1
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
2
|
Ma X, Liu B, Jiang Z, Rao Z, Zheng L. Physical Exercise: A Promising Treatment Against Organ Fibrosis. Int J Mol Sci 2025; 26:343. [PMID: 39796197 PMCID: PMC11720236 DOI: 10.3390/ijms26010343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms. Regular exercise is known to confer health benefits through its anti-inflammatory, antioxidant, and anti-aging effects. Notably, exercise exerts anti-fibrotic effects by modulating multiple pathways, including transforming growth factor-β1/small mother decapentaplegic protein (TGF-β1/Samd), Wnt/β-catenin, nuclear factor kappa-B (NF-kB), reactive oxygen species (ROS), microRNAs (miR-126, miR-29a, miR-101a), and exerkine (FGF21, irisin, FSTL1, and CHI3L1). Therefore, this paper aims to review the specific role and molecular mechanisms of exercise as a potential intervention to ameliorate organ fibrosis.
Collapse
Affiliation(s)
- Xiaojie Ma
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Bing Liu
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Ziming Jiang
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| | - Zhijian Rao
- College of Physical Education, Shanghai Normal University, Shanghai 200234, China
- Exercise Biological Center, China Institute of Sport Science, Beijing 100061, China
| | - Lifang Zheng
- College of Physical Education, Shanghai University, Shanghai 200444, China; (X.M.); (B.L.); (Z.J.)
| |
Collapse
|
3
|
Zhang Z, Chen D, Du K, Huang Y, Li X, Li Q, Lv X. MOTS-c: A potential anti-pulmonary fibrosis factor derived by mitochondria. Mitochondrion 2023:S1567-7249(23)00052-1. [PMID: 37307934 DOI: 10.1016/j.mito.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Dongmei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Quwen Li
- Department of Fujian Zoonosis Research Key Laboratory, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, China
| | - Xiaoting Lv
- Department of respiratory and critical care medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Department of respiratory and critical care medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
4
|
Guo Y, Yuan Z, Hu Z, Gao Y, Guo H, Zhu H, Hong K, Cen K, Mai Y, Bai Y, Yang X. Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells. Front Immunol 2023; 14:1161436. [PMID: 37266443 PMCID: PMC10229861 DOI: 10.3389/fimmu.2023.1161436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Background Renal fibrosis is a physiological and pathological characteristic of chronic kidney disease (CKD) to end-stage renal disease. Since renal biopsy is the gold standard for evaluating renal fibrosis, there is an urgent need for additional non-invasive diagnostic biomarkers. Methods We used R package "limma" to screen out differently expressed genes (DEGs) based on Epithelial-mesenchymal transformation (EMT), and carried out the protein interaction network and GO, KEGG enrichment analysis of DEGs. Secondly, the least absolute shrinkage and selection operator (LASSO), random forest tree (RF), and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify candidate diagnostic genes. ROC curves were plotted to evaluate the clinical diagnostic value of these genes. In addition, mRNA expression levels of candidate diagnostic genes were analyzed in control samples and renal fibrosis samples. CIBERSORT algorithm was used to evaluate immune cells level. Additionally, gene set enrichment analysis (GSEA) and drug sensitivity were conducted. Results After obtaining a total of 24 DEGs, we discovered that they were mostly involved in several immunological and inflammatory pathways, including NF-KappaB signaling, AGE-RAGE signaling, and TNF signaling. Five genes (COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA) were subsequently identified as biomarkers for renal fibrosis through machine learning, and their expression levels were confirmed by validation cohort data sets and in vitro RT-qPCR experiment. The AUC values of these five genes demonstrated significant clinical diagnostic value in both the training and validation sets. After that, CIBERSORT analysis showed that these biomarkers were strongly associated with immune cell content in renal fibrosis patients. GSEA also identifies the potential roles of these diagnostic genes. Additionally, diagnostic candidate genes were found to be closely related to drug sensitivity. Finally, a nomogram for diagnosing renal fibrosis was developed. Conclusion COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA are promising diagnostic biomarkers of tissue and serum for renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kenan Cen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Petrić M, Perković D, Božić I, Marasović Krstulović D, Martinović Kaliterna D. The Levels of Serum Serotonin Can Be Related to Skin and Pulmonary Manifestations of Systemic Sclerosis. Medicina (B Aires) 2022; 58:medicina58020161. [PMID: 35208486 PMCID: PMC8878473 DOI: 10.3390/medicina58020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 12/01/2022] Open
Abstract
Background and Objective: The most prominent feature of systemic sclerosis (SSc), besides vasculopathy and autoimmune disorders, is excessive fibrosis. Serotonin affects hemostasis and can induce vasoconstriction, which is presumed to be one of the pathophysiological patterns in SSc that leads to fibrosis. Our aim was to explore the possible association of serotonin with some of the clinical features of SSc in our cohort of patients. Materials and Methods: We measured serotonin levels in sera of 29 female SSc patients. Patients were 41–79 years old, their average disease duration was 9 years. Serotonin values were analyzed in correlation with clinical and laboratory parameters, such as modified Rodnan skin score (mRSS), digital ulcers (DU), and spirometry parameters-forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and lung diffusion capacity of carbon monoxide (DLCO). Statistical analyses were performed using statistical software Statistica. Results: We found correlation of serotonin level with mRSS (r = 0.388, p = 0.038). The highest values of serotonin were documented in patients with refractory DU, but this was not statistically significant. We also found a negative correlation between serotonin and FVC (r = −0.397), although it did not reach the level of significance (p = 0.114). Conclusions: Our study suggests that levels of serum serotonin could affect the course of skin fibrosis and partially restrictive pulmonary dysfunction in patients with SSc. We assume that serotonin might have influence on several features of SSc, but more studies are needed to reveal those relations.
