1
|
Deshayes TA, Sodabi DGA, Dubord M, Gagnon D. Shifting focus: Time to look beyond the classic physiological adaptations associated with human heat acclimation. Exp Physiol 2024; 109:335-349. [PMID: 37885125 PMCID: PMC10988689 DOI: 10.1113/ep091207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Planet Earth is warming at an unprecedented rate and our future is now assured to be shaped by the consequences of more frequent hot days and extreme heat. Humans will need to adapt both behaviorally and physiologically to thrive in a hotter climate. From a physiological perspective, countless studies have shown that human heat acclimation increases thermoeffector output (i.e., sweating and skin blood flow) and lowers cardiovascular strain (i.e., heart rate) during heat stress. However, the mechanisms mediating these adaptations remain understudied. Furthermore, several possible benefits of heat acclimation for other systems and functions involved in maintaining health and performance during heat stress remain to be elucidated. This review summarizes recent advances in human heat acclimation, with emphasis on recent studies that (1) advanced our understanding of the mechanisms mediating improved thermoeffector output and (2) investigated adaptations that go beyond those classically associated with heat acclimation. We highlight that these studies have contributed to a better understanding of the integrated physiological responses underlying human heat acclimation while leaving key unanswered questions that will need to be addressed in the future.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Dèwanou Gilles Arnaud Sodabi
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Marianne Dubord
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| | - Daniel Gagnon
- Montreal Heart InstituteMontréalCanada
- School of Kinesiology and Exercise ScienceUniversité de MontréalMontréalCanada
| |
Collapse
|
2
|
Laginestra FG, Berg OK, Nyberg SK, Venturelli M, Wang E, Helgerud J. Stroke volume response during prolonged exercise depends on left ventricular filling: evidence from a β-blockade study. Am J Physiol Regul Integr Comp Physiol 2023; 325:R154-R163. [PMID: 37306400 DOI: 10.1152/ajpregu.00293.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Prolonged moderate-intensity exercise leads to a progressive upward drift in heart rate (HR) that may compromise stroke volume (SV). Alternatively, the HR drift may be related to abated SV due to impaired ventricular function. The aim of this study was to examine the effects of cardiovascular drift on left ventricular volumes and in turn SV. Thirteen healthy young males completed two 60-min cycling bouts on a semirecumbent cycle ergometer at 57% maximal oxygen consumption (V̇o2max) either under placebo condition (CON) or after ingesting a small dose of β1-blockers (BB). Measurements of HR, end-diastolic volume (EDV), and end-systolic volume were obtained by echocardiography and used to calculate SV. Other variables such as ear temperature, skin temperature, blood pressure, and blood volume were measured to assess potential changes in thermoregulatory needs and loading conditions. HR drift was successfully prevented when using BB from min 10 to min 60 (128 ± 9 to 126 ± 8 beats/min, P = 0.29) but not in CON (134 ± 10 to 148 ± 10 beats/min, P < 0.01). Conversely, during the same time, SV increased by 13% when using BB (103 ± 9 to 116 ± 7 mL, P < 0.01), whereas it was unchanged in CON (99 ± 7 to 101 ± 9 mL, P = 0.37). The SV behavior was mediated by a 4% increase in EDV in the BB condition (164 ± 18 to 170 ± 18 mL, P < 0.01), whereas no change was observed in the CON condition (162 ± 18 to 160 ± 18 mL, P = 0.23). In conclusion, blocking HR drift enhances EDV and SV during prolonged exercise. These findings suggest that SV behavior is tightly related to filling time and loading conditions of the left ventricle.
