1
|
Ozaki M, Nakade T, Sekiguchi M, Shimotsuma M, Hirose T, Kawase T, Tsuji A, Kuranaga T, Kakeya H, Tomonaga S. Simultaneous Analysis of Imidazole Dipeptides, Constituent Amino Acids, and Taurine in Meats Using the Highly Sensitive Labeling Reagent l-FDVDA and PBr Column. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27538-27548. [PMID: 39588613 DOI: 10.1021/acs.jafc.4c07391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Imidazole dipeptides (IDPs) are found in the skeletal muscles and brains of various animals, and they exhibit unique functions like antioxidant and antiaging properties. Despite their importance, the metabolic mechanisms and physiological roles of IDPs remain unclear. Herein, we propose a method for the simultaneous analysis of IDPs, their constituent amino acids, and taurine, which are difficult to separate using conventional labeling reagents or columns, using liquid chromatography-single quadrupole mass spectrometry with PBr column and our highly sensitive labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-l-valine-N,N-dimethylethylenediamineamide (l-FDVDA). This method successfully separated histidine and carnosine enantiomers as well as l-2-oxocarnosine with high antioxidant activity under the same conditions. Our labeling reagent was more stable than the other reagents and did not degrade and desorb from the analytes for at least 1 week at 4 °C. Furthermore, our method allows for the accurate analysis of IDPs, amino acids, and taurine in meats from various animal species, tissues, and breeds.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tomomi Nakade
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Mayu Sekiguchi
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Takahiro Kawase
- Kyoto Institute of Nutrition and Pathology, Inc., Madani, Tachikawa,Ujidawara-cho, Tsuzuki-gun, Kyoto 610-0231, Japan
| | - Ai Tsuji
- Development of Health and Nutrition, Faculty of Health and Sciences, Nagoya Women's University, Nagoya 467-8610, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Shozo Tomonaga
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Ozaki M, Nakade T, Shimotsuma M, Ikeda A, Kuranaga T, Kakeya H, Hirose T. Simultaneous analysis of DL-Amino acids in foods and beverages using a highly sensitive chiral resolution labeling reagent. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1244:124239. [PMID: 39059318 DOI: 10.1016/j.jchromb.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Amino acids with various functions are abundant in living organisms and foods. Recent advances in analytical technology show that trace amounts of D-amino acids exist in living organisms and foods. In addition, studies show that these amino acids are involved in various physiological functions that differ from those of L-amino acids. Thus, a technique for analyzing DL-amino acids is required. However, the simultaneous separation and highly sensitive detection of DL-amino acids are complicated; therefore, highly sensitive analytical methods that can rapidly separate and identify compounds are required. We previously developed our original chiral resolution labeling reagents for the separation and highly sensitive detection of DL-amino acids. Here, we developed a simple method for the rapid separation and highly sensitive detection of DL-amino acids in various foods and beverages by liquid chromatography-mass spectrometry (LC-MS) using an octadecyl (C18) column after labeling with 1-fluoro-2,4-dinitrophenyl-5-D-leucine-N,N-dimethylethylenediamineamide (D-FDLDA; enantiomeric excess > 99.9 %). In addition, we synthesized a stable isotope (13C6)-labeled D-FDLDA (13C6-D-FDLDA) and established an analytical method that can accurately identify the peak of each DL-amino acid. MS sensitivity of DL-amino acids labeled with our labeling reagent was higher than that of conventional labeling reagents (Marfey's reagents). The labeling reagent was neither desorbed from each DL-amino acid nor degraded for at least 1 week at 4 °C. Furthermore, we determined the DL-amino acid contents in foods and beverages using the proposed method, and differences in the total amino acid content and D/L ratio in each food and beverage were observed.
Collapse
Affiliation(s)
- Makoto Ozaki
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Tomomi Nakade
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Motoshi Shimotsuma
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan
| | - Akari Ikeda
- TAIYO NIPPON SANSO Corporation, SI Innovation Center, 2008-2 Wada, Tama, Tokyo 206-0001, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
3
|
Zhao L, Li X, Wang Y, Yang Q, Jiang X, Zhao R, Chen H, Zhang Y, Ran J, Chen W, Wei Z, Wang H. Resistance role of Lactobacillus sp. and Lactococcus sp. to copper ions in healthy children's intestinal microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134059. [PMID: 38503209 DOI: 10.1016/j.jhazmat.2024.134059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Heavy metal exposure is closely associated with gut microbe function and tolerance. However, intestinal microbe responses in children to different copper ion (Cu2+) concentrations have not yet been clarified. Here, in vitro cultivation systems were established for fecal microbe control and Cu2+-treated groups in healthy children. 16S rDNA high-throughput sequencing, meta-transcriptomics and metabolomics were used here to identify toxicity resistance mechanisms at microbiome levels. The results showed that Lactobacillus sp. and Lactococcus sp. exerted protective effects against Cu2+ toxicity, but these effects were limited by Cu2+ concentration. When the Cu2+ concentration was ≥ 4 mg/L, the abundance of Lactobacillus sp. and Lactococcus sp. significantly decreased, and the pathways of antioxidant activity and detoxification processes were enriched at 2 mg/L Cu2+, and beneficial metabolites accumulated. However, at high concentrations of Cu2+ (≥4 mg/L), the abundance of potential pathogen increased, and was accompanied by a downregulation of genes in metabolism and detoxification pathways, which meant that the balance of gut microbiota was disrupted and toxicity resistance decreased. From these observations, we identified some probiotics that are tolerant to heavy metal Cu2+, and warn that only when the concentration limit of Cu2+ in food is 2 mg/L, then a balanced gut microbiota can be guaranteed in children, thereby providing protection for their health.
