1
|
Chambion-Diaz M, Manferdelli G, Narang BJ, Giardini G, Debevec T, Pialoux V, Millet GP. Oxidative stress and nitric oxide metabolism responses during prolonged high-altitude exposure in preterm born adults. JOURNAL OF SPORT AND HEALTH SCIENCE 2025; 14:101034. [PMID: 40021057 DOI: 10.1016/j.jshs.2025.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 12/27/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Prematurely-born individuals tend to exhibit higher resting oxidative stress, although evidence suggests they may be more resistant to acute hypoxia-induced redox balance alterations. We aimed to investigate the redox balance changes across a 3-day hypobaric hypoxic exposure at 3375 m in healthy adults born preterm (gestational age ≤ 32 weeks) and their term-born (gestational age ≥ 38 weeks) counterparts. METHODS Resting venous blood was obtained in normoxia (prior to altitude exposure), immediately upon arrival to altitude, and the following 3 mornings. Antioxidant (superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and ferric reducing antioxidant power (FRAP)), pro-oxidant (xanthine oxidase (XO) and myeloperoxidase (MPO)) enzyme activity, oxidative stress markers (advanced oxidation protein product (AOPP) and malondialdehyde (MDA)), nitric oxide (NO) metabolites (nitrites, nitrates, and total nitrite and nitrate (NOx)), and nitrotyrosine were measured in plasma. RESULTS SOD increased only in the preterm group (p < 0.05). Catalase increased at arrival in preterm group (p < 0.05). XO activity increased at Day 3 for the preterm group, while it increased acutely (arrival and Day 1) in control group. MPO increased in both groups throughout the 3 days (p < 0.05). AOPP only increased at arrival in the preterm (p < 0.05) whereas it decreased at arrival up to Day 3 (p < 0.05) for control. MDA decreased in control group from arrival onward. Nitrotyrosine decreased in both groups (p < 0.05). Nitrites increased on Day 3 (p < 0.05) in control group and decreased on Day 1 (p < 0.05) in preterm group. CONCLUSION These data indicate that antioxidant enzymes seem to increase immediately upon hypoxic exposure in preterm adults. Conversely, the blunted pro-oxidant enzyme response to prolonged hypoxia exposure suggests that these enzymes may be less sensitive in preterm individuals. These findings lend further support to the potential hypoxic preconditioning effect of preterm birth.
Collapse
Affiliation(s)
- Marie Chambion-Diaz
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Laboratoire de kinésiologie du PEPS, Département de kinésiologie, Faculté de médecine, Université Laval, Québec G1V 0A6, Canada
| | - Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana 1000, Slovenia; Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Tadej Debevec
- Faculty for Sport, University of Ljubljana, Ljubljana 1600, Slovenia; Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta 11100, Italy
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de biologie de la motricité (LIBM), Université Lyon 1 Claude Bernard, Villeurbanne 69100, France; Institut Universitaire de France, Paris 75231, France.