Collapse
|
6
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Massett MP, Matejka C, Kim H. Systematic Review and Meta-Analysis of Endurance Exercise Training Protocols for Mice. Front Physiol 2021; 12:782695. [PMID: 34950054 PMCID: PMC8691460 DOI: 10.3389/fphys.2021.782695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V ˙ O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
Collapse
Affiliation(s)
- Michael P Massett
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Caitlyn Matejka
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| | - Hyoseon Kim
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Júnior C, Narciso M, Marhuenda E, Almendros I, Farré R, Navajas D, Otero J, Gavara N. Baseline Stiffness Modulates the Non-Linear Response to Stretch of the Extracellular Matrix in Pulmonary Fibrosis. Int J Mol Sci 2021; 22:12928. [PMID: 34884731 PMCID: PMC8657558 DOI: 10.3390/ijms222312928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Pulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.
Collapse
Affiliation(s)
- Constança Júnior
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Maria Narciso
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Esther Marhuenda
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.J.); (M.N.); (E.M.); (I.A.); (R.F.); (D.N.); (J.O.)
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
9
|
Hahad O, Kuntic M, Frenis K, Chowdhury S, Lelieveld J, Lieb K, Daiber A, Münzel T. Physical Activity in Polluted Air-Net Benefit or Harm to Cardiovascular Health? A Comprehensive Review. Antioxidants (Basel) 2021; 10:1787. [PMID: 34829658 PMCID: PMC8614825 DOI: 10.3390/antiox10111787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Both exposure to higher levels of polluted air and physical inactivity are crucial risk factors for the development and progression of major noncommunicable diseases and, in particular, of cardiovascular disease. In this context, the World Health Organization estimated 4.2 and 3.2 million global deaths per year in response to ambient air pollution and insufficient physical activity, respectively. While regular physical activity is well known to improve general health, it may also increase the uptake and deposit of air pollutants in the lungs/airways and circulation, due to increased breathing frequency and minute ventilation, thus increasing the risk of cardiovascular disease. Thus, determining the tradeoff between the health benefits of physical activity and the potential harmful effects of increased exposure to air pollution during physical activity has important public health consequences. In the present comprehensive review, we analyzed evidence from human and animal studies on the combined effects of physical activity and air pollution on cardiovascular and other health outcomes. We further report on pathophysiological mechanisms underlying air pollution exposure, as well as the protective effects of physical activity with a focus on oxidative stress and inflammation. Lastly, we provide mitigation strategies and practical recommendations for physical activity in areas with polluted air.
Collapse
Affiliation(s)
- Omar Hahad
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
| | - Marin Kuntic
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
| | - Katie Frenis
- Department of Hematology/Oncology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Sourangsu Chowdhury
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55122 Mainz, Germany; (S.C.); (J.L.)
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| | - Klaus Lieb
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany;
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology—Cardiology I, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (O.H.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| |
Collapse
|
10
|
Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021; 8:674498. [PMID: 33996954 PMCID: PMC8113392 DOI: 10.3389/fcvm.2021.674498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils, macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an important role in mediating the infiltration of neutrophils and monocytes/macrophages. Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies. A growing body of evidence suggests that CXCL1 promotes the process of cardiac remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1 and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Su-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Kopf S, Kumar V, Kender Z, Han Z, Fleming T, Herzig S, Nawroth PP. Diabetic Pneumopathy-A New Diabetes-Associated Complication: Mechanisms, Consequences and Treatment Considerations. Front Endocrinol (Lausanne) 2021; 12:765201. [PMID: 34899603 PMCID: PMC8655305 DOI: 10.3389/fendo.2021.765201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
Patients with diabetes are over-represented among the total cases reported with "idiopathic" pulmonary fibrosis (IPF). This raises the question, whether this is an association only or whether diabetes itself can cause pulmonary fibrosis. Recent studies in mouse models of type 1 and type 2 diabetes demonstrated that diabetes causes pulmonary fibrosis. Both types of diabetes trigger a cascade, starting with increased DNA damage, an impaired DNA repair, and leading to persistent DNA damage signaling. This response, in turn, induces senescence, a senescence-associated-secretory phenotype (SASP), marked by the release of pro-inflammatory cytokines and growth factors, finally resulting in fibrosis. Restoring DNA repair drives fibrosis into remission, thus proving causality. These data can be translated clinically to patients with type 2 diabetes, characterized by long-term diabetes and albuminuria. Hence there are several arguments, to substitute the term "idiopathic" pulmonary fibrosis (IPF) in patients with diabetes (and exclusion of other causes of lung diseases) by the term "diabetes-induced pulmonary fibrosis" (DiPF). However, future studies are required to establish this term and to study whether patients with diabetes respond to the established therapies similar to non-diabetic patients.
