1
|
Fang S, Zhang B, Xiang W, Zheng L, Wang X, Li S, Zhang T, Feng D, Gong Y, Wu J, Yuan J, Wu Y, Zhu Y, Liu E, Ni Z. Natural products in osteoarthritis treatment: bridging basic research to clinical applications. Chin Med 2024; 19:25. [PMID: 38360724 PMCID: PMC10870578 DOI: 10.1186/s13020-024-00899-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.
Collapse
Affiliation(s)
- Shunzheng Fang
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
- Rehabilitation Center, Key Specialty of Neck and Low Back Pain Rehabilitation, Strategic Support Force Xingcheng Special Duty Sanatorium, Liaoning, 125100, China
| | - Wei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Liujie Zheng
- Department of Orthopaedic Surgery, The Fourth Hospital of Wuhan, Wuhan, 430000, Hubei, China
| | - Xiaodong Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Song Li
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair, Laboratory for Prevention and Rehabilitation of Training Injuries, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Tongyi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yunquan Gong
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jinhui Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Jing Yuan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yaran Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Yizhen Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Enli Liu
- School of Pharmacy, Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhenhong Ni
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China.
| |
Collapse
|
2
|
Jin X, Liu S, Chen S, Wang L, Cui Y, He J, Fang S, Li J, Chang Y. A systematic review on botany, ethnopharmacology, quality control, phytochemistry, pharmacology and toxicity of Arctium lappa L. fruit. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116223. [PMID: 36781057 DOI: 10.1016/j.jep.2023.116223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Arctium lappa L., is a biennial plant that grows around the Eurasia. Many parts of Arctium lappa L. (roots, leaves and fruits, etc.) are medically used in different countries. Arctium lappa L. fruit, also called Arctii Fructus, is traditionally applied to dispel wind-heat, ventilate lung to promote eruption, remove toxicity substance and relieve sore throat. THE AIM OF THE REVIEW The review aims to integrate the botany, ethnopharmacology, quality control, phytochemistry, pharmacology, derivatives and toxicity information of Arctii Fructus, so as to facilitate future research and explore the potential of Arctii Fructus as an agent for treating diseases. MATERIALS AND METHODS Related knowledge about Arctii Fructus were acquired from Science Direct, GeenMedical, PubMed, China National Knowledge Infrastructure (CNKI), Web of Science, Pharmacopoeia of the People's Republic of China, Doctoral and Master's thesis, ancient books, etc. RESULTS: Arctii Fructus as an herb used for medicine and food was pervasively distributed and applicated around the world. It was traditionally used to treat anemopyretic cold, dyspnea and cough, sore throat, etc. To date, more than 200 compounds have been isolated and identified from Arctii Fructus. It contained lignans, phenolic acids and fatty acids, terpenoids, volatile oils and others. Lignans, especially arctigenin and arctiin, had the extensive pharmacological effects such as anti-cancer, antiviral, anti-inflammatory activities. The ester derivatives of arctigenin had the anti-cancer, anti-Alzheimer's disease and immunity enhancing effects. Although Arctii Fructus extract had no toxicity, arctigenin was toxic at a certain dose. The alleviating effects of Arctii Fructus on chronic inflammation and ageing have been demonstrated by clinical studies. CONCLUSION Arctii Fructus is regarded as a worthy herb with many chemical components and various pharmacological effects. Several traditional applications have been supported by modern pharmacological research. However, their action mechanisms need to be further studied. Although many chemical components were isolated from Arctii Fructus, the current research mainly focused on lignans, especially arctiin and arctigenin. Therefore, it is very important to deeply clarify the pharmacological activities and action mechanism of the compounds and make full medicinal use of the resources of Arctii Fructus.
Collapse
Affiliation(s)
- Xingyue Jin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Suyi Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lirong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shiming Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
3
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
4
|
Arifian H, Maharani R, Megantara S, Gazzali AM, Muchtaridi M. Amino-Acid-Conjugated Natural Compounds: Aims, Designs and Results. Molecules 2022; 27:molecules27217631. [PMID: 36364457 PMCID: PMC9654077 DOI: 10.3390/molecules27217631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Protein is one of the essential macronutrients required by all living things. The breakdown of protein produces monomers known as amino acids. The concept of conjugating natural compounds with amino acids for therapeutic applications emerged from the fact that amino acids are important building blocks of life and are abundantly available; thus, a greater shift can result in structural modification, since amino acids contain a variety of sidechains. This review discusses the data available on amino acid–natural compound conjugates that were reported with respect to their backgrounds, the synthetic approach and their bioactivity. Several amino acid–natural compound conjugates have shown enhanced pharmacokinetic characteristics, including absorption and distribution properties, reduced toxicity and increased physiological effects. This approach could offer a potentially effective system of drug discovery that can enable the development of pharmacologically active and pharmacokinetically acceptable molecules.