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Nocturnal pulse oxygen saturation dynamics at simulated high altitude: Predictive value for acute mountain sickness in healthy men born pre-term. Exp Physiol 2025. [PMID: 39817525 DOI: 10.1113/ep092418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
The physiological sequelae of pre-term birth might influence the responses of this population to hypoxia. Moreover, identifying variables associated with development of acute mountain sickness (AMS) remains a key practically significant area of altitude research. We investigated the effects of pre-term birth on nocturnal oxygen saturation (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) dynamics and assessed the predictive potential of nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ -related metrics for morning AMS in 12 healthy adults with gestational age < 32 weeks (pre-term) and 12 term-born control participants. Participants spent one night at a simulated altitude of ∼4200 m (normobaric hypoxia; fraction of inspired O2 = 0.141), with nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and heart rate recorded continuously at the fingertip using pulse oximetry and with morning AMS assessed using the Lake Louise scale. Pre-term and term-born participants had similar nocturnal meanS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (mean ± SD; 77% ± 3% vs. 77% ± 4%; P = 0.661), minimumS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ (median[IQR]; 67[4]% vs. 69[5]%; P = 0.223), relative time spent withS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ < 80% (72% ± 29% vs. 70% ± 27%; P = 0.879) and mean heart rate (79 ± 12 vs. 71 ± 7 beats/min; P = 0.053). However, the increase inS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ between the two halves of the night was blunted with prematurity (-0.12% ± 1.51% vs. 1.11% ± 0.78%; P = 0.021). Moreover, the cumulative relative desaturation-based hypoxic 'load' was higher with prematurity (32[26]%min/h vs. 7[25]%min/h; P = 0.039), underpinned by increased desaturation frequency (69[49] vs. 21[35] counts/h; P = 0.009). MeanS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , minimumS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , morningS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ and relative time spent withS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ < 80% predicted AMS incidence better than a random classifier exclusively in the pre-term group, with no other variables predictive of AMS in the two groups separately or combined. Overall, pre-term birth might alter nocturnalS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ dynamics and influence AMS prediction in severe hypoxia.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Giorgio Manferdelli
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Dallas, Dallas, Texas, USA
| | - Grégoire P Millet
- Institute for Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Manferdelli G. Mechanisms of hypoxia (in)tolerance in prematurely born adults: PhD thesis (PhD Academy Award). Br J Sports Med 2024; 58:1470-1472. [PMID: 39362792 DOI: 10.1136/bjsports-2024-108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/05/2024]
Affiliation(s)
- Giorgio Manferdelli
- Institute of Sport Sciences, University of Lausanne, Lausanne, Vaud, Switzerland
| |
Collapse
|
4
|
Niesor EJ, Perez A, Rezzi S, Hodgson A, Canarelli S, Millet G, Debevec T, Bordat C, Nader E, Connes P. Plasma monomeric ApoA1 and high-density lipoprotein bound ApoA1 are markedly decreased and associated with low levels of lipophilic antioxidants in sickle cell disease: A potential new pathway for therapy. Eur J Haematol 2024; 113:788-797. [PMID: 39164995 DOI: 10.1111/ejh.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Patients with sickle cell disease (SCD) exhibit high levels of reactive oxygen species and low plasma levels of lipophilic antioxidants, which may contribute to end-organ damage and disease sequelae. Apolipoprotein A1, the major apolipoprotein of high-density lipoprotein (HDL), is mainly secreted by the intestine and liver in the form of monomeric ApoA1 (mApoA1) present in plasma. Cholesterol and α-tocopherol are delivered to ApoA1 via the ATP-binding cassette transporter, subfamily A, member 1 (ABCA1). We measured cholesterol, mApoA1, ApoA1, and lipophilic antioxidants in the plasma of 17 patients with SCD and 40 healthy volunteers. Mean HDL cholesterol (-C) levels in SCD patients and healthy subjects were 59.3 and 48.1 mg/dL, respectively, and plasma lutein, zeaxanthin, and α-tocopherol were 64.0%, 68.7%, and 9.1% lower, respectively. To compare SCD to healthy subjects with similar HDL-C, we also performed subgroup analyses of healthy subjects with HDL-C above or below the mean. In SCD, the mApoA1 level was 30.4 μg/mL; 80% lower than 141 μg/mL measured in healthy volunteers with similar HDL-C (56.7 mg/dL). The mApoA1 level was also 38.4% greater in the higher versus lower HDL-C subgroups (p = .002). In the higher HDL-C subgroup, lutein and zeaxanthin transported by HDL were 48.9% (p = .01) and 41.9% (p = .02) higher, respectively, whereas α-tocopherol was 31.7% higher (p = .003), compared to the lower HDL-C subgroup. Plasma mApoA1 may be a marker of the capacity of HDL to capture and deliver liposoluble antioxidants, and treatments which raise HDL may benefit patients with high oxidative stress as exemplified by SCD.
