1
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
2
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
3
|
Kasabova-Angelova A, Tzankova D, Mitkov J, Georgieva M, Tzankova V, Zlatkov A, Kondeva-Burdina M. Xanthine Derivatives as Agents Affecting Non-dopaminergic Neuroprotection in Parkinson`s Disease. Curr Med Chem 2020; 27:2021-2036. [PMID: 30129404 DOI: 10.2174/0929867325666180821153316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a neurodegenerative and debilitating disease that affects 1% of the elderly population. Patient's motor disability results in extreme difficulty to deal with daily activities. Conventional treatment is limited to dopamine replacement therapy, which fails to delay disease's progression and is often associated with a number of adverse reactions. Recent progress in understanding the mechanisms involved in PD has revealed new molecular targets for therapeutic approaches. Among them, caffeine and xanthine derivatives are promising drug candidates, because of the possible symptomatic benefits in PD. In fact, consumption of coffee correlates with a reduced risk of PD. Over the last decades, a lot of efforts have been made to uncover the therapeutic potential of xanthine structures. The substituted xanthine molecule is used as a scaffold for the synthesis of new compounds with protective effects in neurodegenerative diseases, including PD, asthma, cancer and others. The administration of the xanthines has been proposed as a non-dopaminergic strategy for neuroprotection in PD and the mechanisms of protection have been associated with antagonism of adenosine A2A receptors and Monoamine Oxidase type B (MAO-B) inhibition. The current review summarizes frequently suspected non-dopaminergic neuroprotective mechanisms and the possible beneficial effects of the xanthine derivatives in PD, along with some synthetic approaches to produce perspective xanthine derivatives as non-dopaminergic agents in PD treatment.
Collapse
Affiliation(s)
- Alexandra Kasabova-Angelova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Javor Mitkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Virginia Tzankova
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Magdalena Kondeva-Burdina
- Laboratory of Drug Metabolism and Drug Toxicity, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
4
|
Wang X, He Q, Wu K, Guo T, Du X, Zhang H, Fang L, Zheng N, Zhang Q, Ye F. Design, synthesis and activity of novel 2,6-disubstituted purine derivatives, potential small molecule inhibitors of signal transducer and activator of transcription 3. Eur J Med Chem 2019; 179:218-232. [PMID: 31254923 DOI: 10.1016/j.ejmech.2019.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Sustained activation of STAT3 is closely related to the cancer development, but the inhibitors for STAT3 overexpression are still in the clinical research stage. In this study, a series of 2,6-disubstituted purine derivatives were designed and synthesized, and their biological activities, as small molecule inhibitors of STAT3, were assessed. Compound PD26-TL07 exhibited remarkable antiproliferative activity against three cancer cell lines (IC50 values for HCT-116, SW480 and MDA-MB-231 were 1.77 ± 0.35, 1.51 ± 0.19, and 1.25 ± 0.38 μM, respectively). Moreover, detailed biological assays revealed that PD26-TL07 could effectively inhibited STAT3 phosphorylation, and had little inhibition to others'. The newly discovered PD26-TL07 displayed an expecting anticancer effect both in vitro and in vivo. The molecular docking models revealed that PD26-TL07 could bind to the SH2 domain of STAT3. Three additional compounds (PD26-BZ01, PD26-TL03 and PD26-AS06) were also able to inhibit this phosphorylation. This study described novel 2,6-disubstituted purine derivatives as potent anticancer agents targeting STAT3.
