1
|
Caniceiro AB, Orzeł U, Rosário-Ferreira N, Filipek S, Moreira IS. Leveraging Artificial Intelligence in GPCR Activation Studies: Computational Prediction Methods as Key Drivers of Knowledge. Methods Mol Biol 2025; 2870:183-220. [PMID: 39543036 DOI: 10.1007/978-1-0716-4213-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
G protein-coupled receptors (GPCRs) are key molecules involved in cellular signaling and are attractive targets for pharmacological intervention. This chapter is designed to explore the range of algorithms used to predict GPCRs' activation states, while also examining the pharmaceutical implications of these predictions. Our primary objective is to show how artificial intelligence (AI) is key in GPCR research to reveal the intricate dynamics of activation and inactivation processes, shedding light on the complex regulatory mechanisms of this vital protein family. We describe several computational strategies that leverage diverse structural data from the Protein Data Bank, molecular dynamic simulations, or ligand-based methods to predict the activation states of GPCRs. We demonstrate how the integration of AI into GPCR research not only enhances our understanding of their dynamic properties but also presents immense potential for driving pharmaceutical research and development, offering promising new avenues in the search for newer, better therapeutic agents.
Collapse
Affiliation(s)
- Ana B Caniceiro
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Urszula Orzeł
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Nícia Rosário-Ferreira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
2
|
Barbosa ED, Ma Y, Clift HE, Olson LJ, Zhu L, Liu W. Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. ACS Chem Neurosci 2024; 15:4123-4131. [PMID: 39485723 DOI: 10.1021/acschemneuro.4c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigated the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket. Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.
Collapse
MESH Headings
- Dopamine Agonists/pharmacology
- Dopamine Agonists/chemistry
- Humans
- Ligands
- Dopamine Antagonists/pharmacology
- Dopamine Antagonists/chemistry
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/agonists
- Tetrahydronaphthalenes/pharmacology
- Tetrahydronaphthalenes/chemistry
- Receptors, Dopamine D5/agonists
- Receptors, Dopamine D5/metabolism
- Thiophenes/pharmacology
- Thiophenes/chemistry
- Protein Binding/physiology
- Binding Sites
- Benzazepines/pharmacology
- Benzazepines/chemistry
- Models, Molecular
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives
Collapse
Affiliation(s)
- Emmanuel D Barbosa
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Yuanyuan Ma
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Heather E Clift
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Linda J Olson
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Lan Zhu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Wei Liu
- Cancer Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
3
|
Cho H, Oh DE, Nam Y, Lee SH, Kim TH. Bioelectronic sensing platform emulating the human endocannabinoid system for assessing and modulating of cannabinoid activity. Biosens Bioelectron 2024; 264:116686. [PMID: 39173339 DOI: 10.1016/j.bios.2024.116686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.
Collapse
Affiliation(s)
- Hyunju Cho
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Da Eun Oh
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Youngju Nam
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Tae Hyun Kim
- Department of Chemistry, Soonchunhyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
4
|
Duraisamy K, Kumar M, Nawabjan A, Lo EKK, Hui Lin M, Lefranc B, Bonnafé E, Treilhou M, El-Nezami H, Leprince J, Chow BKC. MRGPRB2/X2 and the analogous effects of its agonist and antagonist in DSS-induced colitis in mice. Biomed Pharmacother 2024; 174:116471. [PMID: 38547764 DOI: 10.1016/j.biopha.2024.116471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
The mast cell receptor Mrgprb2, a mouse orthologue of human Mrgprx2, is known as an inflammatory receptor and its elevated expression is associated with various diseases such as ulcerative colitis. We aimed to elucidate the role of Mrgprb2/x2 and the effect of its ligands on a chemically induced murine colitis model. We showed that in Mrgprb2-/- mice, there is a differential regulation of cytokine releases in the blood plasma and severe colonic damages after DSS treatment. Unexpectedly, we demonstrated that known Mrgprb2/x2 agonists (peptide P17, P17 analogues and CST-14) and antagonist (GE1111) similarly increased the survival rate of WT mice subjected to 4% DSS-induced colitis, ameliorated the colonic damages of 2.5% DSS-induced colitis, restored major protein mRNA expression involved in colon integrity, reduced CD68+ and F4/80+ immune cell infiltration and restored cytokine levels. Collectively, our findings highlight the eminent role of Mrpgrb2/x2 in conferring a beneficial effect in the colitis model, and this significance is demonstrated by the heightened severity of colitis with altered cytokine releases and inflammatory immune cell infiltration observed in the Mrgprb2 knockout mice. Elevated expression of Mrgprb2 in WT colitis murine models may represent the organism's adaptive protective mechanism since Mrgprb2 knockout results in severe colitis. On the other hand, both agonist and antagonist of Mrgprb2 analogously mitigated the severity of colitis in DSS-induced colitis model by altering Mrgprb2 expression, immune cell infiltration and inflammatory cytokine releases.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; INSERM U1239 NorDiC, PRIMACEN, Université Rouen Normandie, Rouen, France
