1
|
Gjerløw LE, Sunde A, Støa EM, Helgerud J, Johansen JM, Hjortland H, Støren Ø. Determining physiologic variables for changes in 800-m running and 800-m ski ergometer performance. Eur J Appl Physiol 2025:10.1007/s00421-025-05765-7. [PMID: 40251330 DOI: 10.1007/s00421-025-05765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 04/20/2025]
Abstract
PURPOSE This study investigates associations between changes in 800 m time trial performance in running or ski ergometer double poling, and changes in physiologic variables after a seven-week observational period. Forty six athletes ranging from recreational to elite level, participated in either a run (RUN) or a ski ergometer (SKI) observational study. METHODS The participants performed pre- and post-tests in; 800-m time trial (800TT), 100-m time trial (MSS or MSP), peak oxygen uptake (VO2peak), oxygen cost of running (CR) or double poling (CDP), time to exhaustion (TTE) at 130% maximal aerobic speed (MAS) or maximal aerobic power (MAP), and maximal accumulated oxygen deficit (MAOD) in SKI. They also performed one repetition maximum (1RM), half-squat (RUN) or 1RM lat pull-down (SKI). RESULTS Moderate correlations were found between changes in both MAP and maximal strength and changes in 800TT for SKI (r = - 0.51 and r = - 0.51, respectively, p < 0.05). For RUN, MAS and the 0.8 MAS + 0.2 MSS equation correlated (r = - 0.71 and r = - 0.73, respectively, p < 0.01) with 800TT. VO2peak was the most important contributor to MAS improvements (RUN) while CDP was the most important contributor to MAP improvements (SKI). No correlations were found between changes in TTE at 130% MAS or MAP and, or MAOD, and changes in 800TT, for neither RUN nor SKI. The results from the present study suggest focusing on training to improve maximal oxygen uptake (VO2max), work economy and maximal sprint speed to improve performance in middle-distance running and ski sprinting.
Collapse
Affiliation(s)
- Lars Erik Gjerløw
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway.
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.
| | - Arnstein Sunde
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Eva Maria Støa
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Treningsklinikken, Medical Rehabilitation Clinic, Trondheim, Norway
| | - Jan-Michael Johansen
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Henrik Hjortland
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
2
|
Ruiz-Alias SA, Marcos-Blanco A, Fernández-Navarrete I, Pérez-Castilla A, García-Pinillos F. Running critical power modeling: insights into physiological and neuromuscular performance factors. Int J Sports Med 2025. [PMID: 40081827 DOI: 10.1055/a-2558-6349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
This study aims to determine the relationship between the critical power and the work above critical power (W') with physiological and neuromuscular performance factors. Twenty-one recreational runners, 11 men and 10 women, were tested on three separate occasions spaced by 48-72 hours. In the first testing session, the vertical load-velocity and horizontal force-velocity profiles were determined. In the second testing session, the maximal oxygen uptake, running economy, first and second ventilatory thresholds and maximal aerobic power were determined through a graded exercise test. In the third testing session, the critical power and W' were determined through two-time trials of 9- and 3-minutes. The critical power was significantly correlated with all physiological factors evaluated (r≥- 0.479; p≤0.028); meanwhile, none were with W' (r≤0.377; p≥0.092). On the other hand, W' was positively associated with specific neuromuscular performance factors of the vertical load-velocity (r=0.763; p<0.001; i.e., theoretical maximal vertical velocity) and horizontal force-velocity (r≥0.658; p≤0.001; i.e., theoretical maximal horizontal velocity and maximal power) profiles. The critical power modelling results in a feasible procedure to capture both physiological and neuromuscular performance determinants through the critical power and W' parameters, respectively.
Collapse
Affiliation(s)
| | - Aitor Marcos-Blanco
- Department of Physical Education and Sport, University of Granada, Granada, Spain
| | | | | | - Felipe García-Pinillos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
3
|
Støa EM, Rønnestad B, Helgerud J, Johansen JM, Andersen IT, Rogneflåten T, Sørensen A, Støren Ø. Short-time cycling performance in young elite cyclists: related to maximal aerobic power and not to maximal accumulated oxygen deficit. Front Physiol 2025; 15:1536874. [PMID: 39867226 PMCID: PMC11757254 DOI: 10.3389/fphys.2024.1536874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Purpose To explore the relationships between performance variables and physiological variables in a short-time (2-3 min) cycling time trial (TT) on a cycle ergometer. Methods Fifteen young elite cyclists (age: 17.3 ± 0.7 years, maximal oxygen uptake (VO2max): 76.6 ± 5.2 mL⋅kg-1⋅min-1) participated in this study. Maximal aerobic power (MAP), maximal anaerobic power (MANP), time to exhaustion at 130% of maximal aerobic power (TTE), maximal accumulated oxygen deficit (MAOD) in the TT, anaerobic power reserve (APR) and lactate threshold (LT) was tested. MAP was calculated as VO2max/oxygen cost of cycling (CC), MANP was determined as mean power output (W) during a 10 s maximal cycling sprint test, and MAOD was calculated as (VO2 demand - VO2 measured) ∙ time. APR was calculated as the relative difference between MAP and MANP. Results There was a strong correlation between MAP and TT time (r = -0.91, p < 0.01) with a standard error of estimate (SEE) of 4.4%, and a moderate association between MANP and TT time (r = -0.47, p = 0.04). Neither MAOD, TTE, LT nor APR correlated with TT. Conclusion MAP was highly correlated with TT with a SEE of 4.4%. Since neither TTE nor MAOD correlated with TT, this indicates that these two variables do not play a significant role in differentiating short-time endurance cycling performance. We suggest training for improving MAP and, or MANP to improve short-time endurance cycling performance.
Collapse
Affiliation(s)
- Eva Maria Støa
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Kongsberg, Norway
| | - Bent Rønnestad
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Jan-Michael Johansen
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Kongsberg, Norway
| | - Ingvild Tronstad Andersen
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Torkil Rogneflåten
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Anders Sørensen
- Section for Health and Exercise Physiology, Institute of Public Health and Sport Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Øyvind Støren
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Kongsberg, Norway
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
4
|
Ruiz-Alias SA, Marcos-Blanco A, Fernández-Navarrete I, García-Pinillos F, Pérez-Castilla A. Exploring the Relationship Between Diverse Strength Qualities and Endurance Running Performance Across Different Intensities in Recreational Men and Women Runners. J Strength Cond Res 2025; 39:24-32. [PMID: 39652727 DOI: 10.1519/jsc.0000000000004943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Abstract
Ruiz-Alias, SA, Marcos-Blanco, A, Fernández-Navarrete, I, García-Pinillos, F, and Pérez-Castilla, A. Exploring the relationship between diverse strength qualities and endurance running performance across different intensities in recreational men and women runners. J Strength Cond Res 39(1): 24–32, 2025—This study examined the relationship between different strength qualities and running performance at different intensities in recreational runners. Eleven men (maximal oxygen uptake [
o
2max]: 55.6 ± 4.1 ml·kg−1·min−2) and 10 women (
o
2max: 53.8 ± 5.0 ml·kg−1·min−2) were tested on 4 occasions. In the first session, each strength quality was tested through the isometric midthigh pull (peak force, rate of force development), drop jump (reactive strength index), horizontal (theoretical maximal force [F
0], theoretical maximal horizontal velocity, maximal power output [Pmax]) and vertical (theoretical maximal load [L
0], theoretical maximal vertical velocity [v
0V
], area under the load-velocity profile [A
line
]) profiles, and vertical force-velocity and load-velocity profiles. In the second session, the
o
2max was determined to control its influence on the relationship between the strength qualities and running performance. In the third and fourth testing sessions, their running performance at a 10-km distance and at 2 time trials of 9 and 3 minutes were determined. Partial correlations revealed that the 10 km did not significantly correlate with any strength quality, 9 minutes with L
0 (r = −0.474, p = 0.035) and A
line
(r = −0.457, p = 0.043), and 3 minutes with L
0 (r = −0.644, p = 0.002), A
line
(r = −0.485, p = 0.030), v
0V
(r = 0.756, p < 0.001), F
0, (r = 0.700, p = 0.001), and Pmax (r = 0.579; p = 0.009). These correlations facilitated the differentiation of running performance between sexes, highlighting also unique strength qualities within each group.
