1
|
Zhang D, Yuan Y, Xiong J, Zeng Q, Gan Y, Jiang K, Xie N. Anti-breast cancer effects of dairy protein active peptides, dairy products, and dairy protein-based nanoparticles. Front Pharmacol 2024; 15:1486264. [PMID: 39605907 PMCID: PMC11598434 DOI: 10.3389/fphar.2024.1486264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Breast cancer is the most frequently diagnosed and fatal cancer among women worldwide. Dairy protein-derived peptides and dairy products are important parts of the daily human diet and have shown promising activities in suppressing the proliferation, migration, and invasion of breast cancer cells, both in vitro and in vivo. Most of the review literature employs meta-analysis methods to explore the association between dairy intake and breast cancer risk. However, there is a lack of comprehensive summary regarding the anti-breast cancer properties of dairy protein-derived peptides, dairy products, and dairy protein-based nanoparticles as well as their underlying mechanisms of action. Therefore, the present study discussed the breast cancer inhibitory effects and mechanisms of active peptides derived from various dairy protein sources. Additionally, the characteristics, anti-breast cancer activities and active components of several types of dairy products, including fermented milk, yogurt and cheeses, were summarized. Furthermore, the preparation methods and therapeutic effects of various dairy protein-containing nanoparticle delivery systems for breast cancer therapy were briefly described. Lastly, this work also provided an overview of what is currently known about the anti-breast cancer effects of dairy products in clinical studies. Our review will be of interest to the development of natural anticancer drugs.
Collapse
Affiliation(s)
- Deju Zhang
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Yuan
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Juan Xiong
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qingdong Zeng
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiming Gan
- Plant Science, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kai Jiang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, China
| | - Ni Xie
- Biobank, Shenzhen Second People’s Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Abstract
Increasing research has been conducted on the role of probiotics in disease treatment. Kefir, a safe, low-cost probiotic fermented milk drink, has been investigated in many in vitro and animal studies, although parameters for human therapeutic dose or treatment time have not yet been determined. Here we perform a scoping review of clinical studies that have used kefir as a therapeutic agent, compiling the results for perspectives to support and direct further research. This review was based on Joanna Briggs Institute guidelines, including studies on the effects of kefir-fermented milk in humans. Using the term KEFIR, the main international databases were searched for studies published in English, Spanish or Portuguese until 9 March 2022. A total of 5835 articles were identified in the four databases, with forty-four eligible for analysis. The research areas were classified as metabolic syndrome and type 2 diabetes, gastrointestinal health/disorders, maternal/child health and paediatrics, dentistry, oncology, women's and geriatric health, and dermatology. The many study limitations hampered generalisation of the results. The small sample sizes, methodological variation and differences in kefir types, dosage and treatment duration prevented clear conclusions about its benefits for specific diseases. We suggest using a standard therapeutic dose of traditionally prepared kefir in millilitres according to body weight, making routine consumption more feasible. The studies showed that kefir is safe for people without serious illnesses.
Collapse
Affiliation(s)
- Milena Klippel Bessa
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| | | | - Renan Rangel Bonamigo
- Postgraduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Yegin Z, Sudagidan M. A medical and molecular approach to kefir as a therapeutic agent of human microbiota. INT J VITAM NUTR RES 2024; 94:71-80. [PMID: 36068959 DOI: 10.1024/0300-9831/a000765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The imbalanced microbial composition called dysbiosis constitutes a tendency related to different kind of human diseases. To overcome the disadvantages of dysbiosis, the consumption of probiotics is an emerging and promising topic of the last decade. Kefir is a probiotic fermented beverage produced from the fermentation of kefir grains with changing varieties of milk and displays a symbiotic association of bacteria and yeast. The discovery of the concept that fermented foods/beverages such as kefir could modify gut microbiota in humans has widened the borders of precision medicine and now microbiome therapeutics can be considered as a significant part of this field. Kefir seems to have potential to guide and manipulate future replacement/complementary therapies with a variety of beneficial biological/medical properties it has. The aim of this review was a comprehensive recapitulation of probiotic beverage kefir's significant properties mainly focusing of antioxidative, immunomodulatory, apoptotic, antitumor and neuroprotective properties. Apoptotic/antimetastatic effects are regulated at the molecular level by increases in TGF-β1, caspase-3, p53, Bax, Bax:Bcl-2 ratio, p21 and decreases in TGF-α, Bcl-2 and MMP polarization. Neuroprotective effects are revealed upon upregulation of SOD/catalase and anti-inflammatory Treg cells, decreases in repetitive behavior and modulation of apoptotic genes. Besides these significant features that may offer advantages in supplementary cancer therapies, the scope was also extended to recent emerging medical topics and also discussed and evaluated the concept of "psychobiotics". The therapeutic potential of psychobiotic effect is majorly attributed to the increased ratios of Clostridium butyricum, Lactobacillus and Bifidobacterium.
