1
|
Bakir M, Dawalibi A, Mufti MA, Behiery A, Mohammad KS. Nano-Drug Delivery Systems for Bone Metastases: Targeting the Tumor-Bone Microenvironment. Pharmaceutics 2025; 17:603. [PMID: 40430894 PMCID: PMC12115183 DOI: 10.3390/pharmaceutics17050603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Bone metastases are a prevalent and debilitating consequence of various cancers, including breast and prostate carcinomas, which significantly compromise patient quality of life due to pain, fractures, and other skeletal-related events (SREs). This review examines the pathophysiology of bone metastases, emphasizing the role of the bone microenvironment in tumor progression through mechanisms such as osteotropism and the dysregulated bone remodeling cycle. The primary focus is on the emerging nano-drug delivery systems (DDS) designed to target the bone microenvironment and improve the therapeutic index of anticancer agents. Current treatments, mainly comprising bisphosphonates and radiotherapy, provide palliative benefits but often have limited efficacy and significant side effects. Innovative strategies, such as bisphosphonate-conjugated nanoparticles and targeted therapies that utilize the unique bone marrow niche, are explored for their potential to enhance drug accumulation at metastatic sites while minimizing systemic toxicity. These approaches include the use of liposomes, polymeric nanoparticles, and inorganic nanoparticles, which can be functionalized to exploit the biological barriers within the bone microenvironment. This review also discusses the challenges and future directions for nano-DDS in clinical settings, emphasizing the need for multidisciplinary research to effectively integrate these technologies into standard care protocols.
Collapse
Affiliation(s)
- Mohamad Bakir
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ahmad Dawalibi
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Mohammad Alaa Mufti
- Department of Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (M.B.); (M.A.M.)
| | - Ayman Behiery
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.D.); (A.B.)
| |
Collapse
|
2
|
Mi L, Li J, Hii ARK, Zuo Z, Tang Y, Zhou W, Wu Z, Qi X. Dental cementum anchored microspheres embedded in a self-healing hydrogel for the antibacterial, anti-inflammation, osteogenic, and anti-osteoclastic management of periodontitis disease. J Mater Chem B 2024; 12:9947-9962. [PMID: 39072701 DOI: 10.1039/d4tb00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Periodontitis, a prevalent chronic oral disease, poses a significant threat to periodontal tissues, often resulting in substantial attachment loss and tooth shedding. Leveraging the principles of bone affinity and the mechanism underlying tetracycline pigmentation of teeth, this study strategically employed tetracycline (TC) as a bone-affinity group. We modified TC on the surface of polylactic-co-glycolic acid copolymer (PLGA) microspheres (MSs) through covalent binding, and then loaded berberine (BBR) MSs into a thermosensitive self-healing hydrogel delivery system (BBR/TC-MS). It was verified that the BBR/TC-MS gel rapidly formed an in situ reservoir in the periodontal pocket upon injection, and the chelation between TC and cementum in the periodontal pocket enhanced the anchoring effect of the TC-modified microspheres on cementum, preventing their loss through gingival crevicular fluid. Subsequently, we proved in vitro and in vivo that the BBR/TC-MS gel has excellent bacteriostatic effects against the periodontal pathogenic bacteria Fusobacterium necrophorum (Fn), anti-inflammation property in periodontal and gingival tissues, and osteogenic effect by regulating the RANKL-RANK-OPG pathway to diminish osteoclast activity, thus continuously exerting antibacterial, anti-inflammatory, osteogenic, and anti-osteoclastic effects. This innovative approach holds promise as a targeted and effective strategy for combating multifaceted challenges posed by periodontitis.
Collapse
Affiliation(s)
- Li Mi
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Jiachen Li
- China Pharmaceutical University, 210009, Nanjing, China.
| | | | - Zhenhao Zuo
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Ya Tang
- The Second Outpatient Department, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Wei Zhou
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Zhenghong Wu
- China Pharmaceutical University, 210009, Nanjing, China.
| | - Xiaole Qi
- China Pharmaceutical University, 210009, Nanjing, China.
- Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, 310018, Hangzhou, China
| |
Collapse
|
3
|
Wu Y, Sun B, Tang Y, Shen A, Lin Y, Zhao X, Li J, Monteiro MJ, Gu W. Bone targeted nano-drug and nano-delivery. Bone Res 2024; 12:51. [PMID: 39231955 PMCID: PMC11375042 DOI: 10.1038/s41413-024-00356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024] Open
Abstract
There are currently no targeted delivery systems to satisfactorily treat bone-related disorders. Many clinical drugs consisting of small organic molecules have a short circulation half-life and do not effectively reach the diseased tissue site. This coupled with repeatedly high dose usage that leads to severe side effects. With the advance in nanotechnology, drugs contained within a nano-delivery device or drugs aggregated into nanoparticles (nano-drugs) have shown promises in targeted drug delivery. The ability to design nanoparticles to target bone has attracted many researchers to develop new systems for treating bone related diseases and even repurposing current drug therapies. In this review, we shall summarise the latest progress in this area and present a perspective for future development in the field. We will focus on calcium-based nanoparticle systems that modulate calcium metabolism and consequently, the bone microenvironment to inhibit disease progression (including cancer). We shall also review the bone affinity drug family, bisphosphonates, as both a nano-drug and nano-delivery system for bone targeted therapy. The ability to target and release the drug in a controlled manner at the disease site represents a promising safe therapy to treat bone diseases in the future.
Collapse
Affiliation(s)
- Yilun Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Ying Tang
- Science and Technology Innovation Centre, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aining Shen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanlin Lin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Xiaohui Zhao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jingui Li
- School of Veterinary Medicine, Jiangsu Co-innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
4
|
Celik B, Leal AF, Tomatsu S. Potential Targeting Mechanisms for Bone-Directed Therapies. Int J Mol Sci 2024; 25:8339. [PMID: 39125906 PMCID: PMC11312506 DOI: 10.3390/ijms25158339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Bone development is characterized by complex regulation mechanisms, including signal transduction and transcription factor-related pathways, glycobiological processes, cellular interactions, transportation mechanisms, and, importantly, chemical formation resulting from hydroxyapatite. Any abnormal regulation in the bone development processes causes skeletal system-related problems. To some extent, the avascularity of cartilage and bone makes drug delivery more challenging than that of soft tissues. Recent studies have implemented many novel bone-targeting approaches to overcome drawbacks. However, none of these strategies fully corrects skeletal dysfunction, particularly in growth plate-related ones. Although direct recombinant enzymes (e.g., Vimizim for Morquio, Cerezyme for Gaucher, Elaprase for Hunter, Mepsevii for Sly diseases) or hormone infusions (estrogen for osteoporosis and osteoarthritis), traditional gene delivery (e.g., direct infusion of viral or non-viral vectors with no modifications on capsid, envelope, or nanoparticles), and cell therapy strategies (healthy bone marrow or hematopoietic stem cell transplantation) partially improve bone lesions, novel delivery methods must be addressed regarding target specificity, less immunogenicity, and duration in circulation. In addition to improvements in bone delivery, potential regulation of bone development mechanisms involving receptor-regulated pathways has also been utilized. Targeted drug delivery using organic and inorganic compounds is a promising approach in mostly preclinical settings and future clinical translation. This review comprehensively summarizes the current bone-targeting strategies based on bone structure and remodeling concepts while emphasizing potential approaches for future bone-targeting systems.