Collapse
Affiliation(s)
- Santiago A Ruiz-Alias
- Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), University of Granada, Granada, Spain
| | - Aitor Marcos-Blanco
- Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), University of Granada, Granada, Spain
| | - Iván Fernández-Navarrete
- Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), University of Granada, Granada, Spain
| | - Felipe García-Pinillos
- Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), University of Granada, Granada, Spain
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Alejandro Pérez-Castilla
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain ; and
- SPORT Research Group (CTS-1024), CIBIS (Centro de Investigación para el Bienestar y la Inclusión Social) Research Center, University of Almería, Almería, Spain
| |
Collapse
|
5
|
Watanabe T, Inaba T, van Rassel CR, MacInnis MJ, Kakinoki K, Hatta H. Identifying physiological determinants of 800 m running performance using post-exercise blood lactate kinetics. Eur J Appl Physiol 2024; 124:2951-2964. [PMID: 38761193 PMCID: PMC11467099 DOI: 10.1007/s00421-024-05504-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE The aims of the present study were to investigate blood lactate kinetics following high intensity exercise and identify the physiological determinants of 800 m running performance. METHODS Fourteen competitive 800 m runners performed two running tests. First, participants performed a multistage graded exercise test to determine physiological indicators related to endurance performance. Second, participants performed four to six 30-s high intensity running bouts to determine post-exercise blood lactate kinetics. Using a biexponential time function, lactate exchange ability (γ1), lactate removal ability (γ2), and the quantity of lactate accumulated (QLaA) were calculated from individual blood lactate recovery data. RESULTS 800 m running performance was significantly correlated with peak oxygen consumption (r = -0.794), γ1 and γ2 at 800 m race pace (r = -0.604 and -0.845, respectively), and QLaA at maximal running speed (r = -0.657). V ˙ O2peak and γ2 at 800 m race pace explained 83% of the variance in 800 m running performance. CONCLUSION Our results indicate that (1) a high capacity to exchange and remove lactate, (2) a high capacity for short-term lactate accumulation and, (3) peak oxygen consumption, are critical elements of 800 m running performance. Accordingly, while lactate has primarily been utilized as a performance indicator for long-distance running, post-exercise lactate kinetics may also prove valuable as a performance determinant in middle-distance running.
Collapse
Affiliation(s)
- Takuya Watanabe
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Takeru Inaba
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Cody R van Rassel
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Martin J MacInnis
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
6
|
Konopka MJ, Keizer H, Rietjens G, Zeegers MP, Sperlich B. A critical examination of sport discipline typology: identifying inherent limitations and deficiencies in contemporary classification systems. Front Physiol 2024; 15:1389844. [PMID: 39050482 PMCID: PMC11266029 DOI: 10.3389/fphys.2024.1389844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Exercise scientists (especially in the field of biomolecular research) frequently classify athletic cohorts into categories such as endurance, strength, or mixed, and create a practical framework for studying diverse athletic populations between seemingly similar groups. It is crucial to recognize the limitations and complexities of these classifications, as they may oversimplify the multidimensional characteristics of each sport. If so, the validity of studies dealing with such approaches may become compromised and the comparability across different studies challenging or impossible. This perspective critically examines and highlights the issues associated with current sports typologies, critiques existing sports classification systems, and emphasizes the imperative for a universally accepted classification model to enhance the quality of biomolecular research of sports in the future.
Collapse
Affiliation(s)
- Magdalena Johanna Konopka
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- Institute for Healthcare Management and Health Sciences, University of Bayreuth, Bayreuth, Germany
| | - Hans Keizer
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
| | - Gerard Rietjens
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maurice Petrus Zeegers
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands
- MPB Holding, Heerlen, Netherlands
| | - Billy Sperlich
- Integrative and Experimental Exercise Science and Training, Institute of Sport Science, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Ando R, Kojima C, Okamoto S, Kasai N, Sumi D, Takao K, Goto K, Suzuki Y. Effect of 6-Week Sprint Training on Long-Distance Running Performance in Highly Trained Runners. Int J Sports Physiol Perform 2024; 19:645-650. [PMID: 38754856 DOI: 10.1123/ijspp.2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/19/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE Long-distance running performance has been reported to be associated with sprint performance in highly trained distance runners. Therefore, we hypothesized that sprint training could enhance distance running and sprint performance in long-distance runners. This study examined the effect of 6-week sprint training on long-distance running and sprint performance in highly trained distance runners. METHODS Nineteen college runners were divided into control (n = 8) and training (n = 11) groups. Participants in the training group performed 12 sprint training sessions in 6 weeks, while those in the control group performed 12 distance training sessions. Before and after the interventions, maximal oxygen uptake (V˙O2max), O2 cost during submaximal running (290 m·min-1 and 310 m·min-1 of running velocity), and time to exhaustion (starting at 290 m·min-1 and increased 10 m·min-1 every minute) were assessed on a treadmill. Additionally, the 100-m and 400-m sprinting times and 3000-m running time were determined on an all-weather track. RESULTS In the control group, no measurements significantly changed after the intervention. In the training group, the time to exhaustion, 100-m and 400-m sprinting times, and 3000-m running time improved significantly, while V˙O2max and O2 cost did not change. CONCLUSIONS These results showed that 6-week sprint training improved both sprint and long-distance running performance in highly trained distance runners without a change in aerobic capacity. Improvement in the time to exhaustion without a change in V˙O2max suggests that the enhancement of long-distance running performance could be attributable to improved anaerobic capacity.
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| | - Chihiro Kojima
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Saya Okamoto
- Graduate School of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Nobukazu Kasai
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Aichi, Japan
| | - Daichi Sumi
- Research Center for Urban Health and Sports, Osaka Metropolitan University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Institute of Sport Science, ASICS Corporation, Hyogo, Japan
| | - Kenji Takao
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Kazushige Goto
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Yasuhiro Suzuki
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| |
Collapse
|
8
|
Lee J, Wang Z, Chen M, Liu S, Yu Q, Hu M, Kong Z, Nie J. Allometric exponents for scaling running economy in human samples: A systematic review and meta-analysis. Heliyon 2024; 10:e31211. [PMID: 38818143 PMCID: PMC11137408 DOI: 10.1016/j.heliyon.2024.e31211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Ratio-scaled VO2 is the widely used method for quantifying running economy (RE). However, this method should be criticized due to its theoretical defect and curvilinear relationship indicated by the allometric scaling, although no consensus has been achieved on the generally accepted exponent b value of body weight. Therefore, this study aimed to provide a quantitative synthesis of the reported exponents used to scale VO2 to body weight. Six electronic databases were searched based on related terms. Inclusion criteria involved human cardiopulmonary testing data, derived exponents, and reported precision statistics. The random-effects model was applied to statistically analyze exponent b. Subgroup and meta-regression analyses were conducted to explore the potential factors contributing to variation in b values. The probability of the true exponent being below 1 in future studies was calculated. The estimated b values were all below 1 and aligned with the 3/4 power law, except for the 95 % prediction interval of the estimated fat-free body weight exponent b. A publication bias and a slightly greater I2 and τ statistic were also observed in the fat-free body weight study cohort. The estimated probabilities of the true body weight exponent, full body weight exponent, and fat-free body weight exponent being lower than 1 were 93.8 % (likely), 95.1 % (very likely), and 94.5 % (likely) respectively. 'Sex difference', 'age category', 'sporting background', and 'testing modality' were four potential but critical variables that impacted exponent b. Overall, allometric-scaled RE should be measured by full body weight with exponent b raised to 3/4.