Collapse
Affiliation(s)
- Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
| | - Peter P. Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Joint Heidelberg-Institute for Diabetes and Cancer (IDC) Translational Diabetes Programme, Helmholtz-Zentrum, Munich, Germany
- *Correspondence: Peter P. Nawroth,
| |
Collapse
|
12
|
El-Mafarjeh E, Martins GHC, Probst JJ, Santos-Dias A, Oliveira-Junior MC, de Barros MP, de Oliveira LVF, de Andrade LD, da Palma RK, Moraes-Ferreira R, de Camargo Hizume-Kunzler D, Bachi ALL, Vieira RP. Exercise Improves Lung Inflammation, but Not Lung Remodeling and Mechanics in a Model of Bleomycin-Induced Lung Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4302608. [PMID: 33123311 PMCID: PMC7586181 DOI: 10.1155/2020/4302608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/16/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Moderate aerobic exercise training accelerates the resolution of lung fibrosis in a model of bleomycin-induced pulmonary fibrosis. However, whether it can inhibit the development of lung fibrosis is unknown. MATERIALS AND METHODS C57Bl/6 mice were distributed into four groups: Control (Co), Exercise (Exe), Bleomycin (Bleo), and Bleomycin+Exercise (Bleo+Exe). A single bleomycin dose (1.5 UI/kg) was administered orotracheally and treadmill exercise started in the same day, enduring for 4 weeks, 5x/week, 60 minutes/session, at moderate intensity. Lung mechanics, systemic and pulmonary inflammation, and lung remodeling were evaluated. Lung homogenates were used to evaluate the antioxidant status. RESULTS Total cells, macrophages, lymphocytes, and neutrophils numbers, in agreement with IL-6 levels, were higher in the BAL and serum of Bleo group, compared to other groups. In addition, lung levels of LTB4 in Bleo were higher than other groups, whereas SOD activity and nitric oxide levels in exercised groups (Exe and Exe+Bleo) compared to the Bleo group. Lung GPX activity was lower in Bleo and Exe+Bleo groups compared to others. Exe and Exe+Bleo groups also showed higher IL-10 expression by lung macrophages than other groups, whereas TGF-β expression was higher in Exe, Bleo, and Exe+Bleo groups compared to control. CCR7 expression was induced only in the Exe group. However, exercise did not improve lung remodeling and mechanics, or serum and pulmonary levels of VEGF, IGF-1, and TGF-β. CONCLUSION Aerobic exercise training initiated concomitantly with induction of pulmonary fibrosis reduces lung and systemic inflammation but fails to inhibit lung fibrosis and mechanics impairment.
Collapse
Affiliation(s)
- Elias El-Mafarjeh
- Department of Paediatrics, Sirio Libanes Hospital, Avenida Brasil 915, São Paulo SP, Brazil 01431-000
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP, Brazil 12245-520
| | - Gisele Henrique Cardoso Martins
- Department of Physical Therapy (LaPEx), University of State of Santa Catarina (UDESC), Avenida Madre Benvenuta 2007, Florianópolis SC, Brazil 88035-901
| | - Jessica Jorge Probst
- Department of Physical Therapy (LaPEx), University of State of Santa Catarina (UDESC), Avenida Madre Benvenuta 2007, Florianópolis SC, Brazil 88035-901
| | - Alana Santos-Dias
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP, Brazil 12245-520
| | - Manoel Carneiro Oliveira-Junior
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP, Brazil 12245-520
| | - Marcelo Paes de Barros
- Interdisciplinary Postgraduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo SP, Brazil 01506-000
| | - Luis Vicente Franco de Oliveira
- Post-graduation Program in Human Movement and Rehabilitation, Centro Universitário UniEvangélica, Avenida Universitária Km 3, 5, Anápolis GO, Brazil 75083-515
| | - Leandro Damas de Andrade
- Post-graduation Program in Human Movement and Rehabilitation, Centro Universitário UniEvangélica, Avenida Universitária Km 3, 5, Anápolis GO, Brazil 75083-515
| | - Renata Kelly da Palma
- Department of Surgery, School of Veterinary Medicine and Animal Science University of São Paulo, São Paulo, Spain
- Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo SP, Brazil 08230-030
| | - Renilson Moraes-Ferreira
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos SP, Brazil 11060-001
| | - Deborah de Camargo Hizume-Kunzler
- Department of Physical Therapy (LaPEx), University of State of Santa Catarina (UDESC), Avenida Madre Benvenuta 2007, Florianópolis SC, Brazil 88035-901
| | - André Luis Lacerda Bachi
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP, Brazil 12245-520
- Department of Otorrhynolaryngology, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo, 950-Vila Clementino, São Paulo SP, Brazil 04038-002
- Post-graduation Program in Health Sciences, Santo Amaro University, Rua Isabel Schmidt, 349-Santo Amaro, São Paulo SP, Brazil 04743-030
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, São José dos Campos SP, Brazil 12245-520
- Post-graduation Program in Bioengineering and Biomedical Engineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo SP, Brazil 08230-030
- Post-graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos SP, Brazil 11060-001
- Institute for Bioengineering of Catalonia, Biomimetic Systems for Cell Engineering (IBEC) C. Baldiri Reixac, 15-21 Barcelona, Spain 08028
| |
Collapse
|
13
|
Phosphoproteomics of Acute Cell Stressors Targeting Exercise Signaling Networks Reveal Drug Interactions Regulating Protein Secretion. Cell Rep 2020; 29:1524-1538.e6. [PMID: 31693893 DOI: 10.1016/j.celrep.2019.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/09/2019] [Accepted: 09/30/2019] [Indexed: 01/25/2023] Open
Abstract
Exercise engages signaling networks to control the release of circulating factors beneficial to health. However, the nature of these networks remains undefined. Using high-throughput phosphoproteomics, we quantify 20,249 phosphorylation sites in skeletal muscle-like myotube cells and monitor their responses to a panel of cell stressors targeting aspects of exercise signaling in vivo. Integrating these in-depth phosphoproteomes with the phosphoproteome of acute aerobic exercise in human skeletal muscle suggests that co-administration of β-adrenergic and calcium agonists would activate complementary signaling relevant to this exercise context. The phosphoproteome of cells treated with this combination reveals a surprising divergence in signaling from the individual treatments. Remarkably, only the combination treatment promotes multisite phosphorylation of SERBP1, a regulator of Serpine1 mRNA stability, a pro-fibrotic secreted protein. Secretome analysis reveals that the combined treatments decrease secretion of SERPINE1 and other deleterious factors. This study provides a framework for dissecting phosphorylation-based signaling relevant to acute exercise.
