alkaline diet and/or alkalizing agents, improves cancer treatment.
Collapse
|
15
|
Oral administration of sodium bicarbonate can enhance the therapeutic outcome of Doxil® via neutralizing the acidic tumor microenvironment. J Control Release 2022; 350:414-420. [PMID: 35988781 DOI: 10.1016/j.jconrel.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022]
Abstract
The pH of the tumor microenvironment in solid tumors is reported to be more acidic than that of normal tissues. The pH is controlled by over-expression of several transporters that are associated with the progression, angiogenesis, and metastasis of solid tumors. Antitumor effects of weak-base anticancer agents, such as doxorubicin (DXR), could be reduced in an acidic environment because of increases in the ionized form of the drug under these conditions, reducing its membrane penetrability. In our previous studies, we demonstrated that oral administration of sodium bicarbonate (NaHCO3) can neutralize the acidic tumor microenvironment and enhance the effects of small molecule anticancer drugs. However, it is not known whether or not increasing the tumor pH by oral administration of NaHCO3 leads to enhanced antitumor effects of lipidic nanoparticle formulations of weak-base anticancer drugs, such as Doxil®. In this study, we investigated the antitumor efficacy of Doxil® in combination with oral administration of NaHCO3 in a Colon26 tumor-bearing mouse model. NaHCO3 clearly enhanced the tumor-growth inhibitory effect of Doxil® without exacerbating any systemic side effects. In vitro studies indicated that high levels of DXR were internalized into cells at neutral pH. These studies demonstrate that the neutralization of acidic tumor microenvironment by an oral administration of NaHCO3 could be a promising approach to enhance the therapeutic outcomes of Doxil®.
Collapse
|
16
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
17
|
Fukumoto Y, Umeno T, Kuramochi H, Hamada K, Matsumoto S, Suzuki N, Usui K, Mizutani A, Karasawa S. Acid responsiveness of emissive morpholinyl aminoquinolines and their use for cell fluorescence imaging. Org Biomol Chem 2022; 20:4342-4351. [PMID: 35575175 DOI: 10.1039/d2ob00546h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herein, we report emissive aminoquinoline derivatives (TFMAQ) containing alkylmorpholine and arylmorpholine groups and their photophysical properties, acid-responsiveness, and organelle targeting. The alkylmorpholine group is well-known to favour accumulation in lysosomes and be acid-responsive, but, counterintuitively, the TFMAQ derivatives containing ethylmorpholine groups showed limited accumulation in lysosomes and, instead, preferential accumulation in lipid droplets. The findings reported here will aid the development of organelle/tissue specific dyes for cell imaging and diagnosis.
Collapse
Affiliation(s)
- Yuri Fukumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Tomohiro Umeno
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Hina Kuramochi
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Koichi Hamada
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Shota Matsumoto
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Noriko Suzuki
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Kazuteru Usui
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Akihiro Mizutani
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| | - Satoru Karasawa
- Faculty of Pharmaceutical Science, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
18
|
Simula L, Alifano M, Icard P. How Phosphofructokinase-1 Promotes PI3K and YAP/TAZ in Cancer: Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14102478. [PMID: 35626081 PMCID: PMC9139230 DOI: 10.3390/cancers14102478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We propose that PFK1 promotes a positive feedback loop with PI3K/AKT and YAP/TAZ signaling pathways in cancer cells. Therefore, targeting PFK1 (or its product F-1,6-BP) could improve the efficacy of PI3K and YAP/TAZ inhibitors currently tested in clinical trials. To this aim, we suggest the use of citrate, which is a physiologic and potent inhibitor of PFK1. Abstract PI3K/AKT is one of the most frequently altered signaling pathways in human cancers, supporting the activation of many proteins sustaining cell metabolism, proliferation, and aggressiveness. Another important pathway frequently altered in cancer cells is the one regulating the YAP/TAZ transcriptional coactivators, which promote the expression of genes sustaining aerobic glycolysis (such as WNT, MYC, HIF-1), EMT, and drug resistance. Of note, the PI3K/AKT pathway can also regulate the YAP/TAZ one. Unfortunately, although PI3K and YAP inhibitors are currently tested in highly resistant cancers (both solid and hematologic ones), several resistance mechanisms may arise. Resistance mechanisms to PI3K inhibitors may involve the stimulation of alternative pathways (such as RAS, HER, IGFR/AKT), the inactivation of PTEN (the physiologic inhibitor of PI3K), and the expression of anti-apoptotic Bcl-xL and MCL1 proteins. Therefore, it is important to improve current therapeutic strategies to overcome these limitations. Here, we want to highlight how the glycolytic enzyme PFK1 (and its product F-1,6-BP) promotes the activation of both PI3K/AKT and YAP/TAZ pathways by several direct and indirect mechanisms. In turn, PI3K/AKT and YAP/TAZ can promote PFK1 activity and F-1,6-BP production in a positive feedback loop, thus sustaining the Warburg effect and drug resistance. Thus, we propose that the inhibition of PFK1 (and of its key activator PFK2/PFKFB3) could potentiate the sensitivity to PI3K and YAP inhibitors currently tested. Awaiting the development of non-toxic inhibitors of these enzymes, we propose to test the administration of citrate at a high dosage, because citrate is a physiologic inhibitor of both PFK1 and PFK2/PFKFB3. Consistently, in various cultured cancer cells (including melanoma, sarcoma, hematologic, and epithelial cancer cells), this “citrate strategy” efficiently inhibits the IGFR1/AKT pathway, promotes PTEN activity, reduces Bcl-xL and MCL1 expression, and increases sensitivity to standard chemotherapy. It also inhibits the development of sarcoma, pancreatic, mammary HER+ and lung RAS-driven tumors in mice without apparent toxicities.
