1
|
Chermiti R, Burtey S, Dou L. Role of Uremic Toxins in Vascular Inflammation Associated with Chronic Kidney Disease. J Clin Med 2024; 13:7149. [PMID: 39685608 DOI: 10.3390/jcm13237149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major complication of chronic kidney disease (CKD), despite improvements in patient care. Vascular inflammation is a crucial process in the pathogenesis of CVD and a critical factor in the cardiovascular complications in CKD patients. CKD promotes a pro-inflammatory environment that impacts the vascular wall, leading to endothelial dysfunction, increased oxidative stress, and vascular remodeling. The uremic toxins that accumulate as kidney function declines are key contributors to vascular inflammatory processes. Our review will examine how CKD leads to vascular inflammation, paving the way to CVD. We will provide an overview of the mechanisms of vascular inflammation induced by uremic toxins, with a particular focus on those derived from tryptophan metabolism. These toxins, along with their receptor, the aryl hydrocarbon receptor (AHR), have emerged as key players linking inflammation and thrombosis. A deeper understanding of the mechanisms underlying inflammation in CKD, particularly those driven by uremic toxins, could reveal valuable therapeutic targets to alleviate the burden of CVD in CKD patients.
Collapse
Affiliation(s)
- Rania Chermiti
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| | - Stéphane Burtey
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
- Centre de Néphrologie et Transplantation Rénale, APHM, Hôpital Conception, 13005 Marseille, France
| | - Laetitia Dou
- C2VN, Aix-Marseille University, INSERM, INRAE, 13005 Marseille, France
| |
Collapse
|
2
|
Tain YL, Hsu CN. The Impact of the Aryl Hydrocarbon Receptor on Antenatal Chemical Exposure-Induced Cardiovascular-Kidney-Metabolic Programming. Int J Mol Sci 2024; 25:4599. [PMID: 38731818 PMCID: PMC11083012 DOI: 10.3390/ijms25094599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
3
|
Guerra-Ojeda S, Suarez A, Valls A, Verdú D, Pereda J, Ortiz-Zapater E, Carretero J, Mauricio MD, Serna E. The Role of Aryl Hydrocarbon Receptor in the Endothelium: A Systematic Review. Int J Mol Sci 2023; 24:13537. [PMID: 37686342 PMCID: PMC10488274 DOI: 10.3390/ijms241713537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Activation of the aryl hydrocarbon receptor (AhR) has been shown to be important in physiological processes other than detoxification, including vascular homeostasis. Although AhR is highly expressed in the endothelium, its function has been poorly studied. This systematic review aims to summarise current knowledge on the AhR role in the endothelium and its cardiovascular implications. We focus on endogenous AhR agonists, such as some uremic toxins and other agonists unrelated to environmental pollutants, as well as studies using AhR knockout models. We conclude that AhR activation leads to vascular oxidative stress and endothelial dysfunction and that blocking AhR signalling could provide a new target for the treatment of vascular disorders such as cardiovascular complications in patients with chronic kidney disease or pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Andrea Suarez
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Alicia Valls
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - David Verdú
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Javier Pereda
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Elena Ortiz-Zapater
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Julián Carretero
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
| | - Maria D. Mauricio
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| | - Eva Serna
- Department of Physiology, University of Valencia, 46010 Valencia, Spain; (S.G.-O.); (A.S.); (A.V.); (D.V.); (J.P.); (J.C.); (E.S.)
- Biomedical Research Institute INCLIVA, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
4
|
Baaten CCFMJ, Vondenhoff S, Noels H. Endothelial Cell Dysfunction and Increased Cardiovascular Risk in Patients With Chronic Kidney Disease. Circ Res 2023; 132:970-992. [PMID: 37053275 PMCID: PMC10097498 DOI: 10.1161/circresaha.123.321752] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
The endothelium is considered to be the gatekeeper of the vessel wall, maintaining and regulating vascular integrity. In patients with chronic kidney disease, protective endothelial cell functions are impaired due to the proinflammatory, prothrombotic and uremic environment caused by the decline in kidney function, adding to the increase in cardiovascular complications in this vulnerable patient population. In this review, we discuss endothelial cell functioning in healthy conditions and the contribution of endothelial cell dysfunction to cardiovascular disease. Further, we summarize the phenotypic changes of the endothelium in chronic kidney disease patients and the relation of endothelial cell dysfunction to cardiovascular risk in chronic kidney disease. We also review the mechanisms that underlie endothelial changes in chronic kidney disease and consider potential pharmacological interventions that can ameliorate endothelial health.
Collapse
Affiliation(s)
- Constance C F M J Baaten
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| | - Sonja Vondenhoff
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany (C.C.F.M.J.B., S.V., H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands (C.C.F.M.J.B., H.N.)
| |
Collapse
|
5
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|