Collapse
Affiliation(s)
- Jay Lee
- University of Macau, Macao, China
| | - Zhiwen Wang
- College of Public Courses, Guangdong University of Science and Technology, Dongguan, China
| | - Mingjian Chen
- School of Humanities and Education, Foshan University, Foshan, China
| | - Siqi Liu
- The Human Ergonomics Laboratory of 361 Degree (China) Co., Ltd, China
| | - Qian Yu
- University of Macau, Macao, China
| | | | | | - Jinlei Nie
- Macao Polytechnic University, Macao, China
| |
Collapse
|
9
|
Carson NM, Aslan DH, Ortega JD. The effect of forward postural lean on running economy, kinematics, and muscle activation. PLoS One 2024; 19:e0302249. [PMID: 38809851 PMCID: PMC11135760 DOI: 10.1371/journal.pone.0302249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/31/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Running economy, commonly defined as the metabolic energy demand for a given submaximal running speed, is strongly associated with distance running performance. It is commonly believed among running coaches and runners that running with increased forward postural lean either from the ankle or waist improves running economy. However, recent biomechanical research suggests using a large forward postural lean during running may impair running economy due to increased demand on the leg muscles. PURPOSE This study tests the effect of altering forward postural lean and lean strategy on running economy, kinematics, and muscle activity. METHODS 16 healthy young adult runners (23±5 years, 8M/8F) ran on a motorized treadmill at 3.58m/s using three postural lean angles [upright, moderate lean (50% of maximal lean angle), and maximal lean] and two strategies (lean from ankle and lean from waist [trunk lean]). Metabolic energy consumption, leg kinematics, and muscle activation data were recorded for all trials. RESULTS Regardless of lean strategy, running with an increased forward postural lean (up to 8±2 degrees) increased metabolic cost (worsened economy) by 8% (p < .001), increased hip flexion (p < .001), and increased gluteus maximus (p = .016) and biceps femoris (p = .02) muscle activation during the stance phase. This relation between running economy and postural lean angle was similar between the ankle and trunk lean strategies (p = .743). CONCLUSION Running with a large forward postural lean reduced running economy and increased reliance on less efficient extensor leg muscles. In contrast, running with a more upright or moderate forward postural lean may be more energetically optimal, and lead to improved running performance.
Collapse
Affiliation(s)
- Nina M. Carson
- School of Applied Health, California State Polytechnic University Humboldt, Arcata, CA, United States of America
| | - Daniel H. Aslan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Justus D. Ortega
- School of Applied Health, California State Polytechnic University Humboldt, Arcata, CA, United States of America
| |
Collapse
|
10
|
Tanji F, Ohnuma H, Ando R, Yamanaka R, Ikeda T, Suzuki Y. Longer Ground Contact Time Is Related to a Superior Running Economy in Highly Trained Distance Runners. J Strength Cond Res 2024; 38:985-990. [PMID: 38349337 DOI: 10.1519/jsc.0000000000004737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
ABSTRACT Tanji, F, Ohnuma, H, Ando, R, Yamanaka, R, Ikeda, T, and Suzuki, Y. Longer ground contact time is related to a superior running economy in highly trained distance runners. J Strength Cond Res 38(5): 985-990, 2024-Running economy is a key component of distance running performance and is associated with gait parameters. However, there is no consensus of the link between the running economy (RE), ground contact time, and footstrike patterns. Thus, this study aimed to clarify the relationship between RE, ground contact time, and thigh muscle cross-sectional area (CSA) in highly trained distance runners and to compare these parameters between 2 habitual footstrike patterns (midfoot vs. rearfoot). Seventeen male distance runners ran on a treadmill to measure RE and gait parameters. We collected the CSAs of the right thigh muscle using a magnetic resonance imaging scanner. The RE had a significant negative relationship with distance running performance ( r = -0.50) and ground contact time ( r = -0.51). The ground contact time had a significant negative relationship with the normalized CSAs of the vastus lateralis muscle ( r = -0.60) and hamstrings ( r = -0.54). No significant differences were found in RE, ground contact time, or normalized CSAs of muscles between midfoot ( n = 10) and rearfoot ( n = 7) strikers. These results suggest that large CSAs of knee extensor muscles results in short ground contact time and worse RE. The effects of the footstrike pattern on the RE appear insignificant, and the preferred footstrike pattern can be recommended for running in highly trained runners.
Collapse
Affiliation(s)
- Fumiya Tanji
- Department of Competitive Sports, Tokai University, Kanagawa, Japan
| | - Hayato Ohnuma
- Faculty of Education, Kansai University of Social Welfare, Hyogo, Japan
| | - Ryosuke Ando
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
- Department of Sport Science and Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Ryo Yamanaka
- Faculty of Agro-Food Science, Niigata Agro-Food University, Niigata, Japan; and
| | - Tatsuaki Ikeda
- Tochigi Institute of Sports Medicine and Science, Tochigi, Japan
| | - Yasuhiro Suzuki
- Center for General Education, Tokyo Keizai University, Tokyo, Japan
| |
Collapse
|
11
|
Van Hooren B, Jukic I, Cox M, Frenken KG, Bautista I, Moore IS. The Relationship Between Running Biomechanics and Running Economy: A Systematic Review and Meta-Analysis of Observational Studies. Sports Med 2024; 54:1269-1316. [PMID: 38446400 PMCID: PMC11127892 DOI: 10.1007/s40279-024-01997-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Running biomechanics is considered an important determinant of running economy (RE). However, studies examining associations between running biomechanics and RE report inconsistent findings. OBJECTIVE The aim of this systematic review was to determine associations between running biomechanics and RE and explore potential causes of inconsistency. METHODS Three databases were searched and monitored up to April 2023. Observational studies were included if they (i) examined associations between running biomechanics and RE, or (ii) compared running biomechanics between groups differing in RE, or (iii) compared RE between groups differing in running biomechanics during level, constant-speed, and submaximal running in healthy humans (18-65 years). Risk of bias was assessed using a modified tool for observational studies and considered in the results interpretation using GRADE. Meta-analyses were performed when two or more studies reported on the same outcome. Meta-regressions were used to explore heterogeneity with speed, coefficient of variation of height, mass, and age as continuous outcomes, and standardization of running shoes, oxygen versus energetic cost, and correction for resting oxygen or energy cost as categorical outcomes. RESULTS Fifty-one studies (n = 1115 participants) were included. Most spatiotemporal outcomes showed trivial and non-significant associations with RE: contact time r = - 0.02 (95% confidence interval [CI] - 0.15 to 0.12); flight time r = 0.11 (- 0.09 to 0.32); stride time r = 0.01 (- 0.8 to 0.50); duty factor r = - 0.06 (- 0.18 to 0.06); stride length r = 0.12 (- 0.15 to 0.38), and swing time r = 0.12 (- 0.13 to 0.36). A higher cadence showed a small significant association with a lower oxygen/energy cost (r = - 0.20 [- 0.35 to - 0.05]). A smaller vertical displacement and higher vertical and leg stiffness showed significant moderate associations with lower oxygen/energy cost (r = 0.35, - 0.31, - 0.28, respectively). Ankle, knee, and hip angles at initial contact, midstance or toe-off as well as their range of motion, peak vertical ground reaction force, mechanical work variables, and electromyographic activation were not significantly associated with RE, although potentially relevant trends were observed for some outcomes. CONCLUSIONS Running biomechanics can explain 4-12% of the between-individual variation in RE when considered in isolation, with this magnitude potentially increasing when combining different variables. Implications for athletes, coaches, wearable technology, and researchers are discussed in the review. PROTOCOL REGISTRATION https://doi.org/10.17605/OSF.IO/293 ND (OpenScience Framework).