Collapse
Affiliation(s)
- Fabio Giuseppe Laginestra
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Ole Kristian Berg
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
| | - Stian Kwak Nyberg
- Department of Anesthesiology and Intensive Care, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Massimo Venturelli
- Department of Neuroscience, Biomedicine, and Movement, University of Verona, Verona, Italy
| | - Eivind Wang
- Faculty of Health and Social Sciences, Molde University College, Molde, Norway
- Department of Østmarka, Division of Mental Health Care, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Myworkout, Medical Rehabilitation Clinic, Trondheim, Norway
| |
Collapse
|
3
|
Efficacy of two intermittent cooling strategies during prolonged work-rest intervals in the heat with personal protective gear compared with a control condition. Eur J Appl Physiol 2023; 123:1125-1134. [PMID: 36651993 DOI: 10.1007/s00421-023-05139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Personal protective equipment (PPE) inhibits heat dissipation and elevates heat strain. Impaired cooling with PPE warrants investigation into practical strategies to improve work capacity and mitigate exertional heat illness. PURPOSE Examine physiological and subjective effects of forearm immersion (FC), fan mist (MC), and passive cooling (PC) following three intermittent treadmill bouts while wearing PPE. METHODS Twelve males (27 ± 6 years; 57.6 ± 6.2 ml/kg/min; 78.3 ± 8.1 kg; 183.1 ± 7.2 cm) performed three 50-min (10 min of 40%, 70%, 40%, 60%, 50% vVO2max) treadmill bouts in the heat (36 °C, 30% relative humidity). Thirty minutes of cooling followed each bout, using one of the three strategies per trial. Rectal temperature (Tcore), skin temperature (Tsk), heart rate (HR), heart rate recovery (HRR), rating of perceived exertion (RPE), thirst, thermal sensation (TS), and fatigue were obtained. Repeated-measures analysis of variance (condition x time) detected differences between interventions. RESULTS Final Tcore was similar between trials (P > .05). Cooling rates were larger in FC and MC vs PC following bout one (P < .05). HRR was greatest in FC following bouts two (P = .013) and three (P < .001). Tsk, fluid consumption, and sweat rate were similar between all trials (P > .05). TS and fatigue during bout three were lower in MC, despite similar Tcore and HR. CONCLUSION Utilizing FC and MC during intermittent work in the heat with PPE yields some thermoregulatory and cardiovascular benefit, but military health and safety personnel should explore new and novel strategies to mitigate risk and maximize performance under hot conditions while wearing PPE.
Collapse
|
4
|
Chou TH, Coyle EF. Cardiovascular responses to hot skin at rest and during exercise. Temperature (Austin) 2022; 10:326-357. [PMID: 37554384 PMCID: PMC10405766 DOI: 10.1080/23328940.2022.2109931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022] Open
Abstract
Integrative cardiovascular responses to heat stress during endurance exercise depend on various variables, such as thermal stress and exercise intensity. This review addresses how increases in skin temperature alter and challenge the integrative cardiovascular system during upright submaximal endurance exercise, especially when skin is hot (i.e. >38°C). Current evidence suggests that exercise intensity plays a significant role in cardiovascular responses to hot skin during exercise. At rest and during mild intensity exercise, hot skin increases skin blood flow and abolishes cutaneous venous tone, which causes blood pooling in the skin while having little impact on stroke volume and thus cardiac output is increased with an increase in heart rate. When the heart rate is at relatively low levels, small increases in heart rate, skin blood flow, and cutaneous venous volume do not compromise stroke volume, so cardiac output can increase to fulfill the demands for maintaining blood pressure, heat dissipation, and the exercising muscle. On the contrary, during more intense exercise, hot skin does not abolish exercise-induced cutaneous venoconstriction possibly due to high sympathetic nerve activities; thus, it does not cause blood pooling in the skin. However, hot skin reduces stroke volume, which is associated with a decrease in ventricular filling time caused by an increase in heart rate. When the heart rate is high during moderate or intense exercise, even a slight reduction in ventricular filling time lowers stroke volume. Cardiac output is therefore not elevated when skin is hot during moderate intensity exercise.
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Edward F. Coyle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Texas, Tx, USA
| |
Collapse
|
5
|
Chen F, Lin W. Anti-apoptosis effects of codonolactone on cerebral ischemia-reperfusion injury. J Investig Med 2022; 70:1265-1272. [PMID: 35361731 DOI: 10.1136/jim-2021-002113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
Codonolactone is the main biologically active ingredient in Atractylodes lancea. Studies have shown various functions of codonolactone, while its protective effect against neurotoxicity caused by ischemic stroke is unclear. This study investigated the roles of codonolactone in inflammation, oxidative stress and apoptosis after cerebral ischemia-reperfusion (I/R) injury. Rats with codonolactone treatment, I/R treatment and the sham operation group were used in this study. After reperfusion for 24 hours, nerve damage was detected by nerve staining, and the neurological deficits of the rats were analyzed. The contents of superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in rat brain tissues were also determined. Western blot analysis was performed to determine the expression levels of Akt/Nrf2 pathway-associated proteins. Compared with the I/R group, the cerebral blood flow, infarct volume, brain water content, coronary blood flow and neurological deficits in the codonolactone treatment group, especially with the 80 mg/kg dosage, were significantly reduced. Codonolactone could significantly reduce the expression levels of caspase-3 and Bax, and significantly increase the expression levels of Bcl-2 after I/R. In addition, codonolactone could significantly reduce MDA content and the expression levels of TNF-α and IL-1β in ischemic brain tissues. It also significantly increased SOD activity, the expression levels of heme oxygenase-1 (HO-1) and the phosphorylation of Akt and Nrf2. Codonolactone ameliorated the cerebral I/R injury by improving anti-oxidant, anti-inflammatory activities and reducing apoptosis. Besides, the Akt/Nrf2 pathway was involved in the pharmacological action of the codonolactone.