Collapse
Affiliation(s)
- Betul Celik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
| | - Andrés Felipe Leal
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA;
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
5
|
Yu X, Zhu L. Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges. Int J Nanomedicine 2024; 19:1867-1886. [PMID: 38414525 PMCID: PMC10898486 DOI: 10.2147/ijn.s442768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Although the frequency of bone metastases from breast cancer has increased, effective treatment is lacking, prompting the development of nanomedicine, which involves the use of nanotechnology for disease diagnosis and treatment. Nanocarrier drug delivery systems offer several advantages over traditional drug delivery methods, such as higher reliability and biological activity, improved penetration and retention, and precise targeting and delivery. Various nanoparticles that can selectively target tumor cells without causing harm to healthy cells or organs have been synthesized. Recent advances in nanotechnology have enabled the diagnosis and prevention of metastatic diseases as well as the ability to deliver complex molecular "cargo" particles to metastatic regions. Nanoparticles can modulate systemic biodistribution and enable the targeted accumulation of therapeutic agents. Several delivery strategies are used to treat bone metastases, including untargeted delivery, bone-targeted delivery, and cancer cell-targeted delivery. Combining targeted agents with nanoparticles enhances the selective delivery of payloads to breast cancer bone metastatic lesions, providing multiple delivery advantages for treatment. In this review, we describe recent advances in nanoparticle development for treating breast cancer bone metastases.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
6
|
Stoppa I, Dianzani C, Clemente N, Bozza A, Bordano V, Garelli S, Cangemi L, Dianzani U, Battaglia L. Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models. Biomolecules 2024; 14:238. [PMID: 38397475 PMCID: PMC10886946 DOI: 10.3390/biom14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.
Collapse
Affiliation(s)
- Ian Stoppa
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Nausicaa Clemente
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
7
|
Rastin F, Oryani MA, Iranpour S, Javid H, Hashemzadeh A, Karimi-Shahri M. A new era in cancer treatment: harnessing ZIF-8 nanoparticles for PD-1 inhibitor delivery. J Mater Chem B 2024; 12:872-894. [PMID: 38193564 DOI: 10.1039/d3tb02471g] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
This review delves into the potential of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles in augmenting the efficacy of cancer immunotherapy, with a special focus on the delivery of programmed cell death receptor 1 (PD-1) inhibitors. The multifunctional nature of ZIF-8 nanoparticles as drug carriers is emphasized, with their ability to encapsulate a range of therapeutic agents, including PD-1 inhibitors, and facilitate their targeted delivery to tumor locations. By manipulating the pore size and surface characteristics of ZIF-8 nanoparticles, controlled drug release can be realized. The strategic use of ZIF-8 nanoparticles to deliver PD-1 inhibitors presents a precise and targeted modality for cancer treatment, reducing off-target impacts and enhancing therapeutic effectiveness. This combined strategy addresses the existing challenges and constraints of current immunotherapy techniques, with the ultimate goal of enhancing patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sonia Iranpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
8
|
Leal AF, Inci OK, Seyrantepe V, Rintz E, Celik B, Ago Y, León D, Suarez DA, Alméciga-Díaz CJ, Tomatsu S. Molecular Trojan Horses for treating lysosomal storage diseases. Mol Genet Metab 2023; 140:107648. [PMID: 37598508 DOI: 10.1016/j.ymgme.2023.107648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023]
Abstract
Lysosomal storage diseases (LSDs) are caused by monogenic mutations in genes encoding for proteins related to the lysosomal function. Lysosome plays critical roles in molecule degradation and cell signaling through interplay with many other cell organelles, such as mitochondria, endoplasmic reticulum, and peroxisomes. Even though several strategies (i.e., protein replacement and gene therapy) have been attempted for LSDs with promising results, there are still some challenges when hard-to-treat tissues such as bone (i.e., cartilages, ligaments, meniscus, etc.), the central nervous system (mostly neurons), and the eye (i.e., cornea, retina) are affected. Consistently, searching for novel strategies to reach those tissues remains a priority. Molecular Trojan Horses have been well-recognized as a potential alternative in several pathological scenarios for drug delivery, including LSDs. Even though molecular Trojan Horses refer to genetically engineered proteins to overcome the blood-brain barrier, such strategy can be extended to strategies able to transport and deliver drugs to specific tissues or cells using cell-penetrating peptides, monoclonal antibodies, vesicles, extracellular vesicles, and patient-derived cells. Only some of those platforms have been attempted in LSDs. In this paper, we review the most recent efforts to develop molecular Trojan Horses and discuss how this strategy could be implemented to enhance the current efficacy of strategies such as protein replacement and gene therapy in the context of LSDs.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Orhan Kerim Inci
