1
|
Rogers B, Fleitas-Paniagua PR, Trpcic M, Zagatto AM, Murias JM. Fractal correlation properties of heart rate variability and respiratory frequency as measures of endurance exercise durability. Eur J Appl Physiol 2025:10.1007/s00421-025-05716-2. [PMID: 39904800 DOI: 10.1007/s00421-025-05716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE Field-based measures of durability (exercise-related physiologic deterioration over time) for assessing athletic fitness often rely on changes in maximal power profiles or heart rate (HR) drift. This study aimed to determine whether an index of HR variability based on the short-term exponent of Detrended Fluctuation Analysis (DFA a1) along with respiratory frequency (fB) could demonstrate changes in durability during a Time to Task Failure (TTF) Trial. METHODS Ten participants performed a cycling TTF at an intensity of 95% of the respiratory compensation point (RCP) on two occasions, Control and a "Reward" where a monetary incentive was offered when task failure was signaled. Metabolic responses including oxygen uptake (V ˙ O 2 ), lactate and glucose along with HR, DFA a1 and fB were measured and compared over each quarter of the TTF up to the time of signaling (Q1, Q2, Q3, and Q4). RESULTS The elapsed time of TTF sessions was statistically similar (p = 0.54). After initial equilibration, metabolic responses remained largely stable over Q2-Q4. HR, DFA a1 and fB displayed drift over Q2-Q4 with significant ANOVA. Repeatability of quarterly HR, DFA a1, and fB between Control and Reward sessions was high with ICC between 0.73 and 0.94, Pearson's r was between 0.83 and 0.98 with no difference in mean values by paired t testing. CONCLUSION HR, fB and DFA a1 are useful metrics representing alteration in physiologic characteristics demonstrating durability loss during an endurance exercise session. These measures were repeatable across sessions and have the potential to be monitored retrospectively or in real time in the field with low-cost consumer equipment.
Collapse
Affiliation(s)
- Bruce Rogers
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd, Orlando, FL, 32827, USA.
| | | | | | - Alessandro M Zagatto
- Department of Physical Education, School of Sciences, São Paulo State University-UNESP, Bauru, Brazil
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
2
|
Iannetta D, Marinari G, Murias JM. Can the heart rate response at the respiratory compensation point be used to retrieve the maximal metabolic steady state? J Sports Sci 2023; 41:1025-1032. [PMID: 37722819 DOI: 10.1080/02640414.2023.2259206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/21/2023] [Indexed: 09/20/2023]
Abstract
The metabolic rate (VO2) at the maximal metabolic steady state (MMSS) is generally not different from the VO2 at the respiratory compensation point (RCP). Based on this, it is often assumed that the heart rate (HR) at RCP would also be similar to that at MMSS. The study aims to compare the HR at RCP with that at MMSS. Seventeen individuals completed a ramp-incremental test, a series of severe-intensity trials to estimate critical power and two-to-three 30-min trials to confirm MMSS. The HR at RCP was retrieved by linear interpolation of the ramp-VO2/HR relationship and compared to the HR at MMSS recorded at 10, 15, 20, 25 and 30 min. The HR at RCP was 166 ± 12 bpm. The HR during MMSS at the timepoints of interest was 168 ± 8, 171 ± 8, 175 ± 9, 177 ± 9 and 178 ± 10 bpm. The HR at RCP was not different from the HR at MMSS at 10 min (P > 0.05) but lower at subsequent timepoints (P < 0.05) with this difference becoming progressively larger. For all timepoints, limits of agreement were large (~30 bpm). Given these differences and the variability at the individual level, the HR at RCP cannot be used to control the metabolic stimulus of endurance exercise.