Collapse
Affiliation(s)
- Hanggara Arifian
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Pharmacochemistry, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Rani Maharani
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Saisn Malaysia, Penang 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Collaboration Centre for Theranostic Radiopharmaceuticals, National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
- Correspondence:
| |
Collapse
|
5
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
6
|
Synthesis of new fluorene compounds for highly selective sensing of picric acid, Fe3+ and l-arginine. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Discovery of stereospecific cytotoxicity of (8R,8'R)-trans-arctigenin against insect cells and structure-activity relationship on aromatic ring. Bioorg Med Chem Lett 2020; 30:127191. [PMID: 32359854 DOI: 10.1016/j.bmcl.2020.127191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022]
Abstract
One of the arctigenin stereoisomers, (8R,8'R)-trans-form 1, showed stereospecific cytotoxicity against insect cells, Sf9 and NIAS-AeAl-2 cells. By the comparison with other stereoisomers, the most importance of the 8'R stereochemistry for the higher activities was clarified. On the other hand, the wider range of activity level among stereoisomers against cancer cells, HL-60, was not observed. The structure-activity relationship research using derivatives bearing (8R,8'R)-trans-form was performed to show the same level of activities of 3-iodo, 4-iodo, and 3,4-methylenedioxy derivatives 28, 29, and 36 as (8R,8'R)-trans-arctigenin 1. In the examination of thiono derivatives, 4-iodo thiono and 3,4-methylenedioxy thiono derivatives 66, 67 showed similar level of activities to that of (8R,8'R)-trans-arctigenin 1. The expression of ribosomal 28S rRNA gene of Sf9 cells was increased by (8R,8'R)-trans-arctigenin 1, whereas a degradation of DNA was not observed.
Collapse
|
8
|
Anifowose A, Yuan Z, Yang X, Pan Z, Zheng Y, Zhang Z, Wang B. Upregulation of p53 through induction of MDM2 degradation: Amino acid prodrugs of anthraquinone analogs. Bioorg Med Chem Lett 2019; 30:126786. [PMID: 31753697 DOI: 10.1016/j.bmcl.2019.126786] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Previously, we reported a class of MDM2-MDM4 dimerization inhibitors that upregulate p53 and showed potent anticancer activity in animal models. However, water solubility hinders their further development. Herein we describe our effort to develop a prodrug approach that overcomes the solubility problem. The prodrug of BW-AQ-238, a potent anthraquinone analog, was made by esterification of the hydroxyl group with various natural amino acids. Cytotoxicity of these compounds toward Hela and EU-1 cells, their aqueous solubility, and the release kinetics of these prodrugs in buffer and in the presence of hydrolytic enzymes were studied. The results demonstrate that the amino acid prodrug approach significantly improved the water solubility while maintaining the potency of the parent drug.
Collapse
Affiliation(s)
- Abiodun Anifowose
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Zhengnan Yuan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States.
| | - Zhixiang Pan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Yueqin Zheng
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Zhongwei Zhang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States.