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Volkan Seyrantepe
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Betul Celik
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Yasuhiko Ago
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Daniel León
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diego A Suarez
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland; Faculty of Arts and Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
9
|
Ashique S, Faiyazuddin M, Afzal O, Gowri S, Hussain A, Mishra N, Garg A, Maqsood S, Akhtar MS, Altamimi AS. Advanced nanoparticles, the hallmark of targeted drug delivery for osteosarcoma-an updated review. J Drug Deliv Sci Technol 2023; 87:104753. [DOI: 10.1016/j.jddst.2023.104753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Dayanandan AP, Cho WJ, Kang H, Bello AB, Kim BJ, Arai Y, Lee SH. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res 2023; 27:68. [PMID: 37443121 DOI: 10.1186/s40824-023-00413-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023] Open
Abstract
Osteoporosis is a pathological condition characterized by an accelerated bone resorption rate, resulting in decreased bone density and increased susceptibility to fractures, particularly among the elderly population. While conventional treatments for osteoporosis have shown efficacy, they are associated with certain limitations, including limited drug bioavailability, non-specific administration, and the occurrence of adverse effects. In recent years, nanoparticle-based drug delivery systems have emerged as a promising approach for managing osteoporosis. Nanoparticles possess unique physicochemical properties, such as a small size, large surface area-to-volume ratio, and tunable surface characteristics, which enable them to overcome the limitations of conventional therapies. These nanoparticles offer several advantages, including enhanced drug stability, controlled release kinetics, targeted bone tissue delivery, and improved drug bioavailability. This comprehensive review aims to provide insights into the recent advancements in nanoparticle-based therapy for osteoporosis. It elucidates the various types of nanoparticles employed in this context, including silica, polymeric, solid lipid, and metallic nanoparticles, along with their specific processing techniques and inherent properties that render them suitable as potential drug carriers for osteoporosis treatment. Furthermore, this review discusses the challenges and future suggestions associated with the development and translation of nanoparticle drug delivery systems for clinical use. These challenges encompass issues such as scalability, safety assessment, and regulatory considerations. However, despite these challenges, the utilization of nanoparticle-based drug delivery systems holds immense promise in revolutionizing the field of osteoporosis management by enabling more effective and targeted therapies, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Woong Jin Cho
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Hyemin Kang
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | | | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
11
|
Dissanayake R, Towner R, Ahmed M. Metastatic Breast Cancer: Review of Emerging Nanotherapeutics. Cancers (Basel) 2023; 15:2906. [PMID: 37296869 PMCID: PMC10251990 DOI: 10.3390/cancers15112906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Metastases of breast cancer (BC) are often referred to as stage IV breast cancer due to their severity and high rate of mortality. The median survival time of patients with metastatic BC is reduced to 3 years. Currently, the treatment regimens for metastatic BC are similar to the primary cancer therapeutics and are limited to conventional chemotherapy, immunotherapy, radiotherapy, and surgery. However, metastatic BC shows organ-specific complex tumor cell heterogeneity, plasticity, and a distinct tumor microenvironment, leading to therapeutic failure. This issue can be successfully addressed by combining current cancer therapies with nanotechnology. The applications of nanotherapeutics for both primary and metastatic BC treatments are developing rapidly, and new ideas and technologies are being discovered. Several recent reviews covered the advancement of nanotherapeutics for primary BC, while also discussing certain aspects of treatments for metastatic BC. This review provides comprehensive details on the recent advancement and future prospects of nanotherapeutics designed for metastatic BC treatment, in the context of the pathological state of the disease. Furthermore, possible combinations of current treatment with nanotechnology are discussed, and their potential for future transitions in clinical settings is explored.
