1
|
Reck A, Sweet LH, Geier C, Kogan SM, Cui Z, Oshri A. Food insecurity and adolescent impulsivity: The mediating role of functional connectivity in the context of family flexibility. Dev Sci 2024; 27:e13554. [PMID: 39054810 DOI: 10.1111/desc.13554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Adolescent food insecurity is a salient adversity hypothesized to affect neural systems associated with increased impulsive behavior. Family environments shape how adverse experiences influence development. In this study, hypotheses were tested regarding the conjoint effects of food insecurity and family flexibility on impulsivity via alterations in connectivity between regions within the salience and central executive networks. Such alterations are reflected in resting-state functional connectivity (rsFC) metrics between the anterior insula (AI) and the middle frontal gyrus (MFG). Hypotheses were tested in a longitudinal moderated mediation model with two waves of data from 142 adolescents (Time 1 [T1] Mage = 12.89, SD = 0.85; Time 2 [T2] Mage = 15.01, SD = 1.07). Data on past-year household food insecurity, family flexibility, and rsFC were obtained at T1. Impulsivity was self-reported by the adolescent at T1 and T2. Findings revealed that high T1 left-to-left rsFC between the AI and MFG was associated with increased impulsivity at T2. The interaction of family flexibility and food insecurity was associated with AI and MFG rsFC. In the context of low family flexibility, food insecurity was linked to high levels of AI and MFG rsFC. Conversely, in the context of optimal family flexibility, food insecurity was associated with low levels of AI and MFG rsFC. Conditional indirect analysis suggests that the links among food insecurity, rsFC, and impulsive behavior depend on family flexibility. RESEARCH HIGHLIGHTS: Adolescent food insecurity was associated with anterior insula and middle frontal gyrus connectivity only at certain levels of family flexibility. High family flexibility attenuated the link between food insecurity and neural connectivity, while low levels of family flexibility increased this risk. High left anterior insula and left middle frontal gyrus connectivity was associated with increased impulsivity 1 year later.
Collapse
Affiliation(s)
- Ava Reck
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Lawrence H Sweet
- Department of Psychology, University of Georgia, Athens, Georgia, USA
| | - Charles Geier
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Steven M Kogan
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| | - Zehua Cui
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Assaf Oshri
- Department of Human Development and Family Science, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Ligeza TS, Raine LB, Pontifex MB, Wyczesany M, Kramer AF, Hillman CH. Cognitive benefits of higher cardiorespiratory fitness in preadolescent children are associated with increased connectivity within the cingulo-opercular network. Sci Rep 2024; 14:21193. [PMID: 39261550 PMCID: PMC11390878 DOI: 10.1038/s41598-024-72074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Higher cardiorespiratory fitness has been associated with improved cognitive control in preadolescent children, with various studies highlighting related brain health benefits. This cross-sectional study aimed to provide novel insights into the fitness-cognition relationship by investigating task-related changes in effective connectivity within two brain networks involved in cognitive control: the cingulo-opercular and fronto-parietal networks. Twenty-four higher-fit and twenty-four lower-fit preadolescent children completed a modified flanker task that modulated inhibitory control demand while their EEG and task performance were concurrently recorded. Effective connectivity for correct trials in the theta band was estimated using directed transfer function. The results indicate that children with higher fitness levels demonstrated greater connectivity in specific directions within the cingulo-opercular network (average effect size, d = 0.72). Brain-behavior correlations demonstrated a positive association between the majority of these connections and general task accuracy, which was also higher in higher fit children (average correlation coefficient, ρ = 0.34). The findings further support a positive relationship between fitness and cognitive performance in children. EEG findings offer novel insights into the potential brain mechanisms underlying the fitness-cognition relationship. The study suggests that increased task-related connectivity within the cingulo-opercular network may mediate the cognitive benefits associated with higher fitness levels in preadolescent children.
Collapse
Affiliation(s)
- Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30060, Kraków, Poland.
- Center for Cognitive and Brain Health, Northeastern University, Boston, USA.
| | - Lauren B Raine
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, USA
- Department of Medical Sciences, Northeastern University, Boston, MA, USA
| | - Matthew B Pontifex
- Department of Kinesiology, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
| | - Miroslaw Wyczesany
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30060, Kraków, Poland
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, USA
- The Beckman Institute, University of Illinois, Urbana, IL, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, USA
| | - Charles H Hillman
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, USA
| |
Collapse
|
3
|
Cline TL, Morfini F, Tinney E, Makarewycz E, Lloyd K, Olafsson V, Bauer CC, Kramer AF, Raine LB, Gabard-Durnam LJ, Whitfield-Gabrieli S, Hillman CH. Resting-State Functional Connectivity Change in Frontoparietal and Default Mode Networks After Acute Exercise in Youth. Brain Plast 2024; 9:5-20. [PMID: 39081665 PMCID: PMC11234706 DOI: 10.3233/bpl-240003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND A single bout of aerobic exercise can provide acute benefits to cognition and emotion in children. Yet, little is known about how acute exercise may impact children's underlying brain networks' resting-state functional connectivity (rsFC). OBJECTIVE Using a data-driven multivariate pattern analysis, we investigated the effects of a single dose of exercise on acute rsFC changes in 9-to-13-year-olds. METHODS On separate days in a crossover design, participants (N = 21) completed 20-mins of acute treadmill walking at 65-75% heart rate maximum (exercise condition) and seated reading (control condition), with pre- and post-fMRI scans. Multivariate pattern analysis was used to investigate rsFC change between conditions. RESULTS Three clusters in the left lateral prefrontal cortex (lPFC) of the frontoparietal network (FPN) had significantly different rsFC after the exercise condition compared to the control condition. Post-hoc analyses revealed that from before to after acute exercise, activity of these FPN clusters became more correlated with bilateral lPFC and the left basal ganglia. Additionally, the left lPFC became more anti-correlated with the precuneus of the default mode network (DMN). An opposite pattern was observed from before to after seated reading. CONCLUSIONS The findings suggest that a single dose of exercise increases connectivity within the FPN, FPN integration with subcortical regions involved in movement and cognition, and segregation of FPN and DMN. Such patterns, often associated with healthier cognitive and emotional control, may underlie the transient mental benefits observed following acute exercise in youth.