Collapse
Affiliation(s)
- Zeynep Yegin
- Medical Laboratory Techniques Program, Vocational School of Health Services, Sinop University, Turkey
| | - Mert Sudagidan
- KIT-ARGEM R&D Center, Konya Food and Agriculture University, Meram, Konya, Turkey
| |
Collapse
|
4
|
Rodríguez-Hernández AI, Salinas E, Tirado González DN, Velasco Benitez C, Jiménez M, Córdova-Dávalos LE, Cervantes-García D, Rodríguez Nava VF, Bermúdez-Humarán LG. Effects of a Modern Kefir on Conditions Associated with Moderate Severe Spastic Quadriparesis Cerebral Palsy. Microorganisms 2022; 10:microorganisms10071291. [PMID: 35889011 PMCID: PMC9316494 DOI: 10.3390/microorganisms10071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
Cerebral palsy (CP) in children constitutes a set of movement and body posture disorders caused by brain injury, which in turn is associated with a series of intestinal, respiratory, and malnutrition conditions. Twenty-four children were selected and included for the present study and subdivided into two groups: (1) children who included modern kefir (containing 12 probiotic species) in their diet; and (2) control group (not including kefir in their diet). The group supplemented with modern kefir received a beverage with multi probiotic species and the control group received commercial yogurt (which included the 2 typical lactic acid bacteria) for 7 weeks. Anthropometric variables, resting energy expenditure, presence, and diagnosis of functional digestive disorders (FDD), frequency of respiratory problems, presence of elevated C-reactive protein, differential count of leukocytes were evaluated. A significant increase in weight and height was found in the kefir group at the final time point. In addition, kefir intake promoted a significant reduction in functional constipation and stool hardness and increased the absolute value of blood lymphocytes. Since the fermented milk beverage modern kefir improves constipation, which is the most important FDD in children with CP and the nutritional and immune status, it could be considered an important strategy to improve health in these children.
Collapse
Affiliation(s)
| | - Eva Salinas
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av, Universidad 940, Aguascalientes C.P. 20100, Mexico; (E.S.); (M.J.); (L.E.C.-D.); (D.C.-G.)
| | - Deli Nazmín Tirado González
- Departamento de Ingenierías, Tecnológico Nacional de México (TecNM), Instituto Tecnológico El Llano Aguascalientes, Carr. Aguascalientes-S.L.P km 18.5, El Llano, Aguascalientes C.P. 20330, Mexico;
| | - Carlos Velasco Benitez
- Departamento de Pediatría Cali-Colombia, Universidad del Valle, Cali C.P. 76001, Colombia;
| | - Mariela Jiménez
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av, Universidad 940, Aguascalientes C.P. 20100, Mexico; (E.S.); (M.J.); (L.E.C.-D.); (D.C.-G.)
| | - Laura E Córdova-Dávalos
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av, Universidad 940, Aguascalientes C.P. 20100, Mexico; (E.S.); (M.J.); (L.E.C.-D.); (D.C.-G.)
| | - Daniel Cervantes-García
- Laboratorio de Inmunología, Departamento de Microbiología, Universidad Autónoma de Aguascalientes, Av, Universidad 940, Aguascalientes C.P. 20100, Mexico; (E.S.); (M.J.); (L.E.C.-D.); (D.C.-G.)
- Consejo Nacional de Ciencia y Tecnologia, Av. Insurgentes Sur 1582, Ciudad de México C.P. 03940, Mexico
| | - Victor Federico Rodríguez Nava
- Departamento de Enfermería, Universidad Autónoma de Aguascalientes, Av, Universidad 940, Aguascalientes C.P. 20100, Mexico;
| | - Luis G. Bermúdez-Humarán
- Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- Correspondence: ; Tel.: +33-134-652-463
| |
Collapse
|
5
|
Moore JH, Smith KS, Chen D, Lamb DA, Smith MA, Osburn SC, Ruple BA, Morrow CD, Huggins KW, McDonald JR, Brown MD, Young KC, Roberts MD, Frugé AD. Exploring the Effects of Six Weeks of Resistance Training on the Fecal Microbiome of Older Adult Males: Secondary Analysis of a Peanut Protein Supplemented Randomized Controlled Trial. Sports (Basel) 2022; 10:sports10050065. [PMID: 35622473 PMCID: PMC9145250 DOI: 10.3390/sports10050065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 01/04/2023] Open
Abstract
The bacteria inhabiting the gastrointestinal tract contribute to numerous host functions and can be altered by lifestyle factors. We aimed to determine whether a 6-week training intervention altered fecal microbiome diversity and/or function in older males. Fecal samples were collected prior to and following a 6-week twice-weekly supervised resistance training intervention in 14 older Caucasian males (65 ± 10 years, 28.5 ± 3.2 kg/m2) with minimal prior training experience. Participants were randomized to receive a daily defatted peanut powder supplement providing 30 g protein (n = 8) or no supplement (n = 6) during the intervention. Bacterial DNA was isolated from pre-and post-training fecal samples, and taxa were identified using sequencing to amplify the variable region 4 (V4) of the 16S ribosomal RNA gene. Training significantly increased whole-body and lower-body lean mass (determined by dual energy X-ray absorptiometry) as well as leg extensor strength (p < 0.05) with no differences between intervention groups. Overall composition of the microbiome and a priori selected taxa were not significantly altered with training. However, MetaCYC pathway analysis indicated that metabolic capacity of the microbiome to produce mucin increased (p = 0.047); the tight junction protein, zonulin, was measured in serum and non-significantly decreased after training (p = 0.062). Our data suggest that resistance training may improve intestinal barrier integrity in older Caucasian males; further investigation is warranted.
Collapse
Affiliation(s)
- Johnathon H. Moore
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kristen S. Smith
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Dongquan Chen
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Donald A. Lamb
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - Morgan A. Smith
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Shelby C. Osburn
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Casey D. Morrow
- Department of Cell, Developmental, and Integrative Biology, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (D.C.); (C.D.M.)
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
| | - James R. McDonald
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Michael D. Brown
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
| | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA; (J.H.M.); (M.A.S.); (S.C.O.); (B.A.R.); (J.R.M.); (M.D.B.); (K.C.Y.); (M.D.R.)
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, AL 36832, USA
| | - Andrew D. Frugé
- Department of Nutrition, Dietetics and Hospitality Management, College of Human Sciences, Auburn University, Auburn, AL 36849, USA; (K.S.S.); (D.A.L.); (K.W.H.)
- Correspondence:
| |
Collapse
|