Collapse
Affiliation(s)
- Ranga Dissanayake
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Rheal Towner
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; (R.D.); (R.T.)
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| |
Collapse
|
12
|
Subrahmanyam N, Yathavan B, Yu SM, Ghandehari H. Targeting Intratibial Osteosarcoma Using Water-Soluble Copolymers Conjugated to Collagen Hybridizing Peptides. Mol Pharm 2023; 20:1670-1680. [PMID: 36724294 PMCID: PMC10799843 DOI: 10.1021/acs.molpharmaceut.2c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone cancer in adolescents. Over the years, OS prognosis has greatly improved due to adjuvant and neoadjuvant (preoperative) chemotherapeutic treatment, increasing the chances of successful surgery and reducing the need for limb amputation. However, chemotherapeutic treatment to treat OS is limited by off-target toxicities and requires improved localization at the tumor site. Collagen, the main constituent of bone tissue, is extensively degraded and remodeled in OS, leading to an increased availability of denatured (monomeric) collagen. Collagen hybridizing peptides (CHPs) comprise a class of peptides rationally designed to selectively bind to denatured collagen. In this work, we have conjugated CHPs as targeting moieties to water-soluble N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to target OS tumors. We demonstrated increased accumulation of collagen-targeted HPMA copolymer-CHP conjugates compared to nontargeted HPMA copolymers, as well as increased retention compared to both nontargeted copolymers and CHPs, in a murine intratibial OS tumor model. Furthermore, we used microcomputed tomography analysis to evaluate the bone microarchitecture and correlated bone morphometric parameters (porosity, bone volume, and surface area) with maximum accumulation (Smax) and accumulation at 168 h postinjection (S168) of the copolymers at the tumor. Our results provide the foundation for the use of HPMA copolymer-CHP conjugates as targeted drug delivery systems in OS tumors.
Collapse
Affiliation(s)
- Nithya Subrahmanyam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - Bhuvanesh Yathavan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
| | - S Michael Yu
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Hamidreza Ghandehari
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
13
|
Boopathi E, Birbe R, Shoyele SA, Den RB, Thangavel C. Bone Health Management in the Continuum of Prostate Cancer Disease. Cancers (Basel) 2022; 14:4305. [PMID: 36077840 PMCID: PMC9455007 DOI: 10.3390/cancers14174305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is the second-leading cause of cancer-related deaths in men. PCa cells require androgen receptor (AR) signaling for their growth and survival. Androgen deprivation therapy (ADT) is the preferred treatment for patients with locally advanced and metastatic PCa disease. Despite their initial response to androgen blockade, most patients eventually will develop metastatic castration-resistant prostate cancer (mCRPC). Bone metastases are common in men with mCRPC, occurring in 30% of patients within 2 years of castration resistance and in >90% of patients over the course of the disease. Patients with mCRPC-induced bone metastasis develop lesions throughout their skeleton; the 5-year survival rate for these patients is 47%. Bone-metastasis-induced early changes in the bone that proceed the osteoblastic response in the bone matrix are monitored and detected via modern magnetic resonance and PET/CT imaging technologies. Various treatment options, such as targeting osteolytic metastasis with bisphosphonates, prednisone, dexamethasone, denosumab, immunotherapy, external beam radiation therapy, radiopharmaceuticals, surgery, and pain medications are employed to treat prostate-cancer-induced bone metastasis and manage bone health. However, these diagnostics and treatment options are not very accurate nor efficient enough to treat bone metastases and manage bone health. In this review, we present the pathogenesis of PCa-induced bone metastasis, its deleterious impacts on vital organs, the impact of metastatic PCa on bone health, treatment interventions for bone metastasis and management of bone- and skeletal-related events, and possible current and future therapeutic options for bone management in the continuum of prostate cancer disease.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ruth Birbe