Collapse
Affiliation(s)
- Trevor L. Cline
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Francesca Morfini
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Emma Tinney
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Ethan Makarewycz
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Katherine Lloyd
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Valur Olafsson
- Northeastern University Biomedical Imaging Center, Northeastern University, Boston, MA, USA
| | - Clemens C.C. Bauer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arthur F. Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Beckman Institute for Advanced Science & Technology, University of Illinois, Urbana, Il, USA
| | - Lauren B. Raine
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Laurel J. Gabard-Durnam
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles H. Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
4
|
Logan NE, Occidental N, Watrous JNH, Lloyd KM, Raine LB, Kramer AF, Hillman CH. The complex associations between adiposity, fitness, mental wellbeing and neurocognitive function after exercise: A randomized crossover trial in preadolescent children. PROGRESS IN BRAIN RESEARCH 2023; 283:123-165. [PMID: 38538186 DOI: 10.1016/bs.pbr.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The aim of the present study was to examine the associations of adiposity and fitness on the preadolescent brain's response to acute exercise. In a sample of 58 children (ages 8-10; 19 females), demographic measures of age, sex, IQ, puberty, and socioeconomic status were considered. Children participated in a randomized crossover study, whereby they completed two different interventions; seated rest or treadmill walking, counterbalanced across participants. Associations between adiposity measures (standardized body mass index [BMI-Z], whole body percent fat [%Fat], visceral adipose tissue [VAT]), cardiorespiratory fitness measures (VO2max and Fat-Free VO2) were assessed on self-reported measures of mental wellbeing, and cognitive performance (response accuracy, reaction time) and neuroelectric (P3 amplitude and latency) indices of a Go/NoGo task following both exercise and rest interventions. Higher adiposity (whole-body percent fat, BMI-Z) was associated with higher trait anxiety (P's≤0.05) and disordered eating (P's≤0.05) scores. Higher fitness (VO2max) was associated with lower childhood depression scores (P=0.02). Regression analyses yielded specific post-exercise neurocognitive associations with adiposity-related (VAT, BMI-Z), and fitness-related (FF-VO2) outcomes, after controlling for post-rest neurocognitive outcomes. VAT was positively associated with post-exercise P3 ERP Latency for the Go task (P≤0.001); BMI-Z was negatively associated with P3 ERP amplitudes for the Go task (P's≤0.005); FF-VO2 was negatively associated with P3 ERP latency for the Go/NoGo task (P's≤0.05), and positively associated with NoGo task accuracy (P≤0.001). Overall, adiposity and fat-free fitness measures yield sensitive and differential associations with neurocognitive performance after exercise and after rest interventions.
Collapse
Affiliation(s)
- Nicole E Logan
- Department of Kinesiology, University of Rhode Island, Kingston, RI, United States; Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, United States; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States.
| | - Nicole Occidental
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Jennifer N H Watrous
- Department of Psychology, Oklahoma State University, Stillwater, Oklahoma, United States
| | - Katherine M Lloyd
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Lauren B Raine
- Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, United States; Department of Medical Sciences, Northeastern University, Boston, MA, United States
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, United States; Beckman Institute, University of Illinois at Urbana-Champaign, IL, United States
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, United States; Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| |
Collapse
|
5
|
The Developing Brain: Considering the Multifactorial Effects of Obesity, Physical Activity & Mental Wellbeing in Childhood and Adolescence. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121802. [PMID: 36553249 PMCID: PMC9776762 DOI: 10.3390/children9121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Obesity during childhood has been associated with many important physiological and neurological health considerations. Specifically concerning are the associations between youth obesity and declines in mental health, as shown with increasing rates of adolescent depression and anxiety worldwide. The emergence of mental health disorders commonly arises during adolescent development, and approximately half the global population satisfy the criteria for at least one psychiatric disorder in their lifetime, suggesting a need for early intervention. Adolescence is critical time whereby brain structure and functions are not only negatively associated with obesity and declines in mental health, while also coinciding with significant declines in rates of physical activity among individuals in this age group. Physical activity is thus a prime candidate to address the intersection of obesity and mental health crises occurring globally. This review addresses the important considerations between physiological health (obesity, aerobic fitness, physical activity), brain health (structure and function), and mental wellbeing symptomology. Lastly, we pose a theoretical framework which asks important questions regarding the influence of physiological health on the association between brain health and the development of depression and anxiety symptoms in adolescence. Specifically, we hypothesize that obesity is a mediating risk factor on the associations between brain health and psychopathology, whereas physical activity is a mediating protective factor. We conclude with recommendations for promoting physical activity and reducing sedentary time.
Collapse
|