Collapse
|
14
|
PTEN loss regulates alveolar epithelial cell senescence in pulmonary fibrosis depending on Akt activation. Aging (Albany NY) 2019; 11:7492-7509. [PMID: 31527305 PMCID: PMC6781970 DOI: 10.18632/aging.102262] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease with poor prognosis. The mechanisms underlying the role of alveolar epithelial cell (AEC) senescence in IPF remain poorly understood. We aimed to investigate if PTEN/Akt activates AEC senescence to induce pulmonary fibrosis. We investigated the association between PTEN/Akt and cellular senescence in lung tissues from IPF patients. As a result, decreased PTEN and activated Akt pathway were found in AECs in fibrotic lung tissues detected by immunohistochemistry (IHC) and immunofluorescence (IF). Increased expression levels of aging-associated markers (P21WAF1 and SA-β-gal) in AECs treated with bleomycin were found. AEC senescence was accelerated by PTEN knockdown and attenuated by PTEN overexpression. Bleomycin induced AEC senescence was reversed by Akt2 knockdown and the pharmacological inhibitors (LY294002 and MK2206) of the Akt pathway. Reducing Akt activation dramatically improved lung fibrosis in a fibrotic mice model. In addition, a co-immunoprecipitation (co-IP) assay demonstrated that PTEN physically associated with Akt. These indicated that senescent AECs modulated by the PTEN/Akt pathway promote lung fibrosis. In conclusion, our study demonstrated that as a trigger indicator in IPF, the senescence process in AECs should be a potential therapeutic target and that the PTEN/Akt pathway may be a promising candidate for intervention.
Collapse
|
15
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
16
|
Xu J, Li W, Xu S, Gao W, Yu Z. Effect of dermatan sulphate on a C57-mouse model of pulmonary fibrosis. J Int Med Res 2019; 47:2655-2665. [PMID: 31006321 PMCID: PMC6567691 DOI: 10.1177/0300060519842048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To test the antifibrotic effect of dermatan sulphate in a bleomycin-induced mouse model of pulmonary fibrosis. METHODS C57 mice were randomly divided into four experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group and dermatan sulphate group. Lungs were assessed using the lung index, and the extent of interstitial fibrosis was graded using histopathological observation of haematoxylin & eosin-stained lung tissue. Lung tissue hydroxyproline levels and blood fibrinogen levels were measured using a hydroxyproline colorimetric kit and the Clauss fibrinogen assay, respectively. Tissue-type plasminogen activator (tPA) was measured using a chromogenic tPA assay kit. RESULTS Lung index values were significantly lower in the dermatan sulphate group versus the fibrosis group. Histopathological analyses revealed that dermatan sulphate treatment ameliorated the increased inflammatory cell infiltration, and attenuated the reduction in interstitial thickening, associated with bleomycin-induced fibrosis. Hydroxyproline and fibrinogen levels were decreased in the dermatan sulphate group versus the fibrosis model group. Dermatan sulphate treatment was associated with increased tPA levels versus controls and the fibrosis group. CONCLUSIONS Damage associated with bleomycin-induced pulmonary fibrosis was alleviated by dermatan sulphate.