Collapse
Affiliation(s)
| | | | - Serge Rezzi
- Swiss Nutrition and Health Foundation, Lausanne, Switzerland
| | - Andrew Hodgson
- Swiss Nutrition and Health Foundation, Lausanne, Switzerland
| | | | - Gregoire Millet
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Elie Nader
- Faculty of Medicine Laennec, Claude Bernard University Lyon1, Lyon, France
| | - Philippe Connes
- Faculty of Medicine Laennec, Claude Bernard University Lyon1, Lyon, France
| |
Collapse
|
5
|
Narang BJ, Manferdelli G, Bourdillon N, Millet GP, Debevec T. Ventilatory responses to independent and combined hypoxia, hypercapnia and hypobaria in healthy pre-term-born adults. J Physiol 2024; 602:5943-5958. [PMID: 37796451 DOI: 10.1113/jp285300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023] Open
Abstract
Pre-term birth is associated with physiological sequelae that persist into adulthood. In particular, modulated ventilatory responsiveness to hypoxia and hypercapnia has been observed in this population. Whether pre-term birth per se causes these effects remains unclear. Therefore, we aimed to assess pulmonary ventilation and blood gases under various environmental conditions, comparing 17 healthy prematurely born individuals (mean ± SD; gestational age, 28 ± 2 weeks; age, 21 ± 4 years; peak oxygen uptake, 48.1 ± 11.2 ml kg-1 min-1) with 16 well-matched adults born at term (gestational age, 40 ± 1 weeks; age, 22 ± 2 years; peak oxygen uptake, 51.2 ± 7.7 ml kg-1 min-1). Participants were exposed to seven combinations of hypoxia/hypobaria (equivalent to ∼3375 m) and/or hypercapnia (3% CO2), at rest for 6 min. Pulmonary ventilation, pulse oxygen saturation and the arterial partial pressures of O2 and CO2 were similar in pre-term and full-term individuals under all conditions. Higher ventilation in hypoxia compared to normoxia was only observed at terrestrial altitude, despite an equivalent (normobaric) hypoxic stimulus administered at sea level (0.138F i O 2 ${F_{{\mathrm{i}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Assessment of oscillations in key variables revealed that combined hypoxic hypercapnia induced greater underlying fluctuations in ventilation in pre-term individuals only. In general, higher pulse oxygen saturation fluctuations were observed with hypoxia, and lower fluctuations in end-tidal CO2 with hypercapnia, despite similar ventilatory oscillations observed between conditions. These findings suggest that healthy prematurely born adults display similar overall ventilation to their term-born counterparts under various environmental stressors, but that combined ventilatory stimuli could induce an irregular underlying ventilatory pattern. Moreover, barometric pressure may be an important factor when assessing ventilatory responsiveness to moderate hypoxic stimuli. KEY POINTS: Evidence exists for unique pulmonary and respiratory function under hypoxic conditions in adult survivors of pre-term birth. Whether pre-term birth per se causes these differences requires a comparison of conventionally healthy prematurely born adults with an appropriately matched sample of term-born individuals. According to the present data, there is no difference between healthy pre-term and well-matched term-born individuals in the magnitude of pulmonary ventilation or arterial blood gases during independent and combined hypobaria, hypoxia and hypercapnia. Terrestrial altitude (hypobaria) was necessary to induce differences in ventilation between normoxia and a hypoxic stimulus equivalent to ∼3375 m of altitude. Furthermore, peak power in pulse oxygen saturation was similar between hypobaric normoxia and normobaric hypoxia. The observed similarities between groups suggest that ventilatory regulation under various environmental stimuli is not impaired by pre-term birth per se. Instead, an integrated combination of neonatal treatment strategies and cardiorespiratory fitness/disease status might underlie previously observed chemosensitivity impairments.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Manferdelli G, Narang BJ, Bourdillon N, Giardini G, Debevec T, Millet GP. Impaired cerebrovascular CO 2 reactivity at high altitude in prematurely born adults. J Physiol 2024; 602:5801-5815. [PMID: 38116893 DOI: 10.1113/jp285048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Premature birth impairs cardiac and ventilatory responses to both hypoxia and hypercapnia, but little is known about cerebrovascular responses. Both at sea level and after 2 days at high altitude (3375 m), 16 young preterm-born (gestational age, 29 ± 1 weeks) and 15 age-matched term-born (40 ± 0 weeks) adults were exposed to two consecutive 4 min bouts of hyperoxic hypercapnic conditions (3% CO2-97% O2; 6% CO2-94% O2), followed by two periods of voluntary hyperventilation-induced hypocapnia. We measured middle cerebral artery blood velocity, end-tidal CO2, pulmonary