Collapse
|
6
|
Travers G, Kippelen P, Trangmar SJ, González-Alonso J. Physiological Function during Exercise and Environmental Stress in Humans-An Integrative View of Body Systems and Homeostasis. Cells 2022; 11:383. [PMID: 35159193 PMCID: PMC8833916 DOI: 10.3390/cells11030383] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
Claude Bernard's milieu intérieur (internal environment) and the associated concept of homeostasis are fundamental to the understanding of the physiological responses to exercise and environmental stress. Maintenance of cellular homeostasis is thought to happen during exercise through the precise matching of cellular energetic demand and supply, and the production and clearance of metabolic by-products. The mind-boggling number of molecular and cellular pathways and the host of tissues and organ systems involved in the processes sustaining locomotion, however, necessitate an integrative examination of the body's physiological systems. This integrative approach can be used to identify whether function and cellular homeostasis are maintained or compromised during exercise. In this review, we discuss the responses of the human brain, the lungs, the heart, and the skeletal muscles to the varying physiological demands of exercise and environmental stress. Multiple alterations in physiological function and differential homeostatic adjustments occur when people undertake strenuous exercise with and without thermal stress. These adjustments can include: hyperthermia; hyperventilation; cardiovascular strain with restrictions in brain, muscle, skin and visceral organs blood flow; greater reliance on muscle glycogen and cellular metabolism; alterations in neural activity; and, in some conditions, compromised muscle metabolism and aerobic capacity. Oxygen supply to the human brain is also blunted during intense exercise, but global cerebral metabolism and central neural drive are preserved or enhanced. In contrast to the strain seen during severe exercise and environmental stress, a steady state is maintained when humans exercise at intensities and in environmental conditions that require a small fraction of the functional capacity. The impact of exercise and environmental stress upon whole-body functions and homeostasis therefore depends on the functional needs and differs across organ systems.
Collapse
Affiliation(s)
- Gavin Travers
- The European Astronaut Centre, The European Space Agency, Linder Höhe, 51147 Cologne, Germany;
| | - Pascale Kippelen
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Steven J. Trangmar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge UB8 3PH, UK;
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
7
|
Rogers B, Gronwald T, Mourot L. Analysis of Fractal Correlation Properties of Heart Rate Variability during an Initial Session of Eccentric Cycling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10426. [PMID: 34639723 PMCID: PMC8508542 DOI: 10.3390/ijerph181910426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/30/2022]
Abstract
Eccentric cycling (ECC) has attracted attention as a method to improve muscle strength and aerobic fitness in populations unable to tolerate conventional methods. However, agreement on exercise prescription targets have been problematic. The current report is an initial exploration of a potentially useful tool, a nonlinear heart rate (HR) variability (HRV) index based on the short-term scaling exponent alpha1 of detrended fluctuation analysis (DFA a1), which has been previously shown to correspond to exercise intensity. Eleven male volunteers performed 45 min of concentric (CON) cycling and ECC separated by 1 month. Work rates were matched for HR (~50% of the maximal HR) during the first 5 min and remained stable thereafter. HRV, HR, oxygen consumption (VO2), and cycling power were monitored and evaluated at elapsed times of 10 (T10) and 45 (T45) minutes duration. HR significantly increased between ECC T10 and ECC T45 (p = 0.003, d = 1.485), while DFA a1 significantly decreased (p = 0.004, d = 1.087). During CON, HR significantly increased (p < 0.001 d = 1.570) without significant DFA a1 change (p = 0.48, d = 0.22). Significantly higher HR was observed at T45 in ECC than in CON (p = 0.047, d = 1.059). A session of unaccustomed ECC lead to decreased values of DFA a1 at T45 in comparison to that seen with CON at similar VO2. ECC lead to altered autonomic nervous system balance as reflected by the loss of correlation properties compared to CON.
