1
|
Amarasiri RPGSK, Hyun J, Lee SW, Kim J, Jeon YJ, Lee JS. Alcalase-Assisted Mytilus edulis Hydrolysate: A Nutritional Approach for Recovery from Muscle Atrophy. Mar Drugs 2023; 21:623. [PMID: 38132945 PMCID: PMC10744518 DOI: 10.3390/md21120623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Muscle atrophy is a complex physiological condition caused by a variety of reasons, including muscle disuse, aging, malnutrition, chronic diseases, immobilization, and hormonal imbalance. Beyond its effect on physical appearance, this condition significantly reduces the quality of human life, thus warranting the development of preventive strategies. Although exercising is effective in managing this condition, it is applicable only for individuals who can engage in physical activities and are not bedridden. A combination of exercise and nutritional supplementation has emerged as a more advantageous approach. Here, we evaluated the effects of enzyme-assisted hydrolysates of Mytilus edulis prepared using Protamex (PMH), Alcalase (AMH), or Flavourzyme (FMH) in protecting against muscle atrophy in a dexamethasone (Dex)-induced muscular atrophy model in vitro and in vitro. Alcalase-assisted M. edulis hydrolysate (AMH) was the most efficient among the tested treatments and resulted in higher protein recovery (57.06 ± 0.42%) and abundant amino acid composition (43,158 mg/100 g; 43.16%). AMH treatment also escalated the proliferation of C2C12 cells while increasing the total number of nuclei, myotube coverage, and myotube diameter. These results were corroborated by a successful reduction in the levels of proteins responsible for muscle atrophy, including E3 ubiquitin ligases, and an increase in the expression of proteins associated with muscle hypertrophy, including myogenin and MyHC. These results were further solidified by the successful enhancement of locomotor ability and body weight in zebrafish following AMH treatment. Thus, these findings highlight the potential of AMH in recovery from muscle atrophy.
Collapse
Affiliation(s)
- R. P. G. S. K. Amarasiri
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (R.P.G.S.K.A.); (J.H.); (S.-W.L.)
| | - Jimin Hyun
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (R.P.G.S.K.A.); (J.H.); (S.-W.L.)
| | - Sang-Woon Lee
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (R.P.G.S.K.A.); (J.H.); (S.-W.L.)
| | - Jin Kim
- Department of Seafood and Aquatic Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea; (R.P.G.S.K.A.); (J.H.); (S.-W.L.)
| | - Jung-Suck Lee
- Department of Seafood and Aquatic Science, Gyeongsang National University, Tongyeong 53064, Republic of Korea;
| |
Collapse
|
2
|
Bennett S, Brocherie F, Phelan MM, Tiollier E, Guibert E, Morales‐Artacho AJ, Lalire P, Morton JP, Louis JB, Owens DJ. Acute heat stress amplifies exercise-induced metabolomic perturbations and reveals variation in circulating amino acids in endurance-trained males. Exp Physiol 2023; 108:838-851. [PMID: 36691850 PMCID: PMC10988456 DOI: 10.1113/ep090911] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
NEW FINDINGS What is the central question of this study? Whole-body substrate utilisation is altered during exercise in hot environments, characterised by increased glycolytic metabolism: does heat stress alter the serum metabolome in response to high intensity exercise? What are the main finding and its importance? Alongside increases in glycolytic metabolite abundance, circulating amino acid concentrations are reduced following exercise under heat stress. Prior research has overlooked the impact of heat stress on protein metabolism during exercise, raising important practical implications for protein intake recommendations in the heat. ABSTRACT Using untargeted metabolomics, we aimed to characterise the systemic impact of environmental heat stress during exercise. Twenty-three trained male triathletes (V ̇ O 2 peak ${\dot V_{{{\rm{O}}_2}{\rm{peak}}}}$ = 64.8 ± 9.2 ml kg min-1 ) completed a 30-min exercise test in hot (35°C) and temperate (21°C) conditions. Venous blood samples were collected immediately pre- and post-exercise, and the serum fraction was assessed via untargeted 1 H-NMR metabolomics. Data were analysed via uni- and multivariate analyses to identify differences between conditions. Mean power output was higher in temperate (231 ± 36 W) versus hot (223 ± 31 W) conditions (P < 0.001). Mean heart rate (temperate, 162 ± 10 beats min-1 , hot, 167 ± 9 beats min-1 , P < 0.001), peak core temperature (Trec ), core temperature change (ΔTrec ) (P < 0.001) and peak rating of perceived exertion (P = 0.005) were higher in hot versus temperate conditions. Change in metabolite abundance following exercise revealed distinct clustering following multivariate analysis. Six metabolites increased (2-hydroxyvaleric acid, acetate, alanine, glucarate, glucose, lactate) in hot relative to temperate (P < 0.05) conditions. Leucine and lysine decreased in both conditions but to a greater extent in temperate conditions (P < 0.05). Citrate (P = 0.04) was greater in temperate conditions whilst creatinine decreased in hot conditions only (P > 0.05). Environmental heat stress increased glycolytic metabolite abundance and led to distinct alterations in the circulating amino acid availability, including increased alanine, glutamine, leucine and isoleucine. The data highlight the need for additional exercise nutrition and metabolism research, specifically focusing on protein requirements for exercise under heat stress.