Collapse
Affiliation(s)
- Jianfeng Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wei Li
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shufen Xu
- 1 Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Weiyang Gao
- 2 Treasury Department, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Zhenyu Yu
- 3 Department of Anaesthesiology, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
17
|
Du SF, Wang XL, Ye CL, He ZJ, Li DX, Du BR, Liu YJ, Zhu XY. Exercise training ameliorates bleomycin-induced epithelial mesenchymal transition and lung fibrosis through restoration of H 2 S synthesis. Acta Physiol (Oxf) 2019; 225:e13177. [PMID: 30136377 DOI: 10.1111/apha.13177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 12/24/2022]
Abstract
AIMS Clinical trials have shown the beneficial effects of exercise training against pulmonary fibrosis. This study aimed to investigate whether prophylactic intervention with exercise training attenuates lung fibrosis via modulating endogenous hydrogen sulphde (H2 S) generation. METHODS First, ICR mice were allocated to Control, Bleomycin, Exercise, and Bleomycin + Exercise groups. Treadmill exercise began on day 1 and continued for 4 weeks. A single intratracheal dose of bleomycin (3 mg/kg) was administered on day 15. Second, ICR mice were allocated to Control, Bleomycin, H2 S, and Bleomycin + H2 S groups. H2 S donor NaHS (28 μmol/kg) was intraperitoneally injected once daily for 2 weeks. RESULTS Bleomycin-treated mice exhibited increased levels of collagen deposition, hydroxyproline, collagen I, transforming growth factor (TGF)-β1, Smad2/Smad3/low-density lipoprotein receptor-related proteins (LRP-6)/glycogen synthase kinase-3β (GSK-3β) phosphorylation, and Smad4/β-catenin expression in lung tissues (P < 0.01), which was alleviated by exercise training (P < 0.01 except for Smad4 and phosphorylated GSK-3β: P < 0.05). Bleomycin-induced lung fibrosis was associated with increased α smooth muscle actin (α-SMA) and decreased E-cadherin expression (P < 0.01). Double immunofluorescence staining showed the co-localization of E-cadherin/α-SMA, indicating epithelial-mesenchymal transition (EMT) formation, which was ameliorated by exercise training. Moreover, exercise training restored bleomycin-induced downregulation of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) expression, as well as H2 S generation in lung tissue (P < 0.01). NaHS treatment attenuated bleomycin-induced TGF-β1 production, activation of LRP-6/β-catenin signalling, EMT and lung fibrosis (P < 0.01 except for β-catenin: P < 0.05). CONCLUSION Exercise training restores bleomycin-induced downregulation of pulmonary CBS/CSE expression, thus contributing to the increased H2 S generation and suppression of TGF-β1/Smad and LRP-6/β-catenin signalling pathways, EMT and lung fibrosis.
Collapse
Affiliation(s)
- Shu-Fang Du
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
- Department of Physiology; Second Military Medical University; Shanghai China
| | - Xiu-Li Wang
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Chang-Lin Ye
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Ze-Jia He
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Dong-Xia Li
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Bai-Ren Du
- Institute of Sport; Anqing Normal University; Anhui China
| | - Yu-Jian Liu
- School of Kinesiology; The key Laboratory of Exercise and Health Sciences of Ministry of Education; Shanghai University of Sport; Shanghai China
| | - Xiao-Yan Zhu
- Department of Physiology; Second Military Medical University; Shanghai China
| |
Collapse
|
18
|
Stravinskas Durigon T, MacKenzie B, Carneiro Oliveira-Junior M, Santos-Dias A, De Angelis K, Malfitano C, Kelly da Palma R, Moreno Guerra J, Damaceno-Rodrigues NR, Garcia Caldini E, de Almeida FM, Aquino-Santos HC, Rigonato-Oliveira NC, Leal de Oliveira DB, Aimbire F, Ligeiro de Oliveira AP, Franco de Oliveira LV, Durigon EL, Hiemstra PS, Vieira RP. Aerobic Exercise Protects from Pseudomonas aeruginosa-Induced Pneumonia in Elderly Mice. J Innate Immun 2018; 10:279-290. [PMID: 29843140 PMCID: PMC6757150 DOI: 10.1159/000488953] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PS) infection results in severe morbidity and mortality, especially in immune-deficient populations. Aerobic exercise (AE) modulates the immune system, but its effects on the outcomes of pulmonary PS infection in elderly mice are unknown. METHODS BALB/c mice (24 weeks old) were randomized to sedentary, exercise (EX), PS, and PS + EX groups for the acute experimental setting, and PS and PS + EX groups for the chronic setting. Low-intensity AE was performed for 5 weeks, 60 min/day; 24 h after the final AE session, mice were inoculated with 5 × 104 colony-forming units (CFU) of PS, and 24 h and 14 days after PS inoculation, mice were studied. RESULTS AE inhibited PS colonization (p < 0.001) and lung inflammation (total cells, neutrophils, lymphocytes [p < 0.01] in bronchoalveolar lavage [BAL]), with significant differences in BAL levels of IL-1β (p < 0.001), IL-6 (p < 0.01), CXCL1 (p < 0.001), and TNF-α (p < 0.001), as well as parenchymal neutrophils (p < 0.001). AE increased BAL levels of IL-10 and parenchymal (p < 0.001) and epithelial (p < 0.001) IL-10 expression, while epithelial (p < 0.001) and parenchymal (p < 0.001) NF-κB expression was decreased. AE diminished pulmonary lipid peroxidation (p < 0.001) and increased glutathione peroxidase (p < 0.01). Pre-incubation of BEAS-2B with IL-10 inhibited PS-induced epithelial cell expression of TNF-α (p < 0.05), CD40 (p < 0.01), and dichlorodihydrofluorescein diacetate (p < 0.05). CONCLUSIONS AE inhibits PS-induced lung inflammation and bacterial colonization in elderly mice, involving IL-10/NF-κB, and redox signaling.