- Laboratory Medicine, Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Sunday A. Shoyele
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chellappagounder Thangavel
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Dermatology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Interdisciplinary Oncology, Department of Biochemistry & Molecular Biology, LSUHSC Stanley S. Scott Cancer Center, 1700 Tulane Ave, New Orleans, LA 70112, USA
| |
Collapse
|
14
|
Hu B, Zhang Y, Zhang G, Li Z, Jing Y, Yao J, Sun S. Research progress of bone-targeted drug delivery system on metastatic bone tumors. J Control Release 2022; 350:377-388. [PMID: 36007681 DOI: 10.1016/j.jconrel.2022.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Bone metastases are common in malignant tumors and the effect of conventional treatment is limited. How to effectively inhibit tumor bone metastasis and deliver the drug to the bone has become an urgent issue to be solved. While bone targeting drug delivery systems have obvious advantages in the treatment of bone tumors. The research on bone-targeted anti-tumor therapy has made significant progress in recent years. We introduced the related tumor pathways of bone metastases. The tumor microenvironment plays an important role in metastatic bone tumors. We introduce a drug-loading systems based on different environment-responsive nanocomposites for anti-tumor and anti-metastatic research. According to the process of bone metastases and the structure of bone tissue, we summarized the information on bone-targeting molecules. Bisphosphate has become the first choice of bone-targeted drug delivery carrier because of its affinity with hydroxyapatite in bone. Therefore, we sought to summarize the bone-targeting molecule of bisphosphate to identify the modification effect on bone-targeting. And this paper discusses the relationship between bisphosphate bone targeting molecular structure and drug delivery carriers, to provide some new ideas for the research and development of bone-targeting drug delivery carriers. Targeted therapy will make a more outstanding contribution to the treatment of tumors.
Collapse
Affiliation(s)
- Beibei Hu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China; State Key Laboratory Breeding Base-Hebei Province, Key Laboratory of Molecular Chemistry for Drug, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongkang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Guogang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Yongshuai Jing
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China
| | - Jun Yao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| | - Shiguo Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 26 Yuxiang Road, Shijiazhuang 050018, PR China.
| |
Collapse
|
15
|
Li Z, Zhang W, Zhang Z, Gao H, Qin Y. Cancer bone metastases and nanotechnology-based treatment strategies. Expert Opin Drug Deliv 2022; 19:1217-1232. [PMID: 35737871 DOI: 10.1080/17425247.2022.2093856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Bone metastases have gradually been recognized as common metastases that affect patient quality of life and survival due to the increased incidence of primary tumors. However, there is still a lack of effective clinical treatment methods for bone metastases because of their particularity and complexity. Nanomedicine provides a new strategy for the treatment of bone metastases and shows great therapeutic potential. Thus, it is important to review the latest nanomedicine treatments for bone metastases. AREAS COVERED This review introduces the mechanistic relationships of bone metastases and summarizes nanotechnology-based treatments of bone metastases according to targeting strategies. EXPERT OPINION As we start to understand the mechanisms that enable bone metastases, we can better develop nanomedicine treatments. However, many of the mechanisms behind bone metastasis remain unclear. The application of nanomedicine shows promising anti-bone metastasis efficacy and helps to explore the pathogenesis of bone metastases. The optimized construction of nanomedicine according to bone metastatic properties is crucial to ensure the desired anti-bone metastasis efficacy and good biosafety. Therefore, the transition from bench to bedside still requires continued exploration.