Collapse
Affiliation(s)
- Samuel Bennett
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
- Laboratory SportExpertise and Performance (EA 7370)French Institute of SportParisFrance
| | - Franck Brocherie
- Laboratory SportExpertise and Performance (EA 7370)French Institute of SportParisFrance
| | - Marie M. Phelan
- NMR Metabolomics Shared Research FacilityTechnology DirectorateUniversity of LiverpoolLiverpoolUK
| | - Eve Tiollier
- Laboratory SportExpertise and Performance (EA 7370)French Institute of SportParisFrance
| | - Elodie Guibert
- Laboratory SportExpertise and Performance (EA 7370)French Institute of SportParisFrance
| | | | - Paul Lalire
- French Triathlon Federation (FFTri)Saint Denis La PlaineFrance
| | - James P. Morton
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Julien B. Louis
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Owens
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
3
|
Kulawiec DG, Zhou T, Knopp JL, Chase JG. Continuous glucose monitoring to measure metabolic impact and recovery in sub-elite endurance athletes. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.103059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Liao YH, Chen CN, Hu CY, Tsai SC, Kuo YC. Soymilk ingestion immediately after therapeutic exercise enhances rehabilitation outcomes in chronic stroke patients: A randomized controlled trial. NeuroRehabilitation 2019; 44:217-229. [PMID: 30856124 DOI: 10.3233/nre-182574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE This study investigates the effects of an 8-weeks rehabilitation exercise plus soymilk ingestion immediately after exercise on functional outcomes in chronic stroke patients. METHODS Twenty-two stroke patients (age: 57-84 yrs; time since stroke onset: 2-19 yrs) participated and completed the study. A randomized, placebo-controlled and double-blind design was used. Participants were randomly allocated to either soymilk (SMS; n = 11) or placebo (PLA; n = 11) group and received identical 8-weeks rehabilitation intervention (3 sessions/week; 120 min/session) with corresponding treatment beverages. The physical and functional outcomes were evaluated before, during, and after the intervention. RESULTS The 8-weeks rehabilitation program enhanced functional outcomes of participants. The immediate soymilk ingestion after exercise additionally improved hand grip strength (p = 0.021), 8-feet walking speed (p = 0.019), walking performance per unit lean mass (p = 0.024), and 6-minute walk performance (6MWT, p = 0.016) compared with PLA after the intervention. However, the improvements in the total score for short physical performance battery (SPPB) and lean mass did not differ between groups. CONCLUSION Compared with rehabilitation alone, the 8-week rehabilitation program combined with immediate soymilk ingestion further improved walking speed, exercise endurance, grip strength, and muscle functionality in chronic stroke patients.