Collapse
Affiliation(s)
- Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, 75014 Paris, France;
| | - Marco Alifano
- INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France;
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
| | - Philippe Icard
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
- UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France
- Correspondence:
| |
Collapse
|
19
|
Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resist Updat 2021; 59:100790. [PMID: 34924279 DOI: 10.1016/j.drup.2021.100790] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents the third cause of cancer death in men worldwide, and its increasing incidence can be explained by the increasing occurrence of non-alcoholic steatohepatitis (NASH). HCC prognosis is poor, as its 5-year overall survival is approximately 18 % and most cases are diagnosed at an inoperable advanced stage. Moreover, tumor sensitivity to conventional chemotherapeutics (particularly to cisplatin-based regimen), trans-arterial chemoembolization (cTACE), tyrosine kinase inhibitors, anti-angiogenic molecules and immune checkpoint inhibitors is limited. Oncogenic signaling pathways, such as HIF-1α and RAS/PI3K/AKT, may provoke drug resistance by enhancing the aerobic glycolysis ("Warburg effect") in cancer cells. Indeed, this metabolism, which promotes cancer cell development and aggressiveness, also induces extracellular acidity. In turn, this acidity promotes the protonation of drugs, hence abrogating their internalization, since they are most often weakly basic molecules. Consequently, targeting the Warburg effect in these cancer cells (which in turn would reduce the extracellular acidification) could be an effective strategy to increase the delivery of drugs into the tumor. Phosphofructokinase-1 (PFK1) and its activator PFK2 are the main regulators of glycolysis, and they also couple the enhancement of glycolysis to the activation of key signaling cascades and cell cycle progression. Therefore, targeting this "Gordian Knot" in HCC cells would be of crucial importance. Here, we suggest that this could be achieved by citrate administration at high concentration, because citrate is a physiologic inhibitor of PFK1 and PFK2. As shown in various in vitro studies, including HCC cell lines, administration of high concentrations of citrate inhibits PFK1 and PFK2 (and consequently glycolysis), decreases ATP production, counteracts HIF-1α and PI3K/AKT signaling, induces apoptosis, and sensitizes cells to cisplatin treatment. Administration of high concentrations of citrate in animal models (including Ras-driven tumours) has been shown to effectively inhibit cancer growth, reverse cell dedifferentiation, and neutralize intratumor acidity, without apparent toxicity in animal studies. Citrate may also induce a rapid secretion of pro-inflammatory cytokines by macrophages, and it could favour the destruction of cancer stem cells (CSCs) sustaining tumor recurrence. Consequently, this "citrate strategy" could improve the tumor sensitivity to current treatments of HCC by reducing the extracellular acidity, thus enhancing the delivery of chemotherapeutic drugs into the tumor. Therefore, we propose that this strategy should be explored in clinical trials, in particular to enhance cTACE effectiveness.
Collapse
|
20
|
Ando H. [Elucidation for Intratumor Localization of a DDS-based Anticancer Drug and Enhancement of Its Therapeutic Effects via Improvement of the Tumor Microenvironment]. YAKUGAKU ZASSHI 2021; 141:1241-1245. [PMID: 34719544 DOI: 10.1248/yakushi.21-00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the development of drug delivery system (DDS)-based anticancer drugs, the techniques for the intratumor mapping and quantification of active pharmaceutical ingredients (API) in pharmaceuticals must be pivotal for predicting pharmacological effects and adverse events. X-ray fluorescence spectrometry (XRF) is a potent analytical tool for mapping/quantifying platinum pharmaceutics such as oxaliplatin (l-OHP) and its liposomal formulation. In recent studies, we employed XRF to visualize the intratumor micro-distribution of l-OHP in a tumor-bearing model mouse intravenously injected with either free l-OHP or l-OHP liposomes. The intratumor distribution of l-OHP within tumor sections could be determined by XRF to detect platinum atoms. After treatment with the liposomal formulation, the l-OHP was localized near the tumor vessels and, via repeated injections, increasingly accumulated in tumors by a much greater degree than treatment with free l-OHP. The repeated injections of l-OHP liposomes improved the vascular permeability via inducing the apoptosis of tumor cells near the tumor vessels, which should improve the tumor microenvironment and enhance the intratumor accumulation of repeated doses of l-OHP liposomes. The proposed process was also used to visualize the intratumor distribution of l-OHP in rectal cancer specimens resected from a patient who had received l-OHP-based preoperative chemotherapy. We further revealed that neutralization of an acidic tumor microenvironment via oral administration with NaHCO3 could improve the therapeutic efficacy of weakly basic anticancer agent-encapsulating liposomes. Collectively, mapping/quantifying the intratumor API in DDS drugs and/or improving the tumor microenvironment would be an effective means to accelerate the clinical development of DDS-based anticancer drugs.
Collapse
Affiliation(s)
- Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
21
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
22
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|