Collapse
Affiliation(s)
- Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qin He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kaiqi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Taoning Guo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuze Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Longcheng Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Nan Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qihong Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Faqing Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
5
|
Abdulla HO, Amin AA, Raviola C, Opatz T, Protti S, Fagnoni M. Smooth Metal-Free Photoinduced Preparation of Valuable 8-Arylxanthines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Havall Othman Abdulla
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department; College of Science; Salahaddin University; Erbil Iraq
| | - Ahmed A. Amin
- Chemistry Department; College of Education; Salahaddin University; Erbil Iraq
| | - Carlotta Raviola
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Institute of Organic Chemistry; College of Education; Johannes Gutenberg University of Mainz; 55128 Mainz Germany
| | - Stefano Protti
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
6
|
Zaminelli T, Magli E, Frecentese F, Lescano CH, Campos R, Saccone I, Corvino A, Di Vaio P, Giordano F, Luciano P, Fiorino F, Perissutti E, Santagada V, Severino B, Caliendo G, De Nucci G. Synthesis and Pharmacological Screening of Pyridopyrimidines as Effective Anti-Diarrheal Agents through the Suppression of Cyclic Nucleotide Accumulation. ChemistryOpen 2019; 8:464-475. [PMID: 31008011 PMCID: PMC6454219 DOI: 10.1002/open.201900060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Indexed: 11/17/2022] Open
Abstract
The increased levels of cyclic nucleotides (cGMP and cAMP) in enterocytes trigger intracellular mechanisms of ion and fluid secretion into the lumen, causing secretory diarrhea. Twelve novel pyridopyrimidines derived from 5‐(3,5‐bistrifluoromethylphenyl)‐1,3‐dimethyl‐5,11‐dihydro‐1H‐indeno[2,1 : 5,6]pyrido[2,3‐d]pyrimidine‐2,4,6‐trione (FPIPP) were synthesized and evaluated on intracellular cyclic nucleotide accumulation. All compounds had no effect on either cyclic nucleotide basal levels or on pre‐contracted aortic rings. The metabolic activity and viability in T84 cells, assessed by MTT (3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide) and the LDH (lactate dehydrogenase) assays, respectively, were not affected by incubation with the compounds (50 μM). Compound VI almost abolished cGMP accumulation (94 % inhibition) induced by STa toxin in T834 cells and significantly reduced (69 %) forskolin‐induced cAMP accumulation in Jurkat cells. Compound VI was active in an in vivo model for diarrhea in rabbits. These results prompted us to perform a microscopic histopathological analysis of intestinal tissues, showing that only compound VI preserves the intestine without significant pathological changes and with a decreased inflammatory pattern in comparison to FPIPP. In vitro stability test revealed that compound VI is resistant to oxidation promoted by atmospheric oxygen.
Collapse
Affiliation(s)
- Tiago Zaminelli
- Superior Institute of Biomedical Science Ceará State University (UECE) Ceará Brazil
| | - Elisa Magli
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Francesco Frecentese
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Caroline H Lescano
- Superior Institute of Biomedical Science Ceará State University (UECE) Ceará Brazil
| | - Rafael Campos
- Superior Institute of Biomedical Science Ceará State University (UECE) Ceará Brazil
| | - Irene Saccone
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Angela Corvino
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Paola Di Vaio
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Flavia Giordano
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Paolo Luciano
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Ferdinando Fiorino
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Elisa Perissutti
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Vincenzo Santagada
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Beatrice Severino
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Giuseppe Caliendo
- Department of Pharmacy University of Naples «Federico II» Via D. Montesano, 49 80131 Naples Italy
| | - Gilberto De Nucci
- Superior Institute of Biomedical Science Ceará State University (UECE) Ceará Brazil
| |
Collapse
|
7
|
Hong R, Li X. Discovery of monoamine oxidase inhibitors by medicinal chemistry approaches. MEDCHEMCOMM 2019; 10:10-25. [PMID: 30774851 PMCID: PMC6350766 DOI: 10.1039/c8md00446c] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/15/2022]
Abstract
Neuropsychiatric disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and depression, have seriously inconvenienced the lives of patients. Growing evidence indicates that these diseases are closely related to the monoamine oxidase (MAO) enzyme, making it an attractive target for the exploitation of potent MAO inhibitors (MAOIs) with high selectivity and low side effects. Although various MAOIs have been discovered, the discovery of an ideal MAOI is not an easy task. In this review, we discuss the currently available rational design strategies for obtaining ideal MAOIs, including ligand-based and receptor-based design strategies, and these strategies were further illustrated with the aid of specific examples from the recent literature. To better understanding the biological activity of MAO, we also highlight the binding modes of typical inhibitors against MAO. Besides, advanced strategies for finding upcoming potent MAOIs were prospected.