Collapse
Affiliation(s)
- Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chiao-Nan Chen
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yueh Hu
- Department of Rehabilitation, Yuanshan and Suao Branch, Taipei Veterans General Hospital, Suao Township, Yilan County, Taiwan
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yu-Chi Kuo
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
5
|
Andersen OE, Nielsen OB, Overgaard K. Early effects of eccentric contractions on muscle glucose uptake. J Appl Physiol (1985) 2019; 126:376-385. [DOI: 10.1152/japplphysiol.00388.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle-damaging eccentric exercise impairs muscle glucose uptake several hours to days after exercise. Little, however, is known about the acute effects of eccentric exercise on contraction- and insulin-induced glucose uptake. This study compares glucose uptake rates in the first hours following eccentric, concentric, and isometric contractions with and without insulin present. Isolated rat extensor digitorum longus muscles were exposed to either an eccentric, concentric, or isometric contraction protocol, and muscle contractions were induced by electric stimulation that was identical between contraction protocols. In eccentric and concentric modes, length changes of 0.6 or 1.2 mm were used during contractions. Both contraction- and insulin-induced glucose uptake were assessed immediately and 2 h after contractions. Glucose uptake increased significantly following all modes of contraction and was higher after eccentric contractions with a stretch of 1.2 mm compared with the remaining contraction groups when assessed immediately after contractions [eccentric (1.2 mm) > eccentric (0.6 mm), concentric (1.2 mm), concentric (0.6 mm), isometric > rest; P < 0.05]. After 2 h, contraction-induced glucose uptake was still higher than noncontracting levels, but with no difference between contraction modes. The presence of insulin increased glucose uptake markedly, but this response was blunted by, respectively, 39–51% and 29–36% ( P < 0.05) immediately and 2 h after eccentric contractions stretched 1.2 mm compared with concentric and isometric contractions. The contrasting early effects of eccentric contractions on contraction- and insulin-induced glucose uptake suggest that glucose uptake is impaired acutely following eccentric exercise because of reduced insulin responsiveness.NEW & NOTEWORTHY This study shows that, in isolated rat muscle, muscle-damaging eccentric contractions result in a transient increase in contraction-induced glucose uptake compared with isometric and concentric contractions induced by identical muscle activation protocols. Furthermore, our results demonstrate that, in contrast, the insulin-stimulated glucose uptake is impaired immediately following muscle-damaging eccentric contractions.
Collapse
|
6
|
Aras D, Karakoc B, Koz M, Bizati O. The effects of active recovery and carbohydrate intake on HRV during 48 hours in athletes after a vigorous-intensity physical activity. Sci Sports 2017. [DOI: 10.1016/j.scispo.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Che Jusoh MR, Stannard SR, Mündel T. Sago supplementation for recovery from cycling in a warm-humid environment and its influence on subsequent cycling physiology and performance. Temperature (Austin) 2017; 3:444-454. [PMID: 28349084 PMCID: PMC5079217 DOI: 10.1080/23328940.2016.1179382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/20/2022] Open
Abstract
This study determined whether sago porridge ingested immediately after exercise (Exercise 1) in warm-humid conditions (30 ± 1°C, 71 ± 4 % RH; 20 km·h−1 frontal airflow) conferred more rapid recovery, as measured by repeat performance (Exercise 2), compared to a control condition. Eight well-trained, male cyclists/triathletes (34 ± 9 y, VO2peak 70 ± 10 ml·kg−1·min−1, peak aerobic power 413 ± 75 W) completed two 15-min time-trials pre-loaded with 15-min warm-up cycling following >24h standardization of training and diet. Mean power output was not different between trials during Exercise 1 (286 ± 67 vs. 281 ± 59 W), however, was reduced during Exercise 2 for control (274 ± 61 W) but not sago (283 ± 60 W) that led to a significant performance decrement (vs. Exercise 1) of 3.9% for control and an improvement (vs. control) of 3.7% for sago during Exercise 2 (P < 0.05). Sago ingestion was also associated with higher blood glucose concentrations during recovery compared to control. These results indicate that feeding sago during recovery from exercise in a warm-humid environment improves recovery of performance during a subsequent exercise bout when compared to a water-only control. As these effects were larger than the test-retest coefficient of variation for work completed during the 15-min time-trial (2.3%) it can be confidently concluded that the observed effects are real.