ventilation, beat-by-beat mean arterial pressure and arterialized capillary blood gases. Baseline middle cerebral artery blood velocity increased at high altitude compared with sea level in term-born (+24 ± 39%, P = 0.036), but not in preterm-born (-4 ± 27%, P = 0.278) adults. The end-tidal CO2, pulmonary ventilation and mean arterial pressure were similar between groups at sea level and high altitude. Hypocapnic cerebrovascular reactivity was higher at high altitude compared with sea level in term-born adults (+173 ± 326%, P = 0.026) but not in preterm-born adults (-21 ± 107%, P = 0.572). Hypercapnic reactivity was altered at altitude only in preterm-born adults (+125 ± 144%, P < 0.001). Collectively, at high altitude, term-born participants showed higher hypocapnic (P = 0.012) and lower hypercapnic (P = 0.020) CO2 reactivity compared with their preterm-born peers. In conclusion, exposure to high altitude revealed different cerebrovascular responses in preterm- compared with term-born adults, despite similar ventilatory responses. These findings suggest a blunted cerebrovascular response at high altitude in preterm-born adults, which might predispose these individuals to an increased risk of high-altitude illnesses. KEY POINTS: Cerebral haemodynamics and cerebrovascular reactivity in normoxia are known to be similar between term-born and prematurely born adults. In contrast, acute exposure to high altitude unveiled different cerebrovascular responses to hypoxia, hypercapnia and hypocapnia. In particular, cerebral vasodilatation was impaired in prematurely born adults, leading to an exaggerated cerebral vasoconstriction. Cardiovascular and ventilatory responses to both hypo- and hypercapnia at sea level and at high altitude were similar between control subjects and prematurely born adults. Other mechanisms might therefore underlie the observed blunted cerebral vasodilatory responses in preterm-born adults at high altitude.
Collapse
Affiliation(s)
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta, Italy
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Narang BJ, Manferdelli G, Millet GP, Debevec T. Effects of preterm birth on the pattern of altitude acclimatization at rest and during moderate-intensity exercise across three days at 3,375 m. J Appl Physiol (1985) 2024; 137:765-777. [PMID: 39052770 DOI: 10.1152/japplphysiol.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Preterm birth elicits long-lasting physiological effects in various organ systems, potentially modulating exercise and environmental stress responses. To establish whether prematurely-born adults respond uniquely during early high-altitude acclimatization at rest and during exercise, 17 healthy adults born preterm (gestational age < 32 wk) and 17 term-born, age- and aerobic-capacity-matched, control participants completed a three-day high-altitude sojourn (3,375 m). Oxygen uptake, pulmonary ventilation, and hemodynamic responses, as well as pulse oxygen saturation, brain tissue saturation index (TSI), and skeletal muscle TSI, were measured daily at rest and during moderate-intensity steady-state exercise bouts. In general, the prematurely-born group displayed comparable acclimatization responses at rest, with similar ventilation and cardiac output observed between groups throughout. Resting brain TSI was, however, higher in the preterm group upon arrival at high altitude (72 ± 7% vs. 68 ± 3%; d = 1.20). Absolute exercising oxygen uptake was lower in the preterm participants (P = 0.047), with this group displaying lower exercising cardiac output underpinned by reduced stroke volume (both P = 0.035). Nevertheless, exercising minute ventilation (V̇e) did not differ between groups (P = 0.237) while brain TSI (70 ± 6% vs. 66 ± 3%; d = 1.35) and pulse oxygen saturation (85 ± 3% vs. 82 ± 5%; d = 1.52) were higher with prematurity upon arrival to high altitude. These findings suggest that healthy prematurely-born adults exhibit comparable early acclimatization patterns to their term-born counterparts and better maintain cerebral oxygenation at rest. Together, these data suggest that prematurely-born adults should not be discouraged from high-altitude sojourns involving physical activity.NEW & NOTEWORTHY The acclimatization pattern across three days at 3,375 m, at rest and during moderate-intensity exercise, was similar between healthy adults born prematurely and their term-born counterparts. Preterm adults free from respiratory complications were found to better maintain brain tissue and capillary oxygen saturation at high altitudes, whereas the term-born group experienced larger altitude-induced reductions. Despite apparent cardiac limitations, preterm individuals tolerated exercise similarly to their term-born peers. These findings underscore the notion that preterm birth per se does not predispose healthy adults to decreased altitude tolerance during exercise.