Collapse
Affiliation(s)
- Thomas Stravinskas Durigon
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | - BreAnne MacKenzie
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | | | - Alana Santos-Dias
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | - Kátia De Angelis
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Christiano Malfitano
- Science Department of Health, Federal University of Lavras (UFLA), Lavras, Brazil
| | - Renata Kelly da Palma
- Department of Health Sciences, Nove de Julho University (UNINOVE), São Paulo, Brazil
| | - Juliana Moreno Guerra
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | | | - Elia Garcia Caldini
- Department of Pathology (LIM 59), University of São Paulo, São Paulo, Brazil
| | - Francine Maria de Almeida
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
| | | | | | - Danielle Bruna Leal de Oliveira
- Laboratory of Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flavio Aimbire
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil
| | | | | | - Edison Luiz Durigon
- Laboratory of Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Pieter S. Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, Brazil
- Postgraduation Program in Bioengineering, Universidade Brasil, São Paulo, Brazil
- Postgraduation Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, Brazil
| |
Collapse
|
19
|
Delaney C, Sherlock L, Fisher S, Maltzahn J, Wright C, Nozik-Grayck E. Serotonin 2A receptor inhibition protects against the development of pulmonary hypertension and pulmonary vascular remodeling in neonatal mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L871-L881. [PMID: 29345193 PMCID: PMC6008134 DOI: 10.1152/ajplung.00215.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Pulmonary hypertension (PH) complicating bronchopulmonary dysplasia (BPD) worsens clinical outcomes in former preterm infants. Increased serotonin (5-hydroxytryptamine, 5-HT) signaling plays a prominent role in PH pathogenesis and progression in adults. We hypothesized that increased 5-HT signaling contributes to the pathogenesis of neonatal PH, complicating BPD and neonatal lung injury. Thus, we investigated 5-HT signaling in neonatal mice exposed to bleomycin, previously demonstrated to induce PH and alveolar simplification. Newborn wild-type mice received intraperitoneal PBS, ketanserin (1 mg/kg), bleomycin (3 U/kg) or bleomycin (3 U/kg) plus ketanserin (1 mg/kg) three times weekly for 3 wk. Following treatment with bleomycin, pulmonary expression of the rate-limiting enzyme of 5-HT synthesis, tryptophan hydroxylase-1 (Tph1), was significantly increased. Bleomycin did not affect pulmonary 5-HT 2A receptor (R) expression, but did increase pulmonary gene expression of the 5-HT 2BR and serotonin transporter. Treatment with ketanserin attenuated bleomycin-induced PH (increased RVSP and RVH) and pulmonary vascular remodeling (decreased vessel density and increased muscularization of small vessels). In addition, we found that treatment with ketanserin activated pulmonary MAPK and Akt signaling in mice exposed to bleomycin. We conclude that 5-HT signaling is increased in a murine model of neonatal PH and pharmacological inhibition of the 5-HT 2AR protects against the development of PH in neonatal lung injury. We speculate this occurs through restoration of MAPK signaling and increased Akt signaling.
Collapse
Affiliation(s)
- Cassidy Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Laurie Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Susan Fisher
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Joanne Maltzahn
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Clyde Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| | - Eva Nozik-Grayck
- Cardiovascular Pulmonary Research Laboratory, Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado , Aurora, Colorado
| |
Collapse
|
20
|
Serotonin Exhibits Accelerated Bleomycin-Induced Pulmonary Fibrosis through TPH1 Knockout Mouse Experiments. Mediators Inflamm 2018; 2018:7967868. [PMID: 29849496 PMCID: PMC5926513 DOI: 10.1155/2018/7967868] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 11/22/2022] Open
Abstract
Background Pulmonary fibrosis is a chronic progressive fibrosis interstitial lung disease that is characterized by inflammatory infiltration and fibrotic changes. 5-Hydroxytryptamine (5-HT) is an important regulatory factor in inflammation, immunomodulation, and fibrosis. The aim of this study was to investigate the role of 5-HT in bleomycin- (BLM-) induced pulmonary fibrosis through wild-type C57BL/6 (WT) and TPH1 knockout (KO) mouse experiments. Methods The mice were grouped as follows: WT control group, KO control group, WT BLM group, and KO BLM group. Mice were administrated bleomycin hydrochloride through intratracheal instillation to induce pulmonary fibrosis. Mice were sacrificed 0, 7, 14, and 21 days after modeling, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected to determine the severity of fibrotic changes. Results The results showed that the weight loss of mice in the WT BLM group was more severe than that in the KO BLM group. H&E and Sirius Red staining revealed that 5-HT markedly aggravated histological damage and fibrotic changes in the lung. Significantly lower levels of hydroxyproline, Ashcroft fibrosis score, total BALF protein and cells, BALF tumor necrosis factor- (TNF-) α and interleukin- (IL-) 6, TNF-α and IL-6 mRNA, malondialdehyde (MDA), and myeloperoxidase- (MPO-) positive cells in the lung tissues, and fibrosis-associated proteins were discovered in the mice from the KO BLM group compared with the WT BLM group. Conclusion 5-HT aggravated pulmonary fibrosis mainly by promoting the inflammation, exudation of proteins and cells, oxidative stress, and upregulation of fibrosis-associated genes in the lung tissues.