Collapse
Affiliation(s)
- Danilo Iannetta
- Department of Internal Medicine, University of Utah, Salt Lake City, USA
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
3
|
Chou TH, Coyle EF. Cardiovascular responses to hot skin at rest and during exercise. Temperature (Austin) 2022; 10:326-357. [PMID: 37554384 PMCID: PMC10405766 DOI: 10.1080/23328940.2022.2109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022] Open
Abstract
Integrative cardiovascular responses to heat stress during endurance exercise depend on various variables, such as thermal stress and exercise intensity. This review addresses how increases in skin temperature alter and challenge the integrative cardiovascular system during upright submaximal endurance exercise, especially when skin is hot (i.e. >38°C). Current evidence suggests that exercise intensity plays a significant role in cardiovascular responses to hot skin during exercise. At rest and during mild intensity exercise, hot skin increases skin blood flow and abolishes cutaneous venous tone, which causes blood pooling in the skin while having little impact on stroke volume and thus cardiac output is increased with an increase in heart rate. When the heart rate is at relatively low levels, small increases in heart rate, skin blood flow, and cutaneous venous volume do not compromise stroke volume, so cardiac output can increase to fulfill the demands for maintaining blood pressure, heat dissipation, and the exercising muscle. On the contrary, during more intense exercise, hot skin does not abolish exercise-induced cutaneous venoconstriction possibly due to high sympathetic nerve activities; thus, it does not cause blood pooling in the skin. However, hot skin reduces stroke volume, which is associated with a decrease in ventricular filling time caused by an increase in heart rate. When the heart rate is high during moderate or intense exercise, even a slight reduction in ventricular filling time lowers stroke volume. Cardiac output is therefore not elevated when skin is hot during moderate intensity exercise.
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Edward F. Coyle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Texas, Tx, USA
| |
Collapse
|
4
|
Kinoshita N, Uchiyama E, Ishikawa-Takata K, Yamada Y, Okuyama K. Association of energy availability with resting metabolic rates in competitive female teenage runners: a cross-sectional study. J Int Soc Sports Nutr 2021; 18:70. [PMID: 34784926 PMCID: PMC8594218 DOI: 10.1186/s12970-021-00466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background Resting metabolic rate (RMR) has been examined as a proxy for low energy availability (EA). Previous studies have been limited to adult athletes, despite the serious health consequences of low EA, particularly during adolescence. This study aimed to explore the relationship between RMR and EA in competitive teenage girl runners. Methods Eighteen girl runners (mean ± standard-deviation; age, 16.8 ± 0.9 years; body mass, 45.6 ± 5.2 kg, %fat, 13.5 ± 4.2 %) in the same competitive high-school team were evaluated. Each runner was asked to report dietary records with photos and training logs for seven days. Energy intake (EI) was assessed by Registered Dietitian Nutritionists. The runners were evaluated on a treadmill with an indirect calorimeter to yield individual prediction equations for oxygen consumption using running velocity and heart rate (HR). Exercise energy expenditure (EEE) was calculated by the equations based on training logs and HR. Daily EA was calculated by subtracting EEE from EI. The daily means of these variables were calculated. RMR was measured early in the morning by whole-room calorimetry after overnight sleep on concluding the final day of the seven-day assessment. The ratio of measured RMR to predicted RMR (RMR ratio) was calculated by race, age, sex-specific formulae, and Cunningham’s equation. Body composition was measured using dual-energy X-ray absorptiometry. Bivariate correlation analyses were used to examine the relationship between variables. Results RMR, EI, EEE, and EA were 26.9 ± 2.4, 56.8 ± 15.2, 21.7 ± 5.9, and 35.0 ± 15.0 kcal⋅kg−1 FFM⋅d−1, respectively. RMR reduced linearly with statistical significance, while EA decreased to a threshold level (30 kcal⋅kg−1 FFM⋅d−1) (r= 0.58, p= 0.048). Further reduction in RMR was not observed when EA fell below the threshold. There was no significant correlation between RMR ratios and EA, irrespective of the prediction formulae used. Conclusions These results suggest that RMR does not reduce with a decrease in EA among highly competitive and lean teenage girl runners. RMR remains disproportionally higher than expected in low EA states. Free-living teenage girl runners with low EA should be cautiously identified using RMR as a proxy for EA change.