Collapse
Affiliation(s)
- Benjamin J Narang
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tadej Debevec
- Department for Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Rissanen APE, Mikkola T, Gagnon DD, Lehtonen E, Lukkarinen S, Peltonen JE. Wagner diagram for modeling O 2pathway-calculation and graphical display by the Helsinki O 2Pathway Tool. Physiol Meas 2024; 45:055028. [PMID: 38749432 DOI: 10.1088/1361-6579/ad4c36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Objective.Maximal O2uptake (V˙O2max) reflects the individual's maximal rate of O2transport and utilization through the integrated whole-body pathway composed of the lungs, heart, blood, circulation, and metabolically active tissues. As such,V˙O2maxis strongly associated with physical capacity as well as overall health and thus acts as one predictor of physical performance and as a vital sign in determination of status and progress of numerous clinical conditions. Quantifying the contribution of single parts of the multistep O2pathway toV˙O2maxprovides mechanistic insights into exercise (in)tolerance and into therapy-, training-, or disuse-induced adaptations at individual or group levels. We developed a desktop application (Helsinki O2Pathway Tool-HO2PT) to model numerical and graphical display of the O2pathway based on the 'Wagner diagram' originally formulated by Peter D. Wagner and his colleagues.Approach.The HO2PT was developed and programmed in Python to integrate the Fick principle and Fick's law of diffusion into a computational system to import, calculate, graphically display, and export variables of the Wagner diagram.Main results.The HO2PT models O2pathway both numerically and graphically according to the Wagner diagram and pertains to conditions under which the mitochondrial oxidative capacity of metabolically active tissues exceeds the capacity of the O2transport system to deliver O2to the mitochondria. The tool is based on the Python open source code and libraries and freely and publicly available online for Windows, macOS, and Linux operating systems.Significance.The HO2PT offers a novel functional and demonstrative platform for those interested in examiningV˙O2maxand its determinants by using the Wagner diagram. It will improve access to and usability of Wagner's and his colleagues' integrated physiological model and thereby benefit users across the wide spectrum of contexts such as scientific research, education, exercise testing, sports coaching, and clinical medicine.