Collapse
Affiliation(s)
| | - Stephen R Stannard
- School of Sport and Exercise, Massey University , Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport and Exercise, Massey University , Palmerston North, New Zealand
| |
Collapse
|
8
|
Kim J, Lee J, Kim S, Ryu HY, Cha KS, Sung DJ. Exercise-induced rhabdomyolysis mechanisms and prevention: A literature review. JOURNAL OF SPORT AND HEALTH SCIENCE 2016; 5:324-333. [PMID: 30356493 PMCID: PMC6188610 DOI: 10.1016/j.jshs.2015.01.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 10/26/2014] [Accepted: 01/26/2015] [Indexed: 05/27/2023]
Abstract
Exercise-induced rhabdomyolysis (exRML), a pathophysiological condition of skeletal muscle cell damage that may cause acute renal failure and in some cases death. Increased Ca2+ level in cells along with functional degradation of cell signaling system and cell matrix have been suggested as the major pathological mechanisms associated with exRML. The onset of exRML may be exhibited in athletes as well as in general population. Previous studies have reported that possible causes of exRML were associated with excessive eccentric contractions in high temperature, abnormal electrolytes balance, and nutritional deficiencies possible genetic defects. However, the underlying mechanisms of exRML have not been clearly established among health professionals or sports medicine personnel. Therefore, we reviewed the possible mechanisms and correlated prevention of exRML, while providing useful and practical information for the athlete and general exercising population.
Collapse
Affiliation(s)
- Jooyoung Kim
- Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul 136-702, Republic of Korea
| | - Joohyung Lee
- Health and Rehabilitation Major, College of Physical Education, Kookmin University, Seoul 136-702, Republic of Korea
| | - Sojung Kim
- Department of Physical Education, Global Campus, Kyung Hee University, Suwon 446-701, Republic of Korea
| | - Ho Young Ryu
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| | - Kwang Suk Cha
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| | - Dong Jun Sung
- Division of Sport Science, College of Science and Technology, Konkuk University, Choong-Ju 380-702, Republic of Korea
| |
Collapse
|
9
|
Zanghi BM, Middleton RP, Reynolds AJ. Effects of postexercise feeding of a supplemental carbohydrate and protein bar with or without astaxanthin from Haematococcus pluvialis to exercise-conditioned dogs. Am J Vet Res 2015; 76:338-50. [PMID: 25815575 DOI: 10.2460/ajvr.76.4.338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the postprandial nutrient profiles of exercise-conditioned dogs fed a supplemental carbohydrate and protein bar with or without astaxanthin from Haematococcus pluvialis immediately after exercise. ANIMALS 34 exercise-conditioned adult Husky-Pointer dogs. PROCEDURES The study had 2 phases. During phase 1, postprandial plasma glucose concentration was determined for dogs fed a bar containing 25% protein and 18.5% or 37.4% maltodextrin plus dextrin (rapidly digestible carbohydrate; RDC), or dry kibble (30% protein and 0% RDC) immediately after exercise. During phase 2, dogs were exercised for 3 days and fed a bar (25% protein and 37.4% RDC) with (CPA; n = 8) or without (CP; 8) astaxanthin or no bar (control; 8) immediately after exercise. Pre- and postexercise concentrations of plasma biochemical analytes and serum amino acids were determined on days 1 and 3. RESULTS Phase 1 postexercise glucose concentration was increased when dogs were provided the 37.4% RDC bar, but not 0% or 18.5% RDC. On day 3 of phase 2, the CPA group had the highest pre-exercise triglyceride concentration and significantly less decline in postexercise glucose concentration than did the CP and control groups. Mean glucose concentration for the CP and CPA groups was significantly higher than that for the control group between 15 and 60 minutes after bar consumption. Compared to immediately after exercise, branched-chain amino acid, tryptophan, leucine, and threonine concentrations 15 minutes after exercise were significantly higher for the CP and CPA groups, but were lower for the control group. CONCLUSIONS AND CLINICAL RELEVANCE Dogs fed a bar with 37.4% RDCs and 25% protein immediately after exercise had increased blood nutrient concentrations for glycogen and protein synthesis, compared with control dogs.