Collapse
Affiliation(s)
- Bas Van Hooren
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| | - Ivan Jukic
- Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Maartje Cox
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Koen G Frenken
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Iker Bautista
- Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester, UK
- Department of Physiotherapy, Catholic University of Valencia, Valencia, Spain
| | - Isabel S Moore
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| |
Collapse
|
12
|
Ruiz-Alias SA, Pérez-Castilla A, Soto-Hermoso VM, García-Pinillos F. Influence of the World Athletics Stack Height Regulation on Track Running Performance. J Strength Cond Res 2023; 37:2260-2266. [PMID: 37883402 DOI: 10.1519/jsc.0000000000004523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
ABSTRACT Ruiz-Alias, SA, Pérez-Castilla, A, Soto-Hermoso, VM, and García-Pinillos, F. Influence of the world athletics stack height regulation on track running performance. J Strength Cond Res 37(11): 2260-2266, 2023-A new footwear regulation based on limiting the stack height (i.e., amount of material between the feet and the ground) has been established by World Athletics to ensure that performance is achieved through the primacy of human effort over technology in running shoes. Analyzing the effect of legal and illegal shoes on running performance is therefore needed to determine its effectiveness. Thus, this study aimed (a) to compare the effect of 2 footwear models categorized as legal and illegal by the World Athletics regulation on track running performance and (b) to analyze the derived metrics of the athletes' biomechanics when using each footwear model at racing paces. Within 1 week, 14 highly trained athletes performed 2 testing sessions composed of 2 time trials of 9- and 3-minute duration with 30 minutes of recovery between them. The athletes wore the "Nike ZoomX Dragonfly" track spikes model and the "Nike ZoomX Vaporfly Next % 2" marathon shoe model in a counterbalanced randomized order. The results revealed that (a) there was only a small worthwhile improvement in the 3-minute time trial when using the marathon shoes of 0.97% (-0.04 to 1.98%) and (b) there was a main effect of footwear in 7 of the 9 biomechanical variables analyzed (p ≤ 0.050). The ground contact time was the unique performance predictor (p = 0.005, adjusted R2 = 0.476). Altogether, the use of legal and illegal running shoes altered the runners form, which only influenced the mid-distance performance.
Collapse
Affiliation(s)
- Santiago A Ruiz-Alias
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
| | - Alejandro Pérez-Castilla
- Department of Education, Faculty of Education Sciences, University of Almería, Almería, Spain; and
- SPORT Research Group (CTS-1024), CERNEP Research Center, University of Almería, Almería, Spain
| | - Víctor M Soto-Hermoso
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
| | - Felipe García-Pinillos
- Department of Physical Education and Sport, University of Granada, Granada, Spain
- Sport and Health University Research Center (iMUDS), Granada, Spain
- Department of Physical Education, Sports and Recreation, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
13
|
Fleckenstein D, Seelhöfer J, Walter N, Ueberschär O. From Incremental Test to Continuous Running at Fixed Lactate Thresholds: Individual Responses on %VO 2max, %HR max, Lactate Accumulation, and RPE. Sports (Basel) 2023; 11:198. [PMID: 37888525 PMCID: PMC10611166 DOI: 10.3390/sports11100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/01/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
With Norway's successes in middle and long-distance running, lactate-guided threshold training has regained importance in recent years. Therefore, the aim of the present study was to investigate the individual responses on common monitoring parameters based on a lactate-guided conventional training method. In total, 15 trained runners (10 males, 5 females; 18.6 ± 3.3 years; VO2max: 59.3 ± 5.9 mL kg-1 min-1) completed a 40-min continuous running session at a fixed lactate threshold load of 2 mmol L-1. Lactate (La), oxygen uptake (VO2), heart rate (HR), and rating of perceived exertion (RPE) were recorded. The chosen workload led to lactate values of 2.85 ± 0.56 mmol L-1 (range: 1.90-3.80), a percentage of VO2max utilization (%VO2max) of 79.2 ± 2.5% (range: 74.9-83.8), a percentage of HRmax utilization (%HRmax) of 92.2 ± 2.5% (range: 88.1-95.3), and an RPE of 6.1 ± 1.9 (range: 3-10) at the end of the running session. Thereby, the individual responses differed considerably. These results indicate that a conventional continuous training method based on a fixed lactate threshold can lead to different individual responses, potentially resulting in various physiological impacts. Moreover, correlation analyses suggest that athletes with higher lactate threshold performance levels must choose their intensity in continuous training methods more conservatively (lower percentage intensity based on a fixed threshold) to avoid eliciting excessively strong metabolic responses.
Collapse
Affiliation(s)
- Daniel Fleckenstein
- Department of Endurance Sports, Institute for Applied Training Science, Marschnerstraße 29, 04109 Leipzig, Germany; (D.F.); (J.S.); (N.W.)
| | - Jannik Seelhöfer
- Department of Endurance Sports, Institute for Applied Training Science, Marschnerstraße 29, 04109 Leipzig, Germany; (D.F.); (J.S.); (N.W.)
| | - Nico Walter
- Department of Endurance Sports, Institute for Applied Training Science, Marschnerstraße 29, 04109 Leipzig, Germany; (D.F.); (J.S.); (N.W.)
| | - Olaf Ueberschär
- Department of Biomechanics, Institute for Applied Training Science, Marschnerstraße 29, 04109 Leipzig, Germany
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, 39114 Magdeburg, Germany
| |
Collapse
|
14
|
VO2max and Velocity at VO2max Play a Role in Ultradistance Trail-Running Performance. Int J Sports Physiol Perform 2023; 18:300-305. [PMID: 36754060 DOI: 10.1123/ijspp.2022-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 02/10/2023]
Abstract
PURPOSE Previous research has shown that maximal oxygen uptake (VO2max) significantly influences performance in trail-running races up to 120 km but not beyond. Similarly, the influence of running economy on performance in ultratrail remains unclear. The aim of our study was, therefore, to determine the physiological predictors of performance in a 166-km trail-running race. METHODS Thirty-three experienced trail runners visited the laboratory 4 to 8 weeks before the race to undergo physiological testing including an incremental treadmill test and strength assessments. Correlations and regression analyses were used to determine the physiological variables related to performance. RESULTS Average finishing time was 37:33 (5:52) hours. Performance correlated significantly with VO2max (r = -.724, P < .001), velocity at VO2max (r = -.813, P < .001), lactate turn point expressed as percentage of VO2max (r = -.510, P = .018), cost of running (r = -.560, P = .008), and body fat percentage (r = .527, P = .012) but was not related to isometric strength. Regression analysis showed that velocity at VO2max predicted 65% of the variability in performance (P < .001), while a model combining VO2max and cost of running combined predicted 62% of the variability (P = .008). CONCLUSION This is the first study to show that VO2max and velocity at VO2max are significant predictors of performance in a 166-km trail-running race. This suggests that ultratrail runners should focus on the development of these 2 qualities to optimize their race performance.
Collapse
|
15
|
Casado A, Foster C, Bakken M, Tjelta LI. Does Lactate-Guided Threshold Interval Training within a High-Volume Low-Intensity Approach Represent the "Next Step" in the Evolution of Distance Running Training? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3782. [PMID: 36900796 PMCID: PMC10000870 DOI: 10.3390/ijerph20053782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The aim of the present study was to describe a novel training model based on lactate-guided threshold interval training (LGTIT) within a high-volume, low-intensity approach, which characterizes the training pattern in some world-class middle- and long-distance runners and to review the potential physiological mechanisms explaining its effectiveness. This training model consists of performing three to four LGTIT sessions and one VO2max intensity session weekly. In addition, low intensity running is performed up to an overall volume of 150-180 km/week. During LGTIT sessions, the training pace is dictated by a blood lactate concentration target (i.e., internal rather than external training load), typically ranging from 2 to 4.5 mmol·L-1, measured every one to three repetitions. That intensity may allow for a more rapid recovery through a lower central and peripheral fatigue between high-intensity sessions compared with that of greater intensities and, therefore, a greater weekly volume of these specific workouts. The interval character of LGTIT allows for the achievement of high absolute training speeds and, thus, maximizing the number of motor units recruited, despite a relatively low metabolic intensity (i.e., threshold zone). This model may increase the mitochondrial proliferation through the optimization of both calcium and adenosine monophosphate activated protein kinase (AMPK) signaling pathways.