Collapse
Affiliation(s)
- Antti-Pekka E Rissanen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tom Mikkola
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Dominique D Gagnon
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON, Canada
| | - Elias Lehtonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sakari Lukkarinen
- School of Information and Communication Technology, Metropolia University of Applied Sciences, Helsinki, Finland
| | - Juha E Peltonen
- Helsinki Sports and Exercise Medicine Clinic, Foundation for Sports and Exercise Medicine (HULA), Helsinki, Finland
- Sports and Exercise Medicine, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Tamiya H, Kawashiri H, Miyamoto T, Tsubaki A. Acute Effects of Skeletal Muscle Electrical Stimulation on Central and Lower Extremity Hemodynamics. Cureus 2024; 16:e62988. [PMID: 38915840 PMCID: PMC11194163 DOI: 10.7759/cureus.62988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 06/26/2024] Open
Abstract
INTRODUCTION Belt electrode-skeletal muscle electrical stimulation (B-SES) is a treatment prescribed for individuals with difficulty performing exercise therapy that improves muscle strength, exercise tolerance, and glucose metabolism. However, the effects of B-SES on the hemodynamics of the central and lower extremity conduit arteries have not been studied. Therefore, this study compared the acute effects of B-SES on the central and lower extremity conduit arteries in healthy young males. METHODS This randomized crossover study included nine healthy young males (mean age: 21.0±1.1 years). Participants were assigned to the following experimental conditions, with a washout period of one week: condition 1 included 20 min of electrical stimulation of the lower extremity at the participant's sensation threshold intensity (Sham, n=9) and condition 2 included 20 min of electrical stimulation of the lower extremity at the maximum intensity the participant can tolerate (B-SES, n=9). The heart rate (HR), stroke volume (SV), cardiac output (CO), mean arterial pressure (MAP), and total peripheral vascular resistance (TPR) were measured as central hemodynamics. The hemodynamics of the lower extremity conduit arteries were measured and calculated for the shallow femoral artery (SFA), including vessel diameter, mean blood flow velocity (MBFV), shear rate (SR), and mean blood flow (MBF) rate. These indices were measured before stimulation (Pre), 10 min after the start of stimulation (Stimulating), and immediately after the end of stimulation (Post). These indices were compared using a repeated two-way analysis of variance. RESULTS In B-SES, HR (Pre: 63.2±8.6; Stimulating: 73.7±6.9; Post: 70.0±4.2 bpm, p<0.01), CO (Pre: 5.1±1.0; Stimulating: 6.5±1.5, p<0.01; Post: 6.3±1.2 L/min, p=0.02), and MAP (Pre: 104.0±11.5; Stimulating: 116.4±10.8, p<0.01; Post: 109.6±9.7 mmHg, p=0.02) increased significantly. In addition, B-SES significantly increased MBFV (Pre: 19.2±4.0; Stimulating: 50.5±14.9; Post: 30.1±4.0 cm/s, p<0.01), SR (Pre: 118.9±28.8; Stimulating: 302.7±91. 2, p<0.01; Post: 182.1±70.1/s, p=0.02), and MBF (Pre: 382.0±61.5; Stimulating: 1009.6±321.4; Post: 626.8±176.6 mL/min, p<0.01). However, there were no significant changes in SV and TPR. CONCLUSIONS The findings of this study indicate that B-SES in healthy young males increases CO without increasing SV or TPR and improves the MBFV and SR in the SFA.
Collapse
Affiliation(s)
- Hajime Tamiya
- Department of Exercise Physiology, Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, JPN
| | - Hina Kawashiri
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Toshiaki Miyamoto
- Department of Physical Therapy, Faculty of Rehabilitation, Kansai Medical University, Osaka, JPN
| | - Atsuhiro Tsubaki
- Department of Exercise Physiology, Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, JPN
| |
Collapse
|
10
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Baroreflex sensitivity is blunted in hypoxia independently of changes in inspired carbon dioxide pressure in prematurely born male adults. Physiol Rep 2024; 12:e15857. [PMID: 38172085 PMCID: PMC10764294 DOI: 10.14814/phy2.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m). Continuous blood pressure and ventilatory parameters were recorded in normobaric normoxia (NNx), normobaric normoxic hypercapnia (NNx + CO2 ), hypobaric hypoxia (HHx), hypobaric normoxia (HNx), hypobaric normoxia hypercapnia (HNx + CO2 ), and hypobaric hypoxia with end-tidal CO2 clamped at NNx value (HHx + clamp). BRS was assessed using the sequence method. Across all conditions, BRS was lower in term born compared to preterm (13.0 ± 7.5 vs. 21.2 ± 8.8 ms⋅mmHg-1 , main group effect: p < 0.01) participants. BRS was lower in HHx compared to NNx in term born (10.5 ± 4.9 vs. 16.0 ± 6.0 ms⋅mmHg-1 , p = 0.05), but not in preterm (27.3 ± 15.7 vs. 17.6 ± 8.3 ms⋅mmHg-1 , p = 0.43) participants, leading to a lower BRS in HHx in term born compared to preterm (p < 0.01). In conclusion, this study reports a blunted response of BRS during acute high-altitude exposure without any influence of changes in inspired CO2 in healthy prematurely born adults.