Collapse
Affiliation(s)
- Norimitsu Kinoshita
- Faculty of Sports and Health Studies, Hosei University, 4342 Aihara, Tokyo, 194-0298, Machida, Japan.
| | - Eriko Uchiyama
- Faculty of Sports and Health Studies, Hosei University, 4342 Aihara, Tokyo, 194-0298, Machida, Japan
| | - Kazuko Ishikawa-Takata
- Health and Nutrition, National Institutes of Biomedical Innovation, 1-23-1 Toyama, Tokyo, 162-8636, Shinjuku, Japan.,Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Tokyo, 156-8502, Setagaya, Japan
| | - Yuka Yamada
- Health and Nutrition, National Institutes of Biomedical Innovation, 1-23-1 Toyama, Tokyo, 162-8636, Shinjuku, Japan
| | - Kenta Okuyama
- Center for Primary Health Care Research, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms Gata 35, 20502, Malmö, Sweden
| |
Collapse
|
5
|
Salier Eriksson J, Olsson KSE, Rosdahl H, Schantz P. Heart Rate Methods Can Be Valid for Estimating Intensity Spectrums of Oxygen Uptake in Field Exercise. Front Physiol 2021; 12:687566. [PMID: 34295264 PMCID: PMC8290204 DOI: 10.3389/fphys.2021.687566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose Quantifying intensities of physical activities through measuring oxygen uptake (V̇O2) is of importance for understanding the relation between human movement, health and performance. This can in principle be estimated by the heart rate (HR) method, based on the linear relationship between HR and V̇O2 established in the laboratory. It needs, however, to be explored whether HR methods, based on HR-V̇O2 relationships determined in the laboratory, are valid for estimating spectrums of V̇O2 in field exercise. We hereby initiate such studies, and use cycle commuting as the form of exercise. Methods Ten male and ten female commuter cyclists underwent measurements of HR and V̇O2 while performing ergometer cycling in a laboratory and a normal cycle commute in the metropolitan area of Stockholm County, Sweden. Two models of individual HR-V̇O2 relationships were established in the laboratory through linear regression equations. Model 1 included three submaximal work rates, whereas model 2 also involved a maximal work rate. The HR-V̇O2 regression equations of the two models were then used to estimate V̇O2 at six positions of field HR: five means of quintiles and the mean of the whole commute. The estimations obtained were for both models compared with the measured V̇O2. Results The measured quintile range during commuting cycling was about 45–80% of V̇O2max. Overall, there was a high resemblance between the estimated and measured V̇O2, without any significant absolute differences in either males or females (range of all differences: −0.03–0.20 L⋅min–1). Simultaneously, rather large individual differences were noted. Conclusion The present HR methods are valid at group level for estimating V̇O2 of cycle commuting characterized by relatively wide spectrums of exercise intensities. To further the understanding of the external validity of the HR method, there is a need for studying other forms of field exercises.
Collapse
Affiliation(s)
- Jane Salier Eriksson
- The Research Unit for Movement, Health and Environment, Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Karin S E Olsson
- The Research Unit for Movement, Health and Environment, Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Hans Rosdahl
- The Research Unit for Movement, Health and Environment, Department of Physiology, Nutrition and Biomechanics, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Peter Schantz
- The Research Unit for Movement, Health and Environment, Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
6
|
Gronwald T, Rogers B, Hoos O. Fractal Correlation Properties of Heart Rate Variability: A New Biomarker for Intensity Distribution in Endurance Exercise and Training Prescription? Front Physiol 2020; 11:550572. [PMID: 33071812 PMCID: PMC7531235 DOI: 10.3389/fphys.2020.550572] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022] Open
Abstract
Exercise and training prescription in endurance-type sports has a strong theoretical background with various practical applications based on threshold concepts. Given the challenges and pitfalls of determining individual training zones on the basis of subsystem indicators (e.g., blood lactate concentration, respiratory parameters), the question arises whether there are alternatives for intensity distribution demarcation. Considering that training in a low intensity zone substantially contributes to the performance outcome of endurance athletes and exceeding intensity targets based on a misleading aerobic threshold can lead to negative performance and recovery effects, it would be desirable to find a parameter that could be derived via non-invasive, low cost and commonly available wearable devices. In this regard, analytics conducted from non-linear dynamics of heart rate variability (HRV) have been adapted to gain further insights into the complex cardiovascular regulation during endurance-type exercise. Considering the reciprocal antagonistic behavior and the interaction of the sympathetic and parasympathetic branch of the autonomic nervous system from low to high exercise intensities, it may be promising to use an approach that utilizes information about the regulation quality of the organismic system to determine training-intensity distribution. Detrended fluctuation analysis of HRV and its short-term scaling exponent alpha1 (DFA-alpha1) seems suitable for applied sport-specific settings including exercise from low to high intensities. DFA-alpha1 may be taken as an indicator for exercise prescription and intensity distribution monitoring in endurance-type sports. The present perspective illustrates the potential of DFA-alpha1 for diagnostic and monitoring purposes as a “global” system parameter and proxy for organismic demands.