Collapse
Affiliation(s)
- Bruce Rogers
- College of Medicine, University of Central Florida, 6850 Lake Nona Boulevard, Orlando, FL 32827-7408, USA
| | - Thomas Gronwald
- Faculty of Health Sciences, Department of Performance, Neuroscience, Therapy and Health, MSH Medical School Hamburg, University of Applied Sciences and Medical University, Am Kaiserkai 1, 20457 Hamburg, Germany;
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, Exercise Performance Health Innovation (EPHI) Platform, University of Bourgogne Franche-Comté, 25000 Besançon, France;
- Division for Physical Education, Tomsk Polytechnic University, 634040 Tomsk, Russia
| |
Collapse
|
8
|
Foster J, Smallcombe JW, Hodder S, Jay O, Flouris AD, Nybo L, Havenith G. An advanced empirical model for quantifying the impact of heat and climate change on human physical work capacity. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1215-1229. [PMID: 33674931 PMCID: PMC8213606 DOI: 10.1007/s00484-021-02105-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/14/2021] [Accepted: 02/23/2021] [Indexed: 05/20/2023]
Abstract
Occupational heat stress directly hampers physical work capacity (PWC), with large economic consequences for industries and regions vulnerable to global warming. Accurately quantifying PWC is essential for forecasting impacts of different climate change scenarios, but the current state of knowledge is limited, leading to potential underestimations in mild heat, and overestimations in extreme heat. We therefore developed advanced empirical equations for PWC based on 338 work sessions in climatic chambers (low air movement, no solar radiation) spanning mild to extreme heat stress. Equations for PWC are available based on air temperature and humidity, for a suite of heat stress assessment metrics, and mean skin temperature. Our models are highly sensitive to mild heat and to our knowledge are the first to include empirical data across the full range of warm and hot environments possible with future climate change across the world. Using wet bulb globe temperature (WBGT) as an example, we noted 10% reductions in PWC at mild heat stress (WBGT = 18°C) and reductions of 78% in the most extreme conditions (WBGT = 40°C). Of the different heat stress indices available, the heat index was the best predictor of group level PWC (R2 = 0.96) but can only be applied in shaded conditions. The skin temperature, but not internal/core temperature, was a strong predictor of PWC (R2 = 0.88), thermal sensation (R2 = 0.84), and thermal comfort (R2 = 0.73). The models presented apply to occupational workloads and can be used in climate projection models to predict economic and social consequences of climate change.
Collapse
Affiliation(s)
- Josh Foster
- Environmental Ergonomics Research Centre, School of Design and Creative Arts Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - James W Smallcombe
- Environmental Ergonomics Research Centre, School of Design and Creative Arts Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Simon Hodder
- Environmental Ergonomics Research Centre, School of Design and Creative Arts Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - George Havenith
- Environmental Ergonomics Research Centre, School of Design and Creative Arts Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| |
Collapse
|
9
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Trachsel LD, Barry H, Gravel H, Behzadi P, Henri C, Gagnon D. Cardiac function during heat stress: impact of short-term passive heat acclimation. Am J Physiol Heart Circ Physiol 2020; 319:H753-H764. [DOI: 10.1152/ajpheart.00407.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A lower heart rate during heat exposure is a classic marker of heat acclimation (HA). It remains unknown if improved cardiac function contributes to this response. A 7-day passive HA protocol did not alter cardiac systolic function during passive heating, whereas it improved some indexes of diastolic function in young adults. Nonetheless, heart rate during heating was unaffected by HA. These results suggest that passive HA induces limited adaptations in cardiac function during passive heating.
Collapse
Affiliation(s)
- Lukas D. Trachsel
- Cardiovascular Prevention and Rehabilitation Center, Montreal Heart Institute, Montreal, Canada
- Department of Medicine, Université de Montréal, Montreal, Canada
- University Clinic for Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hadiatou Barry
- Cardiovascular Prevention and Rehabilitation Center, Montreal Heart Institute, Montreal, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
| | - Hugo Gravel
- Cardiovascular Prevention and Rehabilitation Center, Montreal Heart Institute, Montreal, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
| | - Parya Behzadi
- Cardiovascular Prevention and Rehabilitation Center, Montreal Heart Institute, Montreal, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
| | - Christine Henri
- Department of Medicine, Université de Montréal, Montreal, Canada
- Research Centre, Montreal Heart Institute, Montreal, Canada
| | - Daniel Gagnon
- Cardiovascular Prevention and Rehabilitation Center, Montreal Heart Institute, Montreal, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, Canada
- Research Centre, Montreal Heart Institute, Montreal, Canada
- School of Human Kinetics and Exercise Science, Université de Montréal, Montreal, Canada
| |
Collapse
|