Collapse
Affiliation(s)
- Lili Zhao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xinlei Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yibin Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China.
| | - Xiaobing Jiang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China; Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Hong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yiping Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Wanrong Chen
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Zihan Wei
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
4
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Simultaneous separation and identification of all structural isomers and enantiomers of aminobutyric acid using a highly sensitive chiral resolution labeling reagent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6648-6655. [PMID: 38009190 DOI: 10.1039/d3ay01665j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Aminobutyric acid has structural isomers (α-, β-, and γ-aminobutyric acids) and enantiomers (D/L-forms) with various unique functions. Therefore, a quantitative method for determining the content of each aminobutyric acid must be developed. In general, quantitative simultaneous analysis of multiple compounds is conducted via high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). However, simultaneous separation and highly sensitive detection of all aminobutyric acids are complicated, so highly sensitive analytical methods for the separation and identification of each compound have not yet been established. We previously developed highly sensitive chiral resolution labeling reagents. Herein, we propose a highly sensitive analytical method for the simultaneous separation and identification of all aminobutyric acids via LC-MS and labeling with our original highly sensitive chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine amide (L-FDVDA). The labeling reagent was completely bound to all aminobutyric acids through incubation overnight (>15 h) at 50 °C. Additionally, the labeled aminobutyric acids could be stored for at least 1 week at 4 °C. Furthermore, we demonstrated simultaneous separation and identification of aminobutyric acids in biological samples and foods through LC-MS using a C18 column after labeling with L-FDVDA. Our method is expected to be adopted for the analysis of the contents of all aminobutyric acids in biological and clinical samples as well as various foods.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Motoshi Shimotsuma
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Kyoto 606-8501, Japan.
| | - Tsunehisa Hirose
- Research and Development Department, Nacalai Tesque, Inc., Ishibashi Kaide-cho, Muko-shi, Kyoto 617-0004, Japan.
| |
Collapse
|
5
|
Ozaki M, Shimotsuma M, Kuranaga T, Kakeya H, Hirose T. Separation and Identification of Isoleucine Enantiomers and Diastereomers Using an Original Chiral Resolution Labeling Reagent. Chem Pharm Bull (Tokyo) 2023; 71:824-831. [PMID: 37612063 DOI: 10.1248/cpb.c23-00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
D-Amino acids, which are present in small amounts in living organisms, are responsible for a variety of physiological functions. Some bioactive/biomolecular peptides also contain D-amino acids in their sequences; such peptides express different functions than peptides composed only of L-form amino acids. Among the 20 amino acids that make up proteins, threonine (Thr) and isoleucine (Ile) have two chiral carbons and thus have two enantiomers and diastereomers. These stereoisomers have been previously analyzed through HPLC using chiral columns or chiral resolution labeling reagents. However, the separation and identification of these stereoisomers are highly laborious and complicated. Herein, we propose an analytical method for the separation and identification of Ile stereoisomers through LC-MS using our original chiral resolution labeling reagent, 1-fluoro-2,4-dinitrophenyl-5-L-valine-N,N-dimethylethylenediamine-amide (L-FDVDA) and a PBr column packed with pentabromobenzyl-modified silica gel. Twenty DL-amino acids including Thr stereoisomers (41 amino acids including glycine) were separated and identified using C18 column. Ile stereoisomers could be separated using not a C18 column but a PBr column. Additionally, we showed that peptides containing Thr and Ile stereoisomers can be accurately detected through labeling with L-FDVDA.
Collapse
Affiliation(s)
- Makoto Ozaki
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| | - Motoshi Shimotsuma
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Tsunehisa Hirose
- Research and Development Department, Purification Section, Nacalai Tesque, Inc
| |
Collapse
|
6
|
Qu C, Jian C, Ge K, Zheng D, Bao Y, Jia W, Zhao A. A rapid UHPLC-QDa method for quantification of human salivary amino acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123485. [DOI: 10.1016/j.jchromb.2022.123485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
|
7
|
Metabolomics Research in Periodontal Disease by Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092864. [PMID: 35566216 PMCID: PMC9104832 DOI: 10.3390/molecules27092864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
Periodontology is a newer field relative to other areas of dentistry. Remarkable progress has been made in recent years in periodontology in terms of both research and clinical applications, with researchers worldwide now focusing on periodontology. With recent advances in mass spectrometry technology, metabolomics research is now widely conducted in various research fields. Metabolomics, which is also termed metabolomic analysis, is a technology that enables the comprehensive analysis of small-molecule metabolites in living organisms. With the development of metabolite analysis, methods using gas chromatography–mass spectrometry, liquid chromatography–mass spectrometry, capillary electrophoresis–mass spectrometry, etc. have progressed, making it possible to analyze a wider range of metabolites and to detect metabolites at lower concentrations. Metabolomics is widely used for research in the food, plant, microbial, and medical fields. This paper provides an introduction to metabolomic analysis and a review of the increasing applications of metabolomic analysis in periodontal disease research using mass spectrometry technology.
Collapse
|
8
|
Development and application of highly sensitive labeling reagents for amino acids. Methods Enzymol 2022; 665:105-133. [DOI: 10.1016/bs.mie.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|