Collapse
Affiliation(s)
- Thomas Gronwald
- Department of Performance, Neuroscience, Therapy and Health, Faculty of Health Sciences, MSH Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Bruce Rogers
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Olaf Hoos
- Center for Sports and Physical Education, Julius Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Schantz P, Salier Eriksson J, Rosdahl H. Perspectives on Exercise Intensity, Volume and Energy Expenditure in Habitual Cycle Commuting. Front Sports Act Living 2020; 2:65. [PMID: 33345056 PMCID: PMC7739755 DOI: 10.3389/fspor.2020.00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/11/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Knowledge about exercise intensity and energy expenditure combined with trip frequency and duration is necessary for interpreting the character and potential influencing capacity of habitual cycle commuting on e.g., health outcomes. It needs to be investigated with validated methods, which is the purpose of this study. Methods: Ten male and 10 female middle-aged habitual commuter cyclists were studied at rest and with maximal exercise tests on a cycle ergometer and a treadmill in the laboratory. During their normal commute in the Stockholm County, Sweden, their oxygen uptake, heart rate, energy expenditure, ventilation, blood lactate, rated perceived exertion, number of stops, durations, route distances and cycling velocities were monitored with validated methods. The frequency of trips was self-reported. Results: The relative exercise intensity was 65% of maximal oxygen uptake, and the energy expenditure was 0.46 kcal per km and kg body weight for both sexes. Sex differences in MET-values (men, 8.7; women 7.4) mirrored higher levels of cycling speed (20%), body weight (29%), oxygen uptake (54%) and ventilation (51%) in men compared to women. The number of METhours per week during peak cycling season averaged 40 for the men and 28 for the women. It corresponded to a total energy expenditure of about 3,500 and 1,880 kcal for men and women, respectively. The number of trips per year was about 370, and the annual distance cycled was on average 3,500 km for men and 2,300 for women. Conclusion: Cycle commuting is characterized by equal relative aerobic intensity levels and energy requirements for a given distance cycled by men and women. Based on an overall evaluation, it represents a lower range within the vigorous intensity category. The combined levels of oxygen uptake, durations and trip frequencies lead to high levels of METhours and energy expenditure in both men and women during both peak cycling season as well as over the year. Overall, the study presents a novel basis for interpreting cycle commuting in relation to various health outcomes.