| |
Collapse
|
9
|
Han M, Jia X, Cai E, Yang L, Dai M, Sun N, Jiang S, Shu H. The effects of Arctigenin-Valine ester on chemotherapy-induced myelosuppression in mice. Bioorg Med Chem 2019; 27:2480-2486. [PMID: 30837167 DOI: 10.1016/j.bmc.2019.02.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To explore whether Arctigenin-Valine ester (ARG-V) can treat myelosuppression caused by chemotherapy. METHODS The number of peripheral blood cells of the mice was measured by an automatic blood analyzer, and the hematopoietic progenitor colonies CFU-GM, CFU-E, BFU-E, and CFU-Meg were cultured in vitro. Hematopoietic progenitor colonies and BMNCs were counted under an inverted microscope. The expressions of cytokines GM-CSF, EPO and TPO were detected by ELISA. The cell cycle was measured by flow cytometry. The expressions of related proteins MEK and p-ERK were quantitated by western blots, and the thymus index and spleen index were quantitated. RESULTS After taking ARG-V, the peripheral blood cells of the mice gradually returned to normal, the number of nucleated cells in the bone marrow increased, the thymus index increased, the spleen index decreased, the number of hematopoietic progenitor cells increased, and the hematopoietic cytokines decreased. And ARG-V promoted the transformation of myelosuppression cells from G0/G1 to S and from S to G2/M. ARG-V could up-regulate the expression of MEK and p-ERK, and low dose ARG-V is not as effective in all aspects as high dose ARG-V. CONCLUSION ARG-V can effectively alleviate the myelosuppression that caused by intraperitoneal injection of CTX in 100mg/kg, and ARG-V can promote the proliferation and differentiation of hematopoietic progenitor cells and improve immunity, and the effect of high-dose Arctigenin-Valine ester is more significant to some extent.
Collapse
Affiliation(s)
- Mei Han
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Xiaohuan Jia
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Enbo Cai
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Limin Yang
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China.
| | - Min Dai
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Nian Sun
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Shan Jiang
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| | - Hui Shu
- College of Chinese Medicinal Material, Jilin Agricultural University, 2888 Xincheng Street, Changchun, Jilin province 130118, China
| |
Collapse
|
10
|
Experimental study of the anti-tumour activity and pharmacokinetics of arctigenin and its valine ester derivative. Sci Rep 2018; 8:3307. [PMID: 29459629 PMCID: PMC5818482 DOI: 10.1038/s41598-018-21722-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
Arctigenin (ARG) is a functional active component that has important physiological and pharmacological activities. The anti-tumour and anti-inflammatory activities of ARG show good potential for application and development, but this material has the defect of low water solubility. In this experiment, the valine derivative of ARG (ARG-V) was designed and synthesized to overcome this disadvantage. The ARG amino acid, EDCI and DMAP were raw materials in the addition reaction, with a molar ratio of 1:2:2:0.5. The yield of ARG-V was up to 80%. ARG-V has strong anti-tumour activity in vivo and in vitro. The inhibitory rate of ARG-V was 69.2%, with less damage to the immune organs and different degrees of increased serum cytotoxicity. Moreover, the pharmacokinetics of ARG following oral administration and ARG-V following oral administration in rats were also studied. The Cmax and AUC values of ARG-V showed significant differences compared to ARG. The relative bioavailabilities of three doses of ARG-V compared to ARG were 664.7%, 741.5% and 812.9%. These pharmacokinetic results may be useful for further studies of the bioactive mechanism of ARG and provide a theoretical basic for clinical use.
Collapse
|
11
|
Chu F, Zhang W, Guo W, Wang Z, Yang Y, Zhang X, Fang K, Yan M, Wang P, Lei H. Oleanolic Acid-amino Acids Derivatives: Design, Synthesis, and Hepatoprotective Evaluation In Vitro and In Vivo. Molecules 2018; 23:E322. [PMID: 29393898 PMCID: PMC6017290 DOI: 10.3390/molecules23020322] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
Activated hepatic stellate cells (HSCs) are the main extracellular matrix (ECM)-producing cells in the injured liver and the key mediators of liver fibrosis; they also promote the progression of hepatocellular carcinoma (HCC). In the acidic extracellular microenvironment of HCC, HSCs are activated to promote the migration of HCC cells. It is worth attempting to alter the weak acidic microenvironment to promote activated HSC apoptosis to treat liver fibrosis and liver cancer. In the present study, a series of novel OA-amino acids analogues were designed and synthesized to introduce different amino acids in the 3-hydroxyl of OA using the ester condensation reaction to enhance hydrophilicity, alkalinity, and biological activity. We found that OA-lysine derivative (3g) could improve the hydrophilic of OA and induce HSCs apoptosis via inducing MMP depolarization and increasing intracellular Ca2+ levels. Additionally, 3g displayed a better hepatoprotective effect than OA (20 mg/kg, intragastric administration) against the acute liver injury induced by carbon tetrachloride (CCl₄) in mice. The results suggested that basic amino acids (lysine) could effectively enhance OA's hydrophilicity, alkalinity, and hepatoprotective activity in vitro and in vivo, which might be likely associated with increasing bioavailability and altering an extracellular weak acidic microenvironment with further verification. Therefore, the OA-lysine derivative (3g) has the potential to be developed as an agent with hepatoprotective activity.