Collapse
Affiliation(s)
- Arturo Casado
- Center for Sport Studies, Rey Juan Carlos University, 28933 Madrid, Spain
| | - Carl Foster
- Department of Exercise and Sport Science, University of Wisconsin-LaCrosse, La Crosse, WI 54601, USA
| | | | - Leif Inge Tjelta
- Departament of Education and Sports Science, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
16
|
del Arco A, Martinez Aguirre-Betolaza A, Castañeda-Babarro A. Anaerobic Speed Reserve and Middle-Distance Performance: A Systematic Review. Strength Cond J 2023. [DOI: 10.1519/ssc.0000000000000770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Physiology and Performance Prospects of a Women's Sub-4-Minute Mile. Int J Sports Physiol Perform 2022; 17:1537-1542. [PMID: 36028223 DOI: 10.1123/ijspp.2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022]
Abstract
When will women run a sub-4-minute mile? The answer seems to be a distant future given how women's progress has plateaued in the mile, or its better studied metric placeholder, the 1500 m. When commonly accepted energetics principles of running, along with useful field validation equations of the same, are applied to probe the physiology underpinning the 10 all-time best women's mile performances, insights gained may help explain the present 12.34-second shortfall. Insights also afford estimates of how realistic improvements in the metabolic cost of running could shrink the difference and bring the women's world record closer to the fabled 4-minute mark. As with men in the early 1950s, this might stir greater interest, excitement, participation, and depth in the women's mile, the present absence of which likely contributes to more pessimistic mathematical modeling forecasts. The purpose of this invited commentary is to provide a succinct, theoretical, but intuitive explanation for how women might get closer to their own watershed moment in the mile.
Collapse
|
18
|
Hallam L, Ducharme J, Mang Z, Amorim F. The role of the anaerobic speed reserve in female middle-distance running. Sci Sports 2022. [DOI: 10.1016/j.scispo.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
TANJI F, TSUJI T, SHIMAZU W, NABEKURA Y. Distance running performance and physiological variables in highly trained female distance runners. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.19.04202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Anaerobic Speed Reserve, Sprint Force-Velocity Profile, Kinematic Characteristics, and Jump Ability among Elite Male Speed- and Endurance-Adapted Milers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031447. [PMID: 35162462 PMCID: PMC8835231 DOI: 10.3390/ijerph19031447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
Abstract
This study aimed to compare sprint, jump performance, and sprint mechanical variables between endurance-adapted milers (EAM, specialized in 1500–3000-m) and speed-adapted milers (SAM, specialized in 800–1500 m) and to examine the relationships between maximal sprint speed (MSS), anaerobic speed reserve (ASR), sprint, jump performance, and sprint mechanical characteristics of elite middle-distance runners. Fifteen participants (8 EAM; 7 SAM) were evaluated to obtain their maximal aerobic speed, sprint mechanical characteristics (force–velocity profile and kinematic variables), jump, and sprint performance. SAM displayed greater MSS, ASR, horizontal jump, sprint performance, and mechanical ability than EAM (p < 0.05). SAM also showed higher stiffness in the 40-m sprint (p = 0.026) and a higher ratio of horizontal-to-resultant force (RF) at 10 m (p = 0.003) and RFpeak (p = 0.024). MSS and ASR correlated with horizontal (r = 0.76) and vertical (r = 0.64) jumps, all sprint split times (r ≤ −0.85), stiffness (r = 0.86), and mechanical characteristics (r ≥ 0.56) during the 100-m sprint, and physical qualities during acceleration (r ≥ 0.66) and sprint mechanical effectiveness from the force–velocity profile (r ≥ 0.69). Season-best times in the 800 m were significantly correlated with MSS (r = −0.86). Sprint ability has a crucial relevance in middle-distance runners’ performance, especially for SAM.
Collapse
|
21
|
Alternative Metabolic Strategies are Employed by Endurance Runners of Different Body Sizes; Implications for Human Evolution. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2022. [DOI: 10.1007/s40750-021-00183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Objective
A suite of adaptations facilitating endurance running (ER) evolved within the hominin lineage. This may have improved our ability to reach scavenging sites before competitors, or to hunt prey over long distances. Running economy (RE) is a key determinant of endurance running performance, and depends largely on the magnitude of force required to support body mass. However, numerous environmental factors influence body mass, thereby significantly affecting RE. This study tested the hypothesis that alternative metabolic strategies may have emerged to enable ER in individuals with larger body mass and poor RE.
Methods
A cohort of male (n = 25) and female (n = 19) ultra-endurance runners completed submaximal and exhaustive treadmill protocols to determine RE, and V̇O2Max.
Results
Body mass was positively associated with sub-maximal oxygen consumption at both LT1 (male r=0.66, p<0.001; female LT1 r=0.23, p=0.177) and LT2 (male r=0.59, p=0.001; female r=0.23, p=0.183) and also with V̇O2Max (male r=0.60, p=0.001; female r=0.41, p=0.046). Additionally, sub-maximal oxygen consumption varied positively with V̇O2Max in both male (LT1 r=0.54, p=0.003; LT2 r=0.77, p<0.001) and female athletes (LT1 r=0.88, p<0.001; LT2 r=0.92, p<0.001).
Conclusions
The results suggest that, while individuals with low mass and good RE can glide economically as they run, larger individuals can compensate for the negative effects their mass has on RE by increasing their capacity to consume oxygen. The elevated energy expenditure of this low-economy high-energy turnover approach to ER may bring costs associated with energy diversion away from other physiological processes, however.
Collapse
|
22
|
Sandford GN, Laursen PB, Buchheit M. Anaerobic Speed/Power Reserve and Sport Performance: Scientific Basis, Current Applications and Future Directions. Sports Med 2021; 51:2017-2028. [PMID: 34398445 DOI: 10.1007/s40279-021-01523-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 10/20/2022]
Abstract
Many individual and team sport events require extended periods of exercise above the speed or power associated with maximal oxygen uptake (i.e., maximal aerobic speed/power, MAS/MAP). In the absence of valid and reliable measures of anaerobic metabolism, the anaerobic speed/power reserve (ASR/APR) concept, defined as the difference between an athlete's MAS/MAP and their maximal sprinting speed (MSS)/peak power (MPP), advances our understanding of athlete tolerance to high speed/power efforts in this range. When exercising at speeds above MAS/MAP, what likely matters most, irrespective of athlete profile or locomotor mode, is the proportion of the ASR/APR used, rather than the more commonly used reference to percent MAS/MAP. The locomotor construct of ASR/APR offers numerous underexplored opportunities. In particular, how differences in underlying athlete profiles (e.g., fiber typology) impact the training response for different 'speed', 'endurance' or 'hybrid' profiles is now emerging. Such an individualized approach to athlete training may be necessary to avoid 'maladaptive' or 'non-responses'. As a starting point for coaches and practitioners, we recommend upfront locomotor profiling to guide training content at both the macro (understanding athlete profile variability and training model selection, e.g., annual periodization) and micro levels (weekly daily planning of individual workouts, e.g., short vs long intervals vs repeated sprint training and recovery time between workouts). More specifically, we argue that high-intensity interval training formats should be tailored to the locomotor profile accordingly. New focus and appreciation for the ASR/APR is required to individualize training appropriately so as to maximize athlete preparation for elite competition.
Collapse
Affiliation(s)
- Gareth N Sandford
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada. .,Canadian Sport Institute-Pacific, 4371 Interurban Road, Victoria, BC, V9E 2C5, Canada. .,Athletics Canada, Ottawa, ON, Canada.