Collapse
Affiliation(s)
- Peter Schantz
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Jane Salier Eriksson
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| | - Hans Rosdahl
- Research Unit for Movement, Health and Environment, The Åstrand Laboratory and Laboratory of Applied Sport Science, The Swedish School of Sport and Health Sciences, GIH, Stockholm, Sweden
| |
Collapse
|
8
|
Stöggl TL, Hertlein M, Brunauer R, Welde B, Andersson EP, Swarén M. Pacing, Exercise Intensity, and Technique by Performance Level in Long-Distance Cross-Country Skiing. Front Physiol 2020; 11:17. [PMID: 32116742 PMCID: PMC7033470 DOI: 10.3389/fphys.2020.00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/13/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Long-distance cross-country skiing (XCS) has gained increased popularity within the past decades. However, research about long-distance XCS is limited; therefore, the aim of this study was to analyze the intensity distribution, technique application, and pacing strategies during long-distance XCS racing. Methods Heart rate (HR) and section skiing speeds of 9 elite (ranked 1–100) and 10 amateur skiers (ranked 101–1,500) during the 90-km Vasaloppet race were collected. In addition, during the first uphill, the first 1,000 skiers were video-recorded to analyze the applied skiing strategy (e.g. grip-waxed skis versus exclusive double poling). Results Mean race intensity was 82% of maximal HR and was not different between performance groups even though elite skiers skied ∼15% faster than amateurs. There was an interaction effect of section × group with a pronounced decrease in HR in amateurs compared with more even pacing in elite skiers (0.13 vs. 0.04% decrease/km) and skiing at higher percentage in the high-intensity zones in elite compared with amateurs (46 vs. 24%). Ninety-eight percent of the top 100 skiers and 59% of the first 1,000 skiers used exclusively double poling. Conclusion Elite and amateur skiers ski at comparable mean race exercise intensity, but they have clear differences in skiing speed. The difference in the pacing profiles between elite and amateur skiers (more even vs. distinct positive pacing) demonstrate the greater capacity of the former with respect to physiological capacity and highlights that amateurs seem to start too fast according to their capacities. The exclusive application of the double poling technique is no longer a phenomenon of elite skiers but is widely used among the top 1,000 ranked skiers.
Collapse
Affiliation(s)
- Thomas L Stöggl
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria.,Red Bull Athlete Performance Center, Salzburg, Austria
| | - Markus Hertlein
- Department of Sport and Exercise Science, University of Salzburg, Salzburg, Austria
| | - Richard Brunauer
- Salzburg Research Forschungsgesellschaft m.b.H., Salzburg, Austria
| | - Boye Welde
- School of Sport Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Erik P Andersson
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | | |
Collapse
|
9
|
Ihsan M, Périard JD, Racinais S. Integrating Heat Training in the Rehabilitation Toolbox for the Injured Athlete. Front Physiol 2019; 10:1488. [PMID: 31920696 PMCID: PMC6917657 DOI: 10.3389/fphys.2019.01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Ihsan
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | | |
Collapse
|
10
|
Dubé PA, Imbeau D, Dubeau D, Auger I. Worker heat stress prevention and work metabolism estimation: comparing two assessment methods of the heart rate thermal component. ERGONOMICS 2019; 62:1066-1085. [PMID: 30961471 DOI: 10.1080/00140139.2019.1588386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
The heart rate thermal component ( ΔHRT ) can increase with body heat accumulation and lead to work metabolism (WM) overestimation. We used two methods (VOGT and KAMP) to assess ΔHRT of 35 forest workers throughout their work shifts, then compared ΔHRT at work and at rest using limits of agreement (LoA). Next, for a subsample of 20 forest workers, we produced corrected WM estimates from ΔHRT and compared them to measured WM. Although both methods produced significantly different ΔHRT time-related profiles, they yielded comparable average thermal cardiac reactivity (VOGT: 24.8 bpm °C-1; KAMP: 24.5 bpm °C-1), average ΔHRT (LoA: 0.7 ± 11.2 bpm) and average WM estimates (LoA: 0.2 ± 3.4 ml O2 kg-1min-1 for VOGT, and 0.0 ± 5.4 ml O2 kg-1min-1 for KAMP). Both methods are suitable to assess heat stress through ΔHRT and improve WM estimation. Practitioner summary: We compared two methods for assessing the heart rate thermal component ( ΔHRT ), which is needed to produce a corrected HR profile for estimating work metabolism (WM). Both methods yielded similar ΔHRT estimates that allowed accurate estimations of heat stress and WM at the group level, but they were imprecise at the individual level. Abbreviations: AIC: akaike information criterion; bpm: beats per minute; CI: confidence intervals; CV: coefficient of variation in %; CV drift: cardiovascular drift; ΔHRT: the heart rate thermal component in bpm; ΔHRT: the heart rate thermal component in bpm; ΔΔHRT: variation in the heart rate thermal component in bpm; ΔTC: variation in core body temperature in °C; HR: heart rate in bpm; HRmax: maximal heart rate in bpm; Icl: cloting insulation in clo; KAMP: Kampmann et al. (2001) method to determe ΔHRT; LoA: Limits of Agreement; PMV-PPD: the Predicted Mean Vote and Predicted Percentage Dissatisfied; PHS: Predicted Heat Strain model; RCM: random coefficients model; SD: standard deviation; TC: core body temperature in °C; TCR: thermal cardiac reactivity in bpm °C-1; τΔHRT: rate of change in the heart rate thermal component in bpm min-1; τTC: rate of change in core body temperature in °C min-1; tα,n-1: Student's t statistic with level of confidence alpha and n-1 degrees of freedom; TWL: Thermal Work Limit model; V̇O2 : oxygen consumption in ml O2 kg-1 min-1; V̇O2 max: maximal oxygen consumption in ml O2 kg-1 min-1; VOGT: Vogt et al. (1973) method to determine ΔHRT; WBGT: Wet-Bulb Globe Temperature in °C; WM: work metabolism.