Collapse
Affiliation(s)
- Renyuan Hong
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 , Jinan , Shandong , P. R. China . ; ; Tel: 86 531 88382005
| | - Xun Li
- Department of Medicinal Chemistry , Key Laboratory of Chemical Biology (Ministry of Education) , School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 , Jinan , Shandong , P. R. China . ; ; Tel: 86 531 88382005
| |
Collapse
|
8
|
Booysen IN, Jadoo B, Akerman MP. Formation, characterization and computational studies of Lumazine Schiff base Rhenium(III) and –(V) complexes with carbohydrazide moieties. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.03.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Wang X, Han C, Xu Y, Wu K, Chen S, Hu M, Wang L, Ye Y, Ye F. Synthesis and Evaluation of Phenylxanthine Derivatives as Potential Dual A2AR Antagonists/MAO-B Inhibitors for Parkinson's Disease. Molecules 2017. [PMID: 28629145 PMCID: PMC6152622 DOI: 10.3390/molecules22061010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson′s disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 μM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 μM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson′s disease.
Collapse
Affiliation(s)
- Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Chao Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yong Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Kaiqi Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Mangsha Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Luyao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yun Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Faqing Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
10
|
Synthesis of a new class of bisheterocycles via the Heck reaction of eudesmane type methylene lactones with 8-bromoxanthines. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Gunia-Krzyżak A, Pańczyk K, Waszkielewicz AM, Marona H. Cinnamamide Derivatives for Central and Peripheral Nervous System Disorders--A Review of Structure-Activity Relationships. ChemMedChem 2015; 10:1302-25. [PMID: 26083325 DOI: 10.1002/cmdc.201500153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Indexed: 12/17/2022]
Abstract
The cinnamamide scaffold has been incorporated in to the structure of numerous organic compounds with therapeutic potential. The scaffold enables multiple interactions, such as hydrophobic, dipolar, and hydrogen bonding, with important molecular targets. Additionally, the scaffold has multiple substitution options providing the opportunity to optimize and modify the pharmacological activity of the derivatives. In particular, cinnamamide derivatives have exhibited therapeutic potential in animal models of both central and peripheral nervous system disorders. Some have undergone clinical trials and were introduced on to the pharmaceutical market. The diverse activities observed in the nervous system included anticonvulsant, antidepressant, neuroprotective, analgesic, anti-inflammatory, muscle relaxant, and sedative properties. Over the last decade, research has focused on the molecular mechanisms of action of these derivatives, and the data reported in the literature include targeting the γ-aminobutyric acid type A (GABAA ) receptors, N-methyl-D-aspartate (NMDA) receptors, transient receptor potential (TRP) cation channels, voltage-gated potassium channels, histone deacetylases (HDACs), prostanoid receptors, opioid receptors, and histamine H3 receptors. Here, the literature data from reports evaluating cinnamic acid amide derivatives for activity in target-based or phenotypic assays, both in vivo and in vitro, relevant to disorders of the central and peripheral nervous systems are analyzed and structure-activity relationships discussed.
Collapse
Affiliation(s)
- Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland).
| | - Katarzyna Pańczyk
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| | - Henryk Marona
- Department of Bioorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow (Poland)
| |
Collapse
|
12
|
Patil PO, Bari SB. Nitrogen heterocycles as potential monoamine oxidase inhibitors: Synthetic aspects. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2012.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Korošec B, Sova M, Turk S, Kraševec N, Novak M, Lah L, Stojan J, Podobnik B, Berne S, Zupanec N, Bunc M, Gobec S, Komel R. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J Appl Microbiol 2014; 116:955-66. [PMID: 24314266 DOI: 10.1111/jam.12417] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 11/06/2013] [Accepted: 11/25/2013] [Indexed: 11/27/2022]
Abstract
AIMS CYP53A15, from the sorghum pathogen Cochliobolus lunatus, is involved in detoxification of benzoate, a key intermediate in aromatic compound metabolism in fungi. Because this enzyme is unique to fungi, it is a promising drug target in fungal pathogens of other eukaryotes. METHODS AND RESULTS In our work, we showed high antifungal activity of seven cinnamic acid derivatives against C. lunatus and two other fungi, Aspergillus niger and Pleurotus ostreatus. To elucidate the mechanism of action of cinnamic acid derivatives with the most potent antifungal properties, we studied the interactions between these compounds and the active site of C. lunatus cytochrome P450, CYP53A15. CONCLUSION We demonstrated that cinnamic acid and at least four of the 42 tested derivatives inhibit CYP53A15 enzymatic activity. SIGNIFICANCE AND IMPACT OF THE STUDY By identifying selected derivatives of cinnamic acid as possible antifungal drugs, and CYP53 family enzymes as their targets, we revealed a potential inhibitor-target system for antifungal drug development.
Collapse
Affiliation(s)
- B Korošec
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|