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Abdullah Nawabjan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Emily Kwun Kwan Lo
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Ming Hui Lin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239 NorDiC, PRIMACEN, Université Rouen Normandie, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Hani El-Nezami
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jérôme Leprince
- INSERM U1239 NorDiC, PRIMACEN, Université Rouen Normandie, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Liu Z, Remsberg JR, Li H, Njomen E, DeMeester KE, Tao Y, Xia G, Hayward RE, Yoo M, Nguyen T, Simon GM, Schreiber SL, Melillo B, Cravatt BF. Proteomic Ligandability Maps of Spirocycle Acrylamide Stereoprobes Identify Covalent ERCC3 Degraders. J Am Chem Soc 2024; 146:10393-10406. [PMID: 38569115 PMCID: PMC11211653 DOI: 10.1021/jacs.3c13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Yongfeng Tao
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Minjin Yoo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Vividion Therapeutics, San Diego, CA 92121, USA
| |
Collapse
|
6
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
7
|
Walter M, Baumann F, Schorr K, Goepferich A. Ectoenzymes as promising cell identification structures for the high avidity targeting of polymeric nanoparticles. Int J Pharm 2023; 647:123453. [PMID: 37783283 DOI: 10.1016/j.ijpharm.2023.123453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Pharmacotherapy is often limited by undesired side effects while insufficient drug reaches the site of action. Active-targeted nanotherapy should provide a solution for this problem, by using ligands in the nanoparticle corona for the identification of receptors on the target-cell surface. However, since receptor binding is directly associated with pharmacological responses, today's targeting concepts must be critically evaluated. We hypothesized that addressing ectoenzymes would help to overcome this problem, but it was not clear if particles would show sufficiently high avidity to provide us with a viable alternative to classical ligand-receptor concepts. We scrutinized this aspect by immobilizing the highly selective angiotensin-converting enzyme 2 (ACE2) inhibitor MLN-4760 in the corona of block-copolymer nanoparticles and investigated enzyme binding via microscale thermophoresis and flow cytometry. Excellent avidities with Kd values as low as 243 pM for soluble ACE2 and 306 pM for ACE2-positive cells were obtained. In addition, the inhibitory activity had an IC50 value of 2.88 nM. Reliable target cell identification could be proven in coculture experiments. High avidity is the basis for minimizing material loss to off-target sites and paves the way for a paradigm shift in nanoparticle targeting which does not trigger unintended side effects following target cell identification.
Collapse
Affiliation(s)
- Melanie Walter
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Felix Baumann
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Kathrin Schorr
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Bavaria 93053, Germany.
| |
Collapse
|
8
|
Barbosa E, Clift H, Olson L, Zhu L, Liu W. Structural Insights into Dopamine Receptor-Ligand Interactions: From Agonists to Antagonists. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565579. [PMID: 37961276 PMCID: PMC10635143 DOI: 10.1101/2023.11.03.565579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
This study explores the intricacies of dopamine receptor-ligand interactions, focusing on the D1R and D5R subtypes. Using molecular modeling techniques, we investigate the binding of the pan-agonist rotigotine, revealing a universal binding mode at the orthosteric binding pocket (OBP). Additionally, we analyze the stability of antagonist-receptor complexes with SKF83566 and SCH23390. By examining the impact of specific mutations on ligand-receptor interactions through computational simulations and thermostability assays, we gain insights into binding stability. Our research also delves into the structural and energetic aspects of antagonist binding to D1R and D5R in their inactive states. These findings enhance our understanding of dopamine receptor pharmacology and hold promise for drug development in central nervous system disorders, opening doors to future research and innovation in this field.