Collapse
Affiliation(s)
- Philippe-Antoine Dubé
- a Department of Mathematics and Industrial Engineering , Polytechnique Montréal , Montréal , Canada
| | - Daniel Imbeau
- a Department of Mathematics and Industrial Engineering , Polytechnique Montréal , Montréal , Canada
| | - Denise Dubeau
- b Ministère des Forêts, de la Faune et des Parcs , Direction de la recherche forestière , Québec , Canada
| | - Isabelle Auger
- b Ministère des Forêts, de la Faune et des Parcs , Direction de la recherche forestière , Québec , Canada
| |
Collapse
|
11
|
Cunha FA, Gomes GSM, Carvalho J, da Silva NSL. Concurrent exercise circuit protocol performed in public fitness facilities meets the American College of Sports Medicine guidelines for energy cost and metabolic intensity among older adults in Rio de Janeiro City. Appl Physiol Nutr Metab 2018; 44:477-484. [PMID: 30273500 DOI: 10.1139/apnm-2018-0513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current study investigated whether a single bout of concurrent exercise (Ex Rx) at Third Age Academies (TAAs) in Rio de Janeiro City meets the American College of Sports Medicine (ACSM) guidelines for energy cost and metabolic intensity in older adults. Nine subjects (5 males and 4 females, 63-80 years of age) visited the laboratory for clinical screening and for anthropometrical, resting, and maximal oxygen uptake assessments. Thereafter, subjects performed an Ex Rx circuit consisting of a single circuit alternating aerobic and resistance exercises with outdoor exercise equipment using body mass as the load (total of 9 exercises, 1-2 sets of 15 repetitions). Expired gases were collected via a metabolic cart during exercise bouts. The mean observed energy cost value of 169.1 kcal was slightly greater than the minimum value of 150 kcal reported in the ACSM guidelines (p = 0.018). Like energy cost, all the intensity markers adopted to analyze the physiological strain induced by the Ex Rx circuit significantly exceeded their reference values for moderate intensity (reference values: 3.2 METs (mean observed value = 4.6 METs, p = 0.002); 40% of oxygen uptake reserve (mean observed value = 51.5%, p = 0.040); 40% of heart rate reserve (mean observed value = 64.1%, p < 0.001)), according to the ACSM guidelines. In conclusion, a single bout of Ex Rx circuit performed at TAAs in Rio de Janeiro City was able to induce a physiological strain (i.e., energy cost and intensity) compatible with ACSM recommendations for eliciting health benefits among older adults.
Collapse
Affiliation(s)
- Felipe A Cunha
- a Post-Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ 20550-900, Brazil.,b Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, RJ 20550-900, Brazil
| | - Gabrielle S M Gomes
- a Post-Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ 20550-900, Brazil
| | - Joana Carvalho
- c Research Centre in Physical Activity, Health and Leisure, Faculty of Sport Science, University of Porto, Porto 4200-450, Portugal
| | - Nádia S L da Silva
- a Post-Graduate Program in Exercise Science and Sports, University of Rio de Janeiro State, Rio de Janeiro, RJ 20550-900, Brazil.,b Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro State, Rio de Janeiro, RJ 20550-900, Brazil
| |
Collapse
|