Collapse
Affiliation(s)
- Zhaofeng Li
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Orthopedics, Sichuan Provincial People's Hospital & Sichuan Academy of Medical Sciences & Affiliated Hospital of University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Zhong Zhang
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yi Qin
- Department of Orthopedic, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
16
|
Ogawa K, Katsumi H, Nomura D, Moroto Y, Morishita M, Yamamoto A. A Dense Layer of Polyethyleneglycol and Zwitterionic Bone Targeting Peptide on the Surface of Stereocomplex Polylactide-Polyethyleneglycol Nanoparticles Improves Shelf-Storage Stability and the Serum Compatibility. J Pharm Sci 2022; 111:2888-2897. [PMID: 35671787 DOI: 10.1016/j.xphs.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022]
Abstract
The surface properties of nanoparticles (NPs) affect their stability and formation of the protein corona, which influence their targeting abilities. We evaluated these properties using bone (hydroxyapatite; HAP) targeting peptide on tamoxifen (TAM)-loaded stereocomplexformed polylactide-polyethyleneglycol (SC-PLA-PEG) NPs. Octaaspartic acid-octaglycine-cysteine (D8G8C) anionic derivative (Ani. pep.) and octa-aspartic acid-octa lysine-cysteine (D8K8C), a zwitterionic derivative (Zwi. pep.) were conjugated with SC-PLA-PEG NPs as HAP-targeting peptides. The addition of hydrophobic PLA homopolymers increased the surface PEG density on the NPs. Denser PEG chains on NPs decreased their specific surface area, reducing protein adsorption on the NPs and TAM release from NPs. NPs with dense PEG chains and Zwi. pep. showed superior shelf stability and lower protein adsorption than NPs with dense PEG chains and Ani. pep. in murine serum. Furthermore, the HAP-binding ability of NPs with Zwi. pep. was significantly higher than that of NPs with Ani. pep. These results indicate that decreasing the specific surface area and zwitterionization of HAP-targeting peptides on NPs are promising approaches to improve the serum compatibility and stability of NPs.
Collapse
Affiliation(s)
- Kohei Ogawa
- Formulation R&D Laboratory, CMC R&D Division, Shionogi Co. Ltd., Amagasaki-shi, Hyogo 660-0813, Japan; Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Daiki Nomura
- Formulation R&D Laboratory, CMC R&D Division, Shionogi Co. Ltd., Amagasaki-shi, Hyogo 660-0813, Japan
| | - Yasushi Moroto
- Formulation R&D Laboratory, CMC R&D Division, Shionogi Co. Ltd., Amagasaki-shi, Hyogo 660-0813, Japan
| | - Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
17
|
Gao L, Zhang SQ. Antiosteoporosis Effects, Pharmacokinetics, and Drug Delivery Systems of Icaritin: Advances and Prospects. Pharmaceuticals (Basel) 2022; 15:397. [PMID: 35455393 PMCID: PMC9032325 DOI: 10.3390/ph15040397] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder affecting over 200 million people worldwide and contributes dramatically to global healthcare costs. Available anti-osteoporotic drug treatments including hormone replacement therapy, anabolic agents, and bisphosphonates often cause adverse events which limit their long-term use. Therefore, the application of natural products has been proposed as an alternative therapy strategy. Icaritin (ICT) is not only an enzyme-hydrolyzed product of icariin but also an intestinal metabolite of eight major flavonoids of the traditional Chinese medicinal plant Epimedium with extensive pharmacological activities, such as strengthening the kidney and reinforcing the bone. ICT displays several therapeutic effects, including osteoporosis prevention, neuroprotection, antitumor, cardiovascular protection, anti-inflammation, and immune-protective effect. ICT inhibits bone resorption activity of osteoclasts and stimulates osteogenic differentiation and maturation of bone marrow stromal progenitor cells and osteoblasts. As for the mechanisms of effect, ICT regulates relative activities of two transcription factors Runx2 and PPARγ, determines the differentiation of MSCs into osteoblasts, increases mRNA expression of OPG, and inhibits mRNA expression of RANKL. Poor water solubility, high lipophilicity, and unfavorable pharmacokinetic properties of ICT restrict its anti-osteoporotic effects, and novel drug delivery systems are explored to overcome intrinsic limitations of ICT. The paper focuses on osteogenic effects and mechanisms, pharmacokinetics and delivery systems of ICT, and highlights bone-targeting strategies to concentrate ICT on the ideal specific site of bone. ICT is a promising potential novel therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Lifang Gao
- School of Public Health, Capital Medical University, 10 Youanmenwai Xitiao, Beijing 100069, China;
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
18
|
Effects on bone regeneration of single-dose treatment with osteogenic small molecules. Drug Discov Today 2022; 27:1538-1544. [DOI: 10.1016/j.drudis.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 12/23/2022]