| | - Paul B Laursen
- Sports Performance Research Institute NZ, Auckland University of Technology, Auckland, New Zealand.,HIIT Science, Revelstoke, BC, Canada
| | - Martin Buchheit
- HIIT Science, Revelstoke, BC, Canada.,Research Department, Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Kitman Labs, Performance Research Intelligence Initiative, Dublin, Ireland
| |
Collapse
|
23
|
Bellinger P, Derave W, Lievens E, Kennedy B, Arnold B, Rice H, Minahan C. Determinants of Performance in Paced and Maximal 800-m Running Time Trials. Med Sci Sports Exerc 2021; 53:2635-2644. [PMID: 34310491 DOI: 10.1249/mss.0000000000002755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We aimed to identify the underpinning physiological and speed/mechanical determinants of different types of 800-m running time trials (i.e., with a positive or negative pacing strategy) and key components within each 800-m time trial (i.e., first and final 200-m). METHODS Twenty trained male 800-m runners (800-m personal best time (min:s): 1:55.10 ± 0:04.44) completed a maximal 800-m time trial (800MAX) and one pacing trial, whereby runners were paced for the first lap and speed was reduced by 7.5% (800PACE) relative to 800MAX, while the last lap was completed in the fastest time possible. Anaerobic speed reserve, running economy, the velocity corresponding with VO2peak (VVO2peak), maximal sprint speed (MAXSS), maximal accumulated oxygen deficit and sprint force-velocity-power profiles were derived from laboratory and field testing. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and soleus and expressed as a carnosine aggregate Z-score (CAZ-score) to estimate muscle typology. Data were analysed using multiple stepwise regression analysis. RESULTS MAXSS and vVO2peak largely explained the variation in 800MAX time (r2 = 0.570; P = 0.020), while MAXSS was the best explanatory variable for the first 200-m time in 800MAX (adjusted r2 = 0.661, P < 0.001). Runners with a higher CAZ-score (i.e., higher estimated percentage of type II fibres) reduced their last lap time to a greater extent in 800PACE relative to 800MAX (adjusted r2 = 0.413, P < 0.001), while better maintenance of mechanical effectiveness during sprinting, a higher CAZ-score and vVO2peak was associated with a faster final 200-m time during 800PACE (adjusted r2 = 0.761, P = 0.001). CONCLUSION These findings highlight that diversity in the physiological and speed/mechanical characteristics of male middle-distance runners may be associated with their suitability for different 800-m racing strategies in order to have the best chance of winning.
Collapse
Affiliation(s)
- Phillip Bellinger
- Griffith Sports Science, Griffith University, Gold Coast, Queensland, Australia. Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium Mermaid Beach Radiology, Queensland, Australia Qscan Radiology Clinics, Australia
| | | | | | | | | | | | | |
Collapse
|
24
|
Støren Ø, Helgerud J, Johansen JM, Gjerløw LE, Aamlid A, Støa EM. Aerobic and Anaerobic Speed Predicts 800-m Running Performance in Young Recreational Runners. Front Physiol 2021; 12:672141. [PMID: 34093233 PMCID: PMC8176219 DOI: 10.3389/fphys.2021.672141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
The main aim was to investigate the impact of maximal aerobic speed (MAS), maximal anaerobic speed (MANS), and time to exhaustion (TTE) at 130% MAS, on 800-m running time performance (800TT). A second aim was to investigate the impact of anaerobic speed reserve (ASR), i.e., the relative difference between MAS and MANS, on TTE. A total of 22 healthy students classified as recreational runners participated in a cross-sectional study. They were tested for maximal oxygen consumption (VO2max), oxygen cost of running (CR), time performance at 100 m (100TT), time performance at 800 m (800TT), and TTE. MAS was calculated as VO2max × CR–1, and MANS was calculated as 100TT velocity. Both MAS and MANS correlated individually with 800TT (r = –0.74 and –0.67, respectively, p < 0.01), and the product of MAS and MANS correlated strongly (r = –0.82, p < 0.01) with 800TT. TTE did not correlate with 800TT. Both ASR and % MANS correlated strongly with TTE (r = 0.90 and –0.90, respectively, p < 0.01). These results showed that 800TT was first and foremost dependent on MAS and MANS, and with no impact from TTE. It seemed that TTE was merely a product of each runner’s individual ASR. We suggest a simplified model of testing and training for 800TT, namely, by focusing on VO2max, CR, and short sprint velocity, i.e., MAS and MANS.
Collapse
Affiliation(s)
- Øyvind Støren
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Myworkout, Medical Rehabilitation Centre, Trondheim, Norway
| | - Jan-Michael Johansen
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø, Norway.,Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Lars-Erik Gjerløw
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Aanund Aamlid
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| | - Eva Maria Støa
- Department of Sports, Physical Education and Outdoor Studies, University of South-Eastern Norway, Bø, Norway
| |
Collapse
|
25
|
Crossing the Golden Training Divide: The Science and Practice of Training World-Class 800- and 1500-m Runners. Sports Med 2021; 51:1835-1854. [PMID: 34021488 PMCID: PMC8363530 DOI: 10.1007/s40279-021-01481-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 11/24/2022]
Abstract
Despite an increasing amount of research devoted to middle-distance training (herein the 800 and 1500 m events), information regarding the training methodologies of world-class runners is limited. Therefore, the objective of this review was to integrate scientific and best practice literature and outline a novel framework for understanding the training and development of elite middle-distance performance. Herein, we describe how well-known training principles and fundamental training characteristics are applied by world-leading middle-distance coaches and athletes to meet the physiological and neuromuscular demands of 800 and 1500 m. Large diversities in physiological profiles and training emerge among middle-distance runners, justifying a categorization into types across a continuum (400–800 m types, 800 m specialists, 800–1500 m types, 1500 m specialists and 1500–5000 m types). Larger running volumes (120–170 vs. 50–120 km·week−1 during the preparation period) and higher aerobic/anaerobic training distribution (90/10 vs. 60/40% of the annual running sessions below vs. at or above anaerobic threshold) distinguish 1500- and 800-m runners. Lactate tolerance and lactate production training are regularly included interval sessions by middle-distance runners, particularly among 800-m athletes. In addition, 800-m runners perform more strength, power and plyometric training than 1500-m runners. Although the literature is biased towards men and “long-distance thinking,” this review provides a point of departure for scientists and practitioners to further explore and quantify the training and development of elite 800- and 1500-m running performance and serves as a position statement for outlining current state-of-the-art middle-distance training recommendations.
Collapse
|
26
|
Senefeld JW, Shepherd JRA, Baker SE, Joyner MJ. Sex-based limits to running speed in the human, horse and dog: The role of sexual dimorphisms. FASEB J 2021; 35:e21562. [PMID: 33913189 PMCID: PMC8444096 DOI: 10.1096/fj.202100161r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 01/27/2023]
Abstract
Elite performing men continue to record faster record times in running events compared to women. These sex-based differences in running speed and endurance in humans are expected based on sexual dimorphisms that contribute to differences in the determinants of aerobic performance. Comparatively, the sexual dimorphisms contributing to sex-based differences in elite aerobic performance are not ubiquitous across other species that compete in running events. The purpose of this review is to offer a framework and model for ongoing discussions of the physiological determinants and ultimately limits of physical performance. The records for average running speed of champion athletes were delineated by sex for thoroughbred horses, greyhound dogs, and humans. Male and female performances within each of these species are being optimized by training, nutrition, and financial incentives, and are approaching a performance maximum. For horses and greyhounds breeding also plays a role. Analysis of athletic records shows that there is a sex-related difference of ~10% or more in elite athletic performance for humans; however, the upper limit of performance does not appear to be different between sexes for thoroughbred horses and greyhound dogs. In the context of the nil sex differences in running performance in thoroughbreds and greyhounds, we discuss the physiological role of sexual dimorphisms on sex-specific limits to running performance. We highlight that studies on both human and animal performance in athletic events stimulate critical physiological questions and drive novel research.
Collapse
Affiliation(s)
- Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - John R A Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Howe CCF, Swann N, Spendiff O, Kosciuk A, Pummell EKL, Moir HJ. Performance determinants, running energetics and spatiotemporal gait parameters during a treadmill ultramarathon. Eur J Appl Physiol 2021; 121:1759-1771. [PMID: 33704547 PMCID: PMC8144128 DOI: 10.1007/s00421-021-04643-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/13/2021] [Indexed: 11/30/2022]
Abstract
Purpose The objective of this study was to investigate the changes in metabolic variables, running energetics and spatiotemporal gait parameters during an 80.5 km treadmill ultramarathon and establish which key predictive variables best determine ultramarathon performance. Methods Twelve participants (9 male and 3 female, age 34 ± 7 years, and maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max) 60.4 ± 5.8 ml·kg−1·min−1) completed an 80.5 km time trial on a motorised treadmill in the fastest possible time. Metabolic variables: oxygen consumption (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2), carbon dioxide production (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙CO2) and pulmonary ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙E) were measured via indirect calorimetry every 16.1 km at a controlled speed of 8 km·h−1 and used to calculate respiratory exchange ratio (RER), the energy cost of running (Cr) and fractional utilisation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2max (F). Spatiotemporal gait parameters: stride length (SL) and cadence (SPM) were calculated via tri-axial accelerometery. Results Trial completion time was 09:00:18 ± 01:14:07 (hh:mm:ss). There were significant increases in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙O2, Cr, F, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}$$\end{document}V˙E and heart rate (HR) (p < 0.01); a significant decrease in RER (p < 0.01) and no change in SL and SPM (p > 0.05) across the measured timepoints. F and Cr accounted for 61% of the variance in elapsed finish time (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{{{\text{adj}}}}^{{2}}$$\end{document}Radj2 = 0.607, p < 0.01). Conclusion A treadmill ultramarathon elicits significant changes in metabolic variables, running energetics and spatiotemporal gait parameters. With F and Cr explaining 61% of variance in finish time. Therefore, those able to maintain a higher F, while adopting strategies to minimise an increase in Cr may be best placed to maximise ultramarathon performance.