Collapse
|
21
|
Shen TL, Liu MN, Zhang Q, Feng W, Yu W, Fu XL, Cai XW. The positive role of vitronectin in radiation induced lung toxicity: the in vitro and in vivo mechanism study. J Transl Med 2018; 16:100. [PMID: 29661186 PMCID: PMC5902986 DOI: 10.1186/s12967-018-1474-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Background Radiation-induced lung toxicity (RILT) is a severe complication of radiotherapy in patients with thoracic tumors. Through proteomics, we have previously identified vitronectin (VTN) as a potential biomarker for patients with lung toxicity of grade ≥ 2 radiation. Herein, we explored the molecular mechanism of VTN in the process of RILT. Methods In this study, lentivirus encoding for VTN and VTN-specific siRNA were constructed and transfected into the cultured fibroblasts and C57BL mice. Real-time PCR, western blot and ELISA were used to examine expression of collagens and several potential proteins involved in lung fibrosis. Hematoxylin–eosin and immunohistochemical staining were used to assess the fibrosis scores of lung tissue from mice received irradiation. Results The expression of VTN was up-regulated by irradiation. The change trend of collagens, TGF-β expression and p-ERK, p-AKT, and p-JNK expression levels were positively related with VTN mRNA level. Furthermore, overexpression of VTN significantly increased the expression level of α-SMA, as well as the degree of lung fibrosis in mice at 8 and 12 weeks post-irradiation. By contrast, siRNA VTN induced opposite results both in vitro and in vivo. Conclusions VTN played a positive role in the lung fibrosis of RILT, possibly through modulation of fibrosis regulatory pathways and up-regulating the expression levels of fibrosis-related genes. Taken together, all the results suggested that VTN had a novel therapeutic potential for the treatment of RILT. Electronic supplementary material The online version of this article (10.1186/s12967-018-1474-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tian-Le Shen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China
| | - Mi-Na Liu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Wen Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Xu-Wei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huai Hai West Road, Shanghai, 200030, China. .,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT 2B receptor antagonists in vitro - a potential pathway affecting proliferation. Sci Rep 2018; 8:1927. [PMID: 29386571 PMCID: PMC5792547 DOI: 10.1038/s41598-018-20430-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) has repeatedly been associated with the development of fibrotic disorders such as pulmonary fibrosis. By blocking the binding of 5-HT to 5-HT2B receptors with receptor antagonists, several pro-fibrotic mechanisms can be inhibited. Bleomycin-induced pulmonary fibrosis is a model used to evaluate pathological mechanisms and pharmacological interventions. Previously we have shown attenuated fibrosis in systemic bleomycin-treated mice following treatment with two 5-HT2B receptor antagonists (EXT5 and EXT9). Our aim is to further identify cellular effects and signaling pathways associated with the anti-fibrotic effects of EXT5/9. Gene expressions in lung tissues from systemic bleomycin-treated mice were examined, revealing significant increased expression of Cdkn1α (a gene coding for p21), particularly in distal regions of the lung. In vitro studies in human lung fibroblasts revealed increased levels of p21 (p = 0.0032) and pAkt (p = 0.12) following treatment with 5-HT (10 µM). The induction of p21 and pAkt appears to be regulated by 5-HT2B receptors, with diminished protein levels following EXT9-treatment (p21 p = 0.0024, pAkt p = 0.15). Additionally, 5-HT induced fibroblast proliferation, an event significantly reduced by EXT5 (10 µM) and EXT9 (10 µM). In conclusion, our results suggest that 5-HT2B receptor antagonism attenuates pulmonary fibrosis in part by anti-proliferative effects, associated with inhibited pAkt/p21 signaling pathway.
Collapse
|
23
|
Tawfik MK, Makary S. 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: Comparison to terguride. Eur J Pharmacol 2017; 814:114-123. [PMID: 28821451 DOI: 10.1016/j.ejphar.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/16/2022]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT) is involved in regulation of local tissue inflammation and repair through a set of receptors (5-HT1-7 receptors), which are expressed in the lung. Considering the protective importance of 5-HT receptor antagonists against development of pulmonary fibrosis, we evaluated whether 5-HT7 receptor antagonist (SB-269970) modulates lung inflammatory and fibrogenic processes in comparison with 5-HT2A/B receptor antagonist (terguride), in bleomycin (BLM)-induced idiopathic pulmonary fibrosis (IPF) model. IPF model induced by a single dose of intra-tracheal BLM instillation (5mg/kg), and rats were treated with intraperitoneal injection of SB-269970 (1mg/kg day) or terguride (1.2mg/kg/d). The experiment was carried out on two separate sets of rats that were killed at day 7th and day 21st to evaluate the endpoint of the IPF inflammatory and fibrogenic phases, respectively. During the inflammatory phase 5-HT2A/B and 5-HT7 receptor antagonists attenuated the BLM-induced increase in the lung fluid content, the inflammatory cytokines levels and oxidative stress burden. In the fibrogenic phase, both SB-269970 and terguride reduced the serotonin concentrations in lung homogenates and significantly protected against IPF fibrogenic phase by attenuating collagen deposition and mRNA expression of both transforming growth factor-β1 (TGF- β1), and procollagen type Ӏ (PINP). 5-hydroxytryptamine 5-HT7 receptor antagonist showed more benefits than 5-HT2A/B receptor antagonist on the deleterious effects accompanied BLM instillation. The present study showed involvement of 5-HT7 receptor in the pathophysiology of BLM-induced IPF in rats and identified it as a potential therapeutic target in lung fibrotic disorders.