|
19
|
Breast Cancer Bone Metastasis: A Narrative Review of Emerging Targeted Drug Delivery Systems. Cells 2022; 11:cells11030388. [PMID: 35159207 PMCID: PMC8833898 DOI: 10.3390/cells11030388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Bone is one of the most common metastatic sites among breast cancer (BC) patients. Once bone metastasis is developed, patients' survival and quality of life will be significantly declined. At present, there are limited therapeutic options for BC patients with bone metastasis. Different nanotechnology-based delivery systems have been developed aiming to specifically deliver the therapeutic agents to the bone. The conjugation of targeting agents to nanoparticles can enhance the selective delivery of various payloads to the metastatic bone lesion. The current review highlights promising and emerging advanced nanotechnologies designed for targeted delivery of anticancer therapeutics, contrast agents, photodynamic and photothermal materials to the bone to achieve the goal of treatment, diagnosis, and prevention of BC bone metastasis. A better understanding of various properties of these new therapeutic approaches may open up new landscapes in medicine towards improving the quality of life and overall survival of BC patients who experience bone metastasis.
Collapse
|
20
|
Matsuda Y, Mendelsohn BA. Recent Advances in Drug-Antibody Ratio Determination of Antibody-Drug Conjugates. Chem Pharm Bull (Tokyo) 2021; 69:976-983. [PMID: 34602579 DOI: 10.1248/cpb.c21-00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are biopharmaceuticals produced by chemically linking small molecules (payloads) to antibodies that possess specific affinity for the target cell. The ADCs currently on the commercially market are the result of a stochastic conjugation of highly-potent payloads to multiple sites on the monoclonal antibody, resulting in a heterogeneous drug-antibody ratio (DAR) and drug distribution. The heterogeneity inherent to ADCs not produced site-specifically may not only be detrimental to the quality of the drug but also is less-desirable from the perspective of regulatory science. An ideal method or unified approach used to measure the DAR for ADCs, a critical aspect of their analysis and characterization, has not yet been established in the ADC field and remains an often-challenging issue for bioanalytical chemists. In this review we describe, compare, and evaluate the characteristics of various DAR determination methods for ADCs featuring recently reported technologies. The future landscape of bioconjugate DAR analysis is also discussed.
Collapse
|
21
|
Lin Y, Villacanas MG, Zou H, Liu H, Carcedo IG, Wu Y, Sun B, Wu X, Prasadam I, Monteiro MJ, Li L, Xu ZP, Gu W. Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers. ACS APPLIED BIO MATERIALS 2021; 4:2490-2501. [DOI: 10.1021/acsabm.0c01455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yanling Lin
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maria G. Villacanas
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hong Zou
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Pathology/Key Laboratories for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Hangrui Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ines G. Carcedo
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yilun Wu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bing Sun
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiaoxin Wu
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Indira Prasadam
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Michael J. Monteiro
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Li Li
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
22
|
Ordikhani F, Zandi N, Mazaheri M, Luther GA, Ghovvati M, Akbarzadeh A, Annabi N. Targeted nanomedicines for the treatment of bone disease and regeneration. Med Res Rev 2020; 41:1221-1254. [PMID: 33347711 DOI: 10.1002/med.21759] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/14/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical applications. In the present review, the latest advancements in targeting moieties and nanocarrier drug delivery systems for the treatment of bone diseases are summarized. We also review the regeneration capability and effective delivery of nanomedicines for orthopedic applications.
Collapse
Affiliation(s)
- Farideh Ordikhani
- Transplantation Research Center, Division of Renal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nooshin Zandi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.,Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Mozhdeh Mazaheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Gaurav A Luther
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| | - Abolfazl Akbarzadeh
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, California, Los Angeles, USA
| |
Collapse
|