1
|
Bhimanwar RS, Mittal A, Chaudhari S, Sharma V. Recent advancements in the structural exploration of TGR5 agonists for diabetes treatment. RSC Med Chem 2024; 15:3026-3037. [PMID: 39309359 PMCID: PMC11411620 DOI: 10.1039/d4md00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
TGR5, a receptor that interacts with bile acids on cell surfaces, has become a promising therapeutic target for type II diabetes due to its ability to regulate energy expenditure and blood sugar levels. While several TGR5 agonists have been identified, only a few are currently in clinical trials. This article reviews the promising TGR5 agonists discovered in recent years, highlighting the chemical structure and pharmacological profile of the most effective compounds. With the limited number of effective drugs available for treating type II diabetes, the search for a potent TGR5 agonist with high efficacy and fewer side effects continues. The goal of this article is to provide an overview of the latest advancements in TGR5 agonists and offer insights for the future development of novel, potent TGR5 agonists for diabetes treatment. A noteworthy aspect addressed in the discussion is the common side effect associated with TGR5 agonist treatment - gallbladder filling. The review also explores potential strategies to mitigate this side effect, with the goal of improving the overall safety and tolerability of TGR5-targeted therapies.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri Pune Maharashtra-411018 India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Snehal Chaudhari
- Department of Biochemistry, University of Wisconsin-Madison Madison WI-53706 USA
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| |
Collapse
|
2
|
Bhimanwar RS, Lokhande KB, Shrivastava A, Singh A, Chitlange SS, Mittal A. Identification of potential drug candidates as TGR5 agonist to combat type II diabetes using in silico docking and molecular dynamics simulation studies. J Biomol Struct Dyn 2023; 41:13314-13331. [PMID: 36724473 DOI: 10.1080/07391102.2023.2173654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
A cell surface bile acid receptor TGR5 being considered as a novel target for Type II diabetes found to be expressed in various tissues. A major role for TGR5 is to maintain blood sugar levels and increase in energy expenditure. These benefits make it a potential candidate for the treatment of type 2 diabetes, obesity and other metabolic disorder. To date, many novel TGR5 agonists have been synthesized and evaluated in the literature, but very few in silico computational studies have been reported. The discovery of a high-resolution crystal structure of TGR5 in 2020 provides an excellent opportunity for computational screening of potential agonists. In this study, we, therefore, aim to search novel, less toxic TGR5 agonists by iteratively analyzing molecular docking against TGR5 (PDB ID: 7CFN) by means of structure-based virtual screening. The docking score of the designed coumarin derivatives that have been docked successfully varies between -9.4 and -9.0 kcal/mol. The molecular docking and ADMET profile examinations of compounds D1, D5 and D15 revealed that these have a strong affinity for the active site residues of TGR5. In addition, molecular dynamics simulation (MDS) studies have shown the stability of compounds that bind to TGR5. It can be summarized that designed coumarin derivatives seem to have promising activity as TGR5 agonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, India
| | - Sohan S Chitlange
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Zhang J, Chen P, Duan Y, Xiong H, Li H, Zeng Y, Liang G, Tang Q, Wu D. Design, synthesis and biological evaluation of 7H-pyrrolo[2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment. Eur J Med Chem 2021; 215:113273. [PMID: 33601310 DOI: 10.1016/j.ejmech.2021.113273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023]
Abstract
In this study, a series of pyrrolo [2,3-d]pyrimidine derivatives containing 1,8-naphthyridine-4-one fragment were synthesized and their biological activity were tested. Most of the target compounds displayed moderate to excellent activity against one or more cancer cell lines and low activity against human normal cell LO2 in vitro. The most promising compound 51, of which the IC50 values were 0.66 μM, 0.38 μM and 0.44 μM against cell lines A549, Hela and MCF-7, shown more remarkable activity and better apoptosis effect than the positive control Cabozantinib. The structure-activity relationships (SARs) indicated that double-EWGs (such as R3 = 2-Cl-4-CF3) on the terminal phenyl rings was a key factor in improving the biological activity. In addition, the further research on compound 51 mainly included c-Met kinase activity and selectivity, concentration dependence, and molecular docking.
Collapse
Affiliation(s)
- Jianqing Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Pengqin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Yongli Duan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, PR China
| | - Hehua Xiong
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Hongmin Li
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Yao Zeng
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, PR China.
| | - Di Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
4
|
Zagoskin P, Erlykina E. Bile Acids as a New Type of Steroid Hormones Regulating Nonspecific Energy Expenditure of the Body (Review). Sovrem Tekhnologii Med 2020; 12:114-127. [PMID: 34796012 PMCID: PMC8596256 DOI: 10.17691/stm2020.12.5.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The review is devoted to the systematization, classification, and generalization of the results of modern scientific research on the role of bile acids as a new class of steroid hormones. The paper presents the evidence for bile acid participation in the regulation of the body energy metabolism, body weight control, as well as the pathogenesis of obesity, diabetes mellitus, insulin resistance, and cardiovascular diseases. Particular attention is paid to the role of bile acids in the control of nonspecific energy expenditure of the body. The applied aspects of using the novel data about the membrane and intracellular receptors responsible for the development of hormonal regulatory effects of bile acids are analyzed. According to the authors, the modern data on the role of bile acids in the regulation of body functions allow a deeper understanding of the pathogenesis of body weight disorders and associated cardiovascular diseases. The review demonstrates promising directions in the search for specific methods of prevention and correction of these pathological conditions.
Collapse
Affiliation(s)
- P.P. Zagoskin
- Associate Professor, Department of Biochemistry named after G.Ya. Gorodisskaya; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E.I. Erlykina
- Professor, Head of the Department of Biochemistry named after G.Ya. Gorodisskaya Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|