Collapse
Affiliation(s)
- Mona K Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt.
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
24
|
Yang Y, Huang H, Xu Z, Duan JK. Serotonin and Its Receptor as a New Antioxidant Therapeutic Target for Diabetic Kidney Disease. J Diabetes Res 2017; 2017:7680576. [PMID: 28929122 PMCID: PMC5591914 DOI: 10.1155/2017/7680576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a widespread chronic microvascular complication of diabetes mellitus (DM), affects almost 30-50% of patients, and represents a leading cause of death of DM. Serotonin or 5-hydroxytryptamine (5-HT) is a multifunctional bioamine that has crucial roles in many physiological pathways. Recently, emerging evidence from experimental and clinical studies has demonstrated that 5-HT is involved in the pathogenesis of diabetic vascular complications. The 5-HT receptor (5-HTR) antagonists exert renoprotective effects by suppressing oxidative stress, suggesting that 5-HTR can be used as a potential target for treating DKD. In this review, therefore, we summarize the published information available for the involvement of 5-HT and 5-HTR antagonists in the pathogenesis of various diabetic complications with a particular focus of DKD. We conclude that 5-HTR is a potential therapeutic target for treating DKD, as it has been successfully applied in animal models and has currently being investigated in randomized and controlled clinical trials.
Collapse
Affiliation(s)
- Yu Yang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hui Huang
- Department of Endocrinology, Metabolism, and Genetics, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Zheng Xu
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
- Department of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun, China
| | - Jun-kai Duan
- Department of Cardiovascular Disorders, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
25
|
Shao L, Meng D, Yang F, Song H, Tang D. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun 2017; 487:194-200. [DOI: 10.1016/j.bbrc.2017.04.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
|
26
|
Andrade-Sousa AS, Rogério Pereira P, MacKenzie B, Oliveira-Junior MC, Assumpção-Neto E, Brandão-Rangel MAR, Damaceno-Rodrigues NR, Garcia Caldini E, Velosa APP, Teodoro WR, Ligeiro de Oliveira AP, Dolhnikoff M, Eickelberg O, Vieira RP. Aerobic Exercise Attenuated Bleomycin-Induced Lung Fibrosis in Th2-Dominant Mice. PLoS One 2016; 11:e0163420. [PMID: 27677175 PMCID: PMC5038953 DOI: 10.1371/journal.pone.0163420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/08/2016] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate the effect of aerobic exercise (AE) in reducing bleomycin-induced fibrosis in mice of a Th2-dominant immune background (BALB/c). METHODS BALB/c mice were distributed into: sedentary, control (CON), Exercise-only (EX), sedentary, bleomycin-treated (BLEO) and bleomycin-treated+exercised (BLEO+EX); (n = 8/group). Following treadmill adaptation, 15 days following a single, oro-tracheal administration of bleomycin (1.5U/kg), AE was performed 5 days/week, 60min/day for 4 weeks at moderate intensity (60% of maximum velocity reached during a physical test) and assessed for pulmonary inflammation and remodeling, and cytokine levels in bronchoalveolar lavage (BAL). RESULTS At 45 days post injury, compared to BLEO, BLEO+EX demonstrated reduced collagen deposition in the airways (p<0.001) and also in the lung parenchyma (p<0.001). In BAL, a decreased number of total leukocytes (p<0.01), eosinophils (p<0.001), lymphocytes (p<0.01), macrophages (p<0.01), and neutrophils (p<0.01), as well as reduced pro-inflammatory cytokines (CXCL-1; p<0.01), (IL-1β; p<0.001), (IL-5; p<0.01), (IL-6; p<0.001), (IL-13; p<0.01) and pro-fibrotic growth factor IGF-1 (p<0.001) were observed. Anti-inflammatory cytokine IL-10 was increased (p<0.001). CONCLUSION AE attenuated bleomycin-induced collagen deposition, inflammation and cytokines accumulation in the lungs of mice with a predominately Th2-background suggesting that therapeutic AE (15-44 days post injury) attenuates the pro-inflammatory, Th2 immune response and fibrosis in the bleomycin model.
Collapse
Affiliation(s)
- Adilson Santos Andrade-Sousa
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Paulo Rogério Pereira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - BreAnne MacKenzie
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Manoel Carneiro Oliveira-Junior
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Erasmo Assumpção-Neto
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Maysa Alves Rodrigues Brandão-Rangel
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Nilsa Regina Damaceno-Rodrigues
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Elia Garcia Caldini
- Laboratory of Cellular Biology (LIM 59), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Ana Paula Pereira Velosa
- Laboratory of Medical Investigation (LIM 17), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Walcy Rosolia Teodoro
- Laboratory of Medical Investigation (LIM 17), School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Ana Paula Ligeiro de Oliveira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| | - Marisa Dolhnikoff
- Department of Pathology, School of Medicine, University of São Paulo, Avenida Doutor Arnaldo, 455, Sao Paulo – SP, Brazil
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Ludwig Maximilian Universität München and Helmholtz Zentrum München, Max-Lebsche-Platz 31, München, Germany
| | - Rodolfo Paula Vieira
- Laboratory of Pulmonary and Exercise Immunology (LABPEI) and Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Nove de Julho University (UNINOVE), Rua Vergueiro, 235/249, São Paulo – SP, Brazil
| |
Collapse
|