Collapse
Affiliation(s)
- Christopher C F Howe
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK.
| | - Nicola Swann
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK
| | - Owen Spendiff
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK
| | - Anna Kosciuk
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK
| | - Elizabeth K L Pummell
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK
| | - Hannah J Moir
- School of Life Sciences, Pharmacy and Chemistry, Faculty of Science Engineering and Computing, Kingston University London, Penryhn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
28
|
Differentiating Endurance-and Speed-Adapted Types of Elite and World Class Milers According to Biomechanical, Pacing and Perceptual Responses during a Sprint Interval Session. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052448. [PMID: 33801482 PMCID: PMC7967577 DOI: 10.3390/ijerph18052448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022]
Abstract
The aim was to compare pacing, biomechanical and perceptual responses between elite speed-and endurance-adapted milers during a sprint interval training session (SIT). Twenty elite and world-class middle-distance runners (male: n = 16, female: n = 4; 24.95 ± 5.18 years; 60.89 ± 7 kg) were classified as either speed- or endurance-adapted milers according to their recent performances at 800 m or longer races than 1500 m (10 subjects per group). Participants performed 10 repetitions of 100 m sprints with 2 min of active recovery between each, and performance, perceptual and biomechanical responses were collected. The difference between accumulated times of the last and the first five repetitions was higher in speed-adapted milers (ES = 1.07) displaying a more positive pacing strategy. A higher coefficient of variation (CV%) was displayed across the session by speed-adapted milers in average repetition time, contact time, and affective valence (ES ≥ 1.15). Speed-adapted milers experienced lower rates of valence after the 4th repetition excepting at the 8th repetition (ES ≥ 0.99). Speed-adapted milers may need to display a more positive pacing profile than endurance-adapted milers and, therefore, would experience lower levels of affective valence and a more rapid increase of ground contact time during a SIT.
Collapse
|
29
|
Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport? Sports Med 2021; 51:895-915. [PMID: 33502701 DOI: 10.1007/s40279-020-01417-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 01/09/2023]
Abstract
Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport have roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~ 10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-distance swimming. The issue is complex, however, with many sports-specific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue resistance, greater substrate efficiency, and lower energetic demands), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/injury risk). Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are those that females less often contest. The title question should be revisited in the coming years, when/if the number of female participants increases.
Collapse
|
30
|
Casado A, García-Manso JM, Romero-Franco N, Martínez-Patiño MJ. Pacing strategies during male 1500 m running world record performances. Res Sports Med 2021; 29:593-597. [PMID: 33501849 DOI: 10.1080/15438627.2021.1878459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim was to determine the pacing strategies used to achieve male 1500 m running world record performances. Lap times (three first laps and the last 300 m) for the last 37 male 1500 m world record performances achieved since 1917 until 1998 were collected. An analysis of variance with repeated measures and a Bonferroni post hoc test were conducted to determine differences between the percentages of race average speed at each lap. Lap 1 and last 300 m differed from lap 2 and 3, being the latter slower (P < 0.001, 1.44 ≤ ES ≤ 1.95), and displaying a U-shaped pacing profile. Whereas the pacing strategies observed differed from those previously determined for major championship races, a fast endspurt was always present and therefore athletes aiming for a world standard performance should train for developing their anaerobic capacity in addition to a high aerobic power.
Collapse
Affiliation(s)
- Arturo Casado
- Centre for Sport Studies, Rey Juan Carlos University, Móstoles, Spain
| | | | - Natalia Romero-Franco
- Nursing and Physiotherapy Department, University of the Balearic Islands, Palma de Mallorca, Spain
| | | |
Collapse
|
31
|
Bliss A, Waldron M, Maxwell N. Predicting middle-distance track and cross-country performances of national and international level adolescent runners. Eur J Sport Sci 2021; 22:305-313. [PMID: 33460365 DOI: 10.1080/17461391.2020.1867650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThis study evaluated the contribution of physiological data collected during laboratory testing in predicting race performances of trained junior middle-distance track (TK) and cross-country (XC) athletes. Participants performed a submaximal incremental ramp test, followed by an incremental test to exhaustion in a laboratory, with the results used to predict either 800 m TK, 1500 m TK or 4000-6000 m XC race performance. Twenty-eight participants (male (M), 15; female (F), 13) were analysed (age = 17 ± 2 years, height = 1.72 ± 0.08 m, body mass = 58.9 ± 8.9 kg). Performance times (min:s) for 800 m were: M, 1:56.55 ± 0:05.55 and F, 2:14.21 ± 0:03.89; 1500 m: M, 3:51.98 ± 0:07.35 and F 4:36.71 ± 0:16.58; XC: M (4900 ± 741 m), 16:00 ± 01:53; F (4628 ± 670 m), 17:41 ± 02:09. Stepwise regression analysis indicated significant contributions of speed at V̇O2max (V̇O2max), and heart rate maximum (HRmax) to the prediction of 800 m TK (F(2,15) = 22.51, p < 0.001, adjusted R2 = 0.72), V̇O2max for 1500 m TK (F(1,13) = 36.65, p < 0.001, adjusted R2 = 0.72) and V̇O2max, allometrically scaled to body mass and speed at lactate threshold (sLT) for XC (F(2,17) = 25.1, p < 0.001, adjusted R2 = 0.72). Laboratory-based physiological measures can explain 72% of the variance in junior TK and XC events, although factors that explain performance alter depending on the race distance and tactics. The factors determining performance in TK and XC events are not interchangeable.
Collapse
Affiliation(s)
- Alex Bliss
- Faculty of Sport, Applied Health and Performance Sciences, St Mary's University, London, UK
| | - Mark Waldron
- College of Engineering, Swansea University, Swansea, UK.,School of Science and Technology, University of New England, Armidale, Australia
| | - Neil Maxwell
- School of Sport and Service Management, University of Brighton, UK
| |
Collapse
|
32
|
Determinants of last lap speed in paced and maximal 1500-m time trials. Eur J Appl Physiol 2020; 121:525-537. [PMID: 33151439 DOI: 10.1007/s00421-020-04543-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The present study identified the physiological and performance characteristics that are deterministic during a maximal 1500-m time trial and in paced 1500-m time trials, with an all-out last lap. METHODS Thirty-two trained middle-distance runners (n = 21 male, VO2peak: 72.1 ± 3.2; n = 11, female, VO2peak: 61.2 ± 3.7 mL kg-1 min-1) completed a 1500-m time trial in the fastest time possible (1500FAST) as well as a 1500MOD and 1500SLOW trial whereby mean speed was reduced during the 0-1100 m by 5% and 10%, respectively. Anaerobic speed reserve (ASR), running economy (RE), the velocity corresponding with VO2peak (VVO2peak), maximal sprint speed (MSS) and maximal accumulated oxygen deficit (MAOD) were determined during additional testing. Carnosine content was quantified by proton magnetic resonance spectroscopy in the gastrocnemius and expressed as a Z-score to estimate muscle fibre typology. RESULTS 1500FAST time was best explained by RE and VVO2peak in female runners (adjusted r2 = 0.80, P < 0.001), in addition to the 0-1100-m speed relative to VVO2peak in male runners (adjusted r2 = 0.72, P < 0.001). Runners with a higher gastrocnemius carnosine Z-score (i.e., higher estimated percentage of type II fibres) and greater MAOD, reduced their last lap time to a greater extent in the paced 1500-m trials. Neither ASR nor MSS was associated with last lap time in the paced trials. CONCLUSION These findings suggest that VVO2 peak and RE are key determinants of 1500-m running performance with a sustained pace from the start, while a higher carnosine Z-score and MAOD are more important for last lap speed in tactical 1500-m races.