Collapse
Affiliation(s)
| | - Benjamin J. Narang
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | | - Tadej Debevec
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
11
|
Manferdelli G, Barstow TJ, Millet GP. NIRS-Based Muscle Oxygenation Is Suitable for Computation of the Convective and Diffusive Components of O 2 Transport at V̇O 2max : Response to Porcelli, Pilotto, and Rossiter. Med Sci Sports Exerc 2023; 55:2110-2111. [PMID: 37343388 DOI: 10.1249/mss.0000000000003241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, KS
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, SWITZERLAND
| |
Collapse
|
12
|
Manferdelli G, Narang BJ, Pialoux V, Giardini G, Debevec T, Millet GP. Microvascular and oxidative stress responses to acute high-altitude exposure in prematurely born adults. Sci Rep 2023; 13:6860. [PMID: 37100885 PMCID: PMC10133287 DOI: 10.1038/s41598-023-34038-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Premature birth is associated with endothelial and mitochondrial dysfunction, and chronic oxidative stress, which might impair the physiological responses to acute altitude exposure. We assessed peripheral and oxidative stress responses to acute high-altitude exposure in preterm adults compared to term born controls. Post-occlusive skeletal muscle microvascular reactivity and oxidative capacity from the muscle oxygen consumption recovery rate constant (k) were determined by Near-Infrared Spectroscopy in the vastus lateralis of seventeen preterm and seventeen term born adults. Measurements were performed at sea-level and within 1 h of arrival at high-altitude (3375 m). Plasma markers of pro/antioxidant balance were assessed in both conditions. Upon acute altitude exposure, compared to sea-level, preterm participants exhibited a lower reperfusion rate (7 ± 31% vs. 30 ± 30%, p = 0.046) at microvascular level, but higher k (6 ± 32% vs. -15 ± 21%, p = 0.039), than their term born peers. The altitude-induced increases in plasma advanced oxidation protein products and catalase were higher (35 ± 61% vs. -13 ± 48% and 67 ± 64% vs. 15 ± 61%, p = 0.034 and p = 0.010, respectively) and in xanthine oxidase were lower (29 ± 82% vs. 159 ± 162%, p = 0.030) in preterm compared to term born adults. In conclusion, the blunted microvascular responsiveness, larger increases in oxidative stress and skeletal muscle oxidative capacity may compromise altitude acclimatization in healthy adults born preterm.
Collapse
Affiliation(s)
- Giorgio Manferdelli
- Institute of Sport Sciences (ISSUL), University of Lausanne, Synathlon, 1015, Lausanne, Switzerland.
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Institute of Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de Biologie de La Motricité UR 7424, Faculté de Médecine Rockefeller, Univ Lyon, Université Claude Bernard Lyon 1, 69008, Lyon, France
- Institut Universitaire de France, Paris, France
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta, Italy
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences (ISSUL), University of Lausanne, Synathlon, 1015, Lausanne, Switzerland
| |
Collapse
|
13
|
Millet GP, Chamari K. Look to the stars-Is there anything that public health and rehabilitation can learn from elite sports? Front Sports Act Living 2023; 4:1072154. [PMID: 36755563 PMCID: PMC9900137 DOI: 10.3389/fspor.2022.1072154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 01/24/2023] Open
Affiliation(s)
- Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland,Correspondence: Grégoire P. Millet
| | - Karim Chamari
- Aspetar, Orthopedic and Sports Medicine Hospital, FIFA Medical Center of Excellence, Doha, Qatar
| |
Collapse
|