Collapse
Affiliation(s)
- Brian M Zanghi
- Nestlé Purina PetCare Research, Nestlé Purina PetCare, 1 Checkerboard Sq, St Louis, MO 63164
| | | | | |
Collapse
|
10
|
Chlíbková D, Knechtle B, Rosemann T, Tomášková I, Chadim V, Shortall M. Nutrition habits in 24-hour mountain bike racers. SPRINGERPLUS 2015; 3:715. [PMID: 25674455 PMCID: PMC4320206 DOI: 10.1186/2193-1801-3-715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/21/2014] [Indexed: 12/02/2022]
Abstract
We investigated seventy-four ultra-mountain bikers (MTBers) competing in the solo category in the first descriptive field study to detail nutrition habits and the most common food before during and after the 24 hour race using questionnaires. During the race, bananas (86.5%), energy bars (50.0%), apples (43.2%) and cheese (43.2%) were the most commonly consumed food, followed by bread (44.6%), rice (33.8%) and bananas (33.8%) after the race. Average fluid intake was 0.5 ± 0.2 l/h. The main beverage was isotonic sports drink (82.4%) during and pure water (66.2%) after the race. The most preferred four supplements in the four weeks before, the day before, during and after the race were vitamin C (35.1%), magnesium (44.6%), magnesium (43.2%) and branched-chain amino acids (24.3%), respectively. Total frequency of food intake (30.6 ± 10.5 times/24 hrs) was associated with fluid intake (r = 0.43, P = 0.04) and both were highest at the beginning of the race and lower during the night hours and the last race segment in a subgroup of twenty-three ultra-MTBers. Supplement intake frequency (6.8 ± 8.4 times/24 hrs) was highest during the night hours and lower at the beginning and end of the race. Elevated food and fluid intake among participants tracked across all race segments (P < 0.001). In conclusion, the nutrition strategy employed by ultra-MTBers was similar to those demonstrated in previous studies of ultra-cyclists with some exceptions among selected individuals.
Collapse
Affiliation(s)
- Daniela Chlíbková
- Centre of Sports Activities, Brno University of Technology, Brno, Czech Republic
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland.,Gesundheitszentrum St. Gallen, St. Gallen, Switzerland.,Facharzt FMH für Allgemeinmedizin, Gesundheitszentrum St. Gallen, Vadianstrasse 26, 9001 St. Gallen, Switzerland
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - Ivana Tomášková
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Vlastimil Chadim
- Department of Preventive Medicine, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | |
Collapse
|
11
|
Whey protein-containing product reduces muscle damage induced by running in male adults. SPORT SCIENCES FOR HEALTH 2014. [DOI: 10.1007/s11332-014-0178-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
|
13
|
Cuddy JS, Slivka DR, Tucker TJ, Hailes WS, Ruby BC. Glycogen Levels in Wildland Firefighters During Wildfire Suppression. Wilderness Environ Med 2011; 22:23-7. [DOI: 10.1016/j.wem.2010.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/31/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022]
|
14
|
Blacker SD, Williams NC, Fallowfield JL, Bilzon JL, Willems ME. Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage. J Int Soc Sports Nutr 2010; 7:2. [PMID: 20157419 PMCID: PMC2821364 DOI: 10.1186/1550-2783-7-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 01/12/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND This study examined the effect of carbohydrate and whey protein supplements on recovery of neuromuscular function after prolonged load carriage. METHODS TEN MALE PARTICIPANTS (BODY MASS: 81.5 +/- 10.5 kg, age: 28 +/- 9 years, O(2)max: 55.0 +/- 5.5 ml.kg(-1).min(-1)) completed three treadmill walking tests (2 hr, 6.5 km.h(-1)), carrying a 25 kg backpack consuming 500 ml of either: (1) Placebo (flavoured water) [PLA], (2) 6.4% Carbohydrate Solution [CHO] or (3) 7.0% Whey Protein Solution [PRO]. For three days after load carriage, participants consumed two 500 ml supplement boluses. Muscle performance was measured before and at 0, 24, 48 and 72 h after load carriage, during voluntary and electrically stimulated contractions. RESULTS Isometric knee extension force decreased immediately after load carriage with no difference between conditions. During recovery, isometric force returned to pre-exercise values at 48 h for CHO and PRO but at 72 h for PLA. Voluntary activation decreased immediately after load carriage and returned to pre-exercise values at 24 h in all conditions (P = 0.086). During recovery, there were no differences between conditions for the change in isokinetic peak torque. Following reductions immediately after load carriage, knee extensor and flexor peak torque (60 degrees .s(-1)) recovered to pre-exercise values at 72 h. Trunk extensor and flexor peak torque (15 degrees .s(-1)) recovered to pre-exercise values at 24 h (P = 0.091) and 48 h (P = 0.177), respectively. CONCLUSION Recovery of neuromuscular function after prolonged load carriage is improved with either carbohydrate or whey protein supplementation for isometric contractions but not for isokinetic contractions.
Collapse
Affiliation(s)
- Sam D Blacker
- University of Chichester, Faculty of Sport, Education and Social Sciences, West Sussex, UK
| | | | | | | | | |
Collapse
|