Collapse
Affiliation(s)
- Fuhao Chu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenxi Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Wenbo Guo
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Zhaoyi Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yuqin Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xinyu Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Kang Fang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Mengmeng Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
12
|
Zhu HY, Zhang D, Zhang Q, Zhao Y, He ZM, Gao YG, Zhang LX. 4-Hydroxybenzyl alcohol derivatives and their sedative–hypnotic activities. RSC Adv 2018; 8:19539-19550. [PMID: 35540981 PMCID: PMC9080670 DOI: 10.1039/c8ra01972j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/04/2018] [Indexed: 12/11/2022] Open
Abstract
4-Hydroxybenzyl alcohol (HBA), one of the characteristic active components of Gastrodia elata, exhibits obvious effects on the human central nervous system. In order to acquire compounds with superior bioactivity, 10 derivatives of HBA were synthesized from HBA and carboxylic acids. The sedative effects of the 10 HBA derivatives were evaluated using a spontaneous locomotor activity test (SLT) in mice, and their hypnotic effects were determined to be synergistic with pentobarbital-induced sleep. The results showed that 4-hydroxybenzyl alcohol 3-furancarboxylic acid diester (2FHBA, 10 mg kg−1) exhibited the strongest sedative–hypnotic activity among HBA and its derivatives, and 2FHBA could reverse the insomnia caused by p-chlorophenylalanine (pCPA), flumazenil (FLU) and thiosemicarbazide (TSC). Meanwhile, 2FHBA and 5-hydroxytryptophan (5-HTP) showed a synergistic effect. The results suggested that 2FHBA might be a potential agent against insomnia, which might be mediated by the serotonergic and GABAergic systems. 2FHBA, a derivative of HBA, exerts sedative and hypnotic effects through the serotonergic and GABAergic systems.![]()
Collapse
Affiliation(s)
- Hong-yan Zhu
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Di Zhang
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Qi Zhang
- The Fiftieth Middle School of Daqing
- Daqing 163000
- China
| | - Yan Zhao
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Zhong-mei He
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Yu-gang Gao
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| | - Lian-xue Zhang
- College of Chinese Medicinal Materials
- Jilin Agricultural University
- Changchun 130118
- China
| |
Collapse
|
13
|
Cai E, Guo S, Yang L, Han M, Xia J, Zhao Y, Gao X, Wang Y. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma. Nat Prod Res 2017; 32:406-411. [PMID: 28415847 DOI: 10.1080/14786419.2017.1314279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Arctigenin (ARG) is famous in its abundant pharmacological activity. However, many researches in it entered the bottleneck period because of its poor water solubility. The derivatives of ARG have been synthesised with five amino acids which have t-Butyloxy carbonyl (BOC) as a protective group. We examined the effects of removing BOC. The results showed that the amino acid derivatives without protective group have better water solubility and nitrite-clearing ability than ARG. Based on these results, ARG6' and ARG9' were selected at a dosage of 40 mg/kg to evaluate their antitumour activity. The percentage inhibition rate of ARG6' and ARG9' were 55.87 and 51.40, respectively, which was twice as much as ARG. Furthermore, they could increase liver and kidney indexes and produce less damage in these organs. In brief, this study provides a basis for new drug development.
Collapse
Affiliation(s)
- Enbo Cai
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Shijie Guo
- b Department of Neonatology , The First Hospital of Jilin University , Changchun Jilin province , China
| | - Limin Yang
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Mei Han
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Jing Xia
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Yan Zhao
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Xiaorui Gao
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| | - Yu Wang
- a College of Chinese Medicinal Material, Jilin Agricultural University , Changchun Jilin province , China
| |
Collapse
|
14
|
Development and cytotoxicity of Schiff base derivative as a fluorescence probe for the detection of l-Arginine. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Chen Q, Yang L, Han M, Cai E, Zhao Y. Synthesis and pharmacological activity evaluation of arctigenin monoester derivatives. Biomed Pharmacother 2016; 84:1792-1801. [DOI: 10.1016/j.biopha.2016.10.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 10/20/2022] Open
|