Collapse
|
9
|
Sadee W. Ligand-Free Signaling of G-Protein-Coupled Receptors: Physiology, Pharmacology, and Genetics. Molecules 2023; 28:6375. [PMID: 37687205 PMCID: PMC10489045 DOI: 10.3390/molecules28176375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are ubiquitous sensors and regulators of cellular functions. Each GPCR exists in complex aggregates with multiple resting and active conformations. Designed to detect weak stimuli, GPCRs can also activate spontaneously, resulting in basal ligand-free signaling. Agonists trigger a cascade of events leading to an activated agonist-receptor G-protein complex with high agonist affinity. However, the ensuing signaling process can further remodel the receptor complex to reduce agonist affinity, causing rapid ligand dissociation. The acutely activated ligand-free receptor can continue signaling, as proposed for rhodopsin and μ opioid receptors, resulting in robust receptor activation at low agonist occupancy with enhanced agonist potency. Continued receptor stimulation can further modify the receptor complex, regulating sustained ligand-free signaling-proposed to play a role in opioid dependence. Basal, acutely agonist-triggered, and sustained elevated ligand-free signaling could each have distinct functions, reflecting multi-state conformations of GPCRs. This review addresses basal and stimulus-activated ligand-free signaling, its regulation, genetic factors, and pharmacological implications, focusing on opioid and serotonin receptors, and the growth hormone secretagogue receptor (GHSR). The hypothesis is proposed that ligand-free signaling of 5-HT2A receptors mediate therapeutic effects of psychedelic drugs. Research avenues are suggested to close the gaps in our knowledge of ligand-free GPCR signaling.
Collapse
Affiliation(s)
- Wolfgang Sadee
- Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158, USA
- Aether Therapeutics Inc., Austin, TX 78756, USA
| |
Collapse
|
10
|
Grosu ȘA, Chirilă M, Rad F, Enache A, Handra CM, Ghiță I. The Effects of Four Compounds That Act on the Dopaminergic and Serotonergic Systems on Working Memory in Animal Studies; A Literature Review. Brain Sci 2023; 13:brainsci13040546. [PMID: 37190512 DOI: 10.3390/brainsci13040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
The dopaminergic and serotonergic systems are two of the most important neuronal pathways in the human brain. Almost all psychotropic medications impact at least one neurotransmitter system. As a result, investigating how they affect memory could yield valuable insights into potential therapeutic applications or unanticipated side effects. The aim of this literature review was to collect literature data from animal studies regarding the effects on memory of four drugs known to act on the serotonergic and dopaminergic systems. The studies included in this review were identified in the PubMed database using selection criteria from the PRISMA protocol. We analyzed 29 articles investigating one of four different dopaminergic or serotonergic compounds. Studies conducted on bromocriptine have shown that stimulating D2 receptors may enhance working memory in rodents, whereas inhibiting these receptors could have the opposite effect, reducing working memory performance. The effects of serotonin on working memory are not clearly established as studies on fluoxetine and ketanserin have yielded conflicting results. Further studies with better-designed methodologies are necessary to explore the impact of compounds that affect both the dopaminergic and serotonergic systems on working memory.
Collapse
|
11
|
He H, Qin G, Bi S, Feng Z, Mao J, Guan X, Xue M, Wang Z, Wang X, Yu D, Huang F. Deep-Learning-Enhanced Diffusion Imaging Assay for Resolving Local-Density Effects on Membrane Receptors. Anal Chem 2023; 95:3300-3308. [PMID: 36716433 DOI: 10.1021/acs.analchem.2c04326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
G-protein-coupled receptor (GPCR) density at the cell surface is thought to regulate receptor function. Spatially resolved measurements of local-density effects on GPCRs are needed but technically limited by density heterogeneity and mobility of membrane receptors. We now develop a deep-learning (DL)-enhanced diffusion imaging assay that can measure local-density effects on ligand-receptor interactions in the plasma membrane of live cells. In this method, the DL algorithm allows the transformation of 100 ms exposure images to density maps that report receptor numbers over any specified region with ∼95% accuracy by 1 s exposure images as ground truth. With the density maps, a diffusion assay is further established for spatially resolved measurements of receptor diffusion coefficient as well as to express relationships between receptor diffusivity and local density. By this assay, we scrutinize local-density effects on chemokine receptor CXCR4 interactions with various ligands, which reveals that an agonist prefers to act with CXCR4 at low density while an inverse agonist dominates at high density. This work suggests a new insight into density-dependent receptor regulation as well as provides an unprecedented assay that can be applicable to a wide variety of receptors in live cells.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Guangyong Qin
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao266500, China
| | - Jian Mao
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xin Guan
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Minmin Xue
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhirui Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|