Collapse
|
33
|
Bachero-Mena B, González-Badillo JJ. Strength performance profile in 800-m athletes: a comparison between high, medium, and low performance levels. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2020. [DOI: 10.23736/s0393-3660.19.04156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Maximal Sprint Speed and the Anaerobic Speed Reserve Domain: The Untapped Tools that Differentiate the World's Best Male 800 m Runners. Sports Med 2020; 49:843-852. [PMID: 30374943 DOI: 10.1007/s40279-018-1010-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent evidence indicates that the modern-day men's 800 m runner requires a speed capability beyond that of previous eras. In addition, the appreciation of different athlete subgroups (400-800, 800, 800-1500 m) implies a complex interplay between the mechanical (aerial or terrestrial) and physiological characteristics that enable success in any individual runner. Historically, coach education for middle-distance running often emphasises aerobic metabolic conditioning, while it relatively lacks consideration for an important neuromuscular and mechanical component. Consequently, many 800 m runners today may lack the mechanical competence needed to achieve the relaxed race pace speed required for success, resulting in limited ability to cope with surges, run faster first laps or close fast. Mechanical competence may refer to the skilled coordination of neuromuscular/mechanical (stride length/frequency/impulse) and metabolic components needed to sustain middle-distance race pace and adjust to surges efficiently. The anaerobic speed reserve (ASR) construct (difference between an athlete's velocity at maximal oxygen uptake [v[Formula: see text]O2max]-the first speed at which maximal oxygen uptake [[Formula: see text]O2max] is attained) and their maximal sprint speed (MSS) offers a framework to assess a runner's speed range relative to modern-day race demands. While the smooth and relaxed technique observed in middle-distance runners is often considered causal to running economy measured during submaximal running, little empirical evidence supports such an assumption. Thus, a multidisciplinary approach is needed to examine the underpinning factors enabling elite 800 m running race pace efficiency. Here, we argue for the importance of utilising the ASR and MSS measurement to ensure middle-distance runners have the skills to compete in the race-defining surges of modern-day 800 m running.
Collapse
|
35
|
Dokumacı B, Hazır T. Effects of the Menstrual Cycle on Running Economy: Oxygen Cost Versus Caloric Cost. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2019; 90:318-326. [PMID: 31058585 DOI: 10.1080/02701367.2019.1599800] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Purpose: This study investigated the effects of the menstrual cycle on running economy (RE). Method: Eleven eumenorrheic female athletes (mean age: 21.18 ± 3.65 years, height: 170.2 ± 6.6 cm, VO2max: 49.25 ± 9.15 mL·kg-1·min-1, and menstrual cycle: 29.8 ± 0.98 days) were tested for anthropometric variables, physiological responses (oxygen consumption [VO2], blood lactate [LA], heart rate [HR], and respiratory exchange ratio [RER]) at rest and while running. The RE was measured at speeds of 75%, 85%, and 95% of the lactate threshold at 3.5 mmol·L-1 during the follicular (FP) and luteal phases (LP) of the menstrual cycle. The RE was evaluated as oxygen consumption (mL·kg·min-1 [O2C_min], mL·kg-1·km-1 [O2C_km]) and caloric unit cost (kcal·kg-1·km-1 [EC]) during both phases. Results: There were no significant differences in body composition or resting physiological measurements between the LP and FP (p > .05). Physiological responses measured during RE tests were similar in both phases (p > .05). The RE measured as O2C_min, O2C_km, and EC was significantly lower during the LP than during the FP (p < .05). The RE defined as O2C_ min significantly increased with speed (p < .05), but RE defined as O2C_km and EC was unaffected by speed increment (p > .05). Conclusions: The RE is better in the LP than the FP and is independent of running speed when RE is evaluated as O2C_km and EC. The menstrual cycle had no effect on body composition and physiological variables measured at rest.
Collapse
|
36
|
Quantification of aerobic determinants of performance in post-pubertal adolescent middle-distance runners. Eur J Appl Physiol 2019; 119:1865-1874. [PMID: 31209572 PMCID: PMC6647242 DOI: 10.1007/s00421-019-04175-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/07/2019] [Indexed: 10/28/2022]
Abstract
PURPOSE The use of oxygen cost ([Formula: see text]aero) parameters to predict endurance performance has recently been criticized. Instead, it is suggested that aerobic energy cost ([Formula: see text]) provides greater validity; however, a comparison of these quantification methods has not previously been made. METHODS Fifty-six male (n = 34) and female (n = 22) competitive adolescent (17 ± 1 years) middle-distance runners participated in a sub-maximal and maximal incremental treadmill test. Running economy (RE) was measured at the speed corresponding to lactate turnpoint, and the three speeds prior. Maximal oxygen uptake ([Formula: see text]O2max), speed at [Formula: see text]O2max and fraction of [Formula: see text]O2max utilized across a range of intensities, and speeds from 0.8, 1.5 and 3 km races were also quantified. RE and fractional utilization were calculated in units of [Formula: see text]aero and [Formula: see text]aero. RESULTS Multiple linear regression models demonstrated no discernible difference in the predictive capability of RE, fractional utilization and [Formula: see text]O2max when expressed as [Formula: see text]aero or [Formula: see text]aero in both sexes. When plotted as a function of running speed, [Formula: see text]aero displayed a stepwise decrease (F = 11.59, p < 0.001) whereas [Formula: see text]aero exhibited a curvilinear response (F = 4.74, p = 0.015). Differences were also evident in the slopes plotted for %[Formula: see text]O2max and %[Formula: see text]aeromax against running speed (F = 5.38, p = 0.021). CONCLUSIONS Quantifying aerobic determinants of performance in units of [Formula: see text]aero provides no greater validity compared to [Formula: see text]aero-based measurement. Although both [Formula: see text]aero and [Formula: see text]aero are sensitive to changes in speed, [Formula: see text]aero provides the more valid reflection of the underlying metabolic cost of running. Physiologists should also be aware of the potential differences between expression of aerobic running intensity based upon %[Formula: see text]O2max compared to %[Formula: see text]aeromax.
Collapse
|
37
|
Blagrove RC, Howe LP, Cushion EJ, Spence A, Howatson G, Pedlar CR, Hayes PR. Effects of Strength Training on Postpubertal Adolescent Distance Runners. Med Sci Sports Exerc 2019; 50:1224-1232. [PMID: 29315164 DOI: 10.1249/mss.0000000000001543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Strength training activities have consistently been shown to improve running economy (RE) and neuromuscular characteristics, such as force-producing ability and maximal speed, in adult distance runners. However, the effects on adolescent (<18 yr) runners remains elusive. This randomized control trial aimed to examine the effect of strength training on several important physiological and neuromuscular qualities associated with distance running performance. METHODS Participants (n = 25, 13 female, 17.2 ± 1.2 yr) were paired according to their sex and RE and randomly assigned to a 10-wk strength training group (STG) or a control group who continued their regular training. The STG performed twice weekly sessions of plyometric, sprint, and resistance training in addition to their normal running. Outcome measures included body mass, maximal oxygen uptake (V˙O2max), speed at V˙O2max, RE (quantified as energy cost), speed at fixed blood lactate concentrations, 20-m sprint, and maximal voluntary contraction during an isometric quarter-squat. RESULTS Eighteen participants (STG: n = 9, 16.1 ± 1.1 yr; control group: n = 9, 17.6 ± 1.2 yr) completed the study. The STG displayed small improvements (3.2%-3.7%; effect size (ES), 0.31-0.51) in RE that were inferred as "possibly beneficial" for an average of three submaximal speeds. Trivial or small changes were observed for body composition variables, V˙O2max and speed at V˙O2max; however, the training period provided likely benefits to speed at fixed blood lactate concentrations in both groups. Strength training elicited a very likely benefit and a possible benefit to sprint time (ES, 0.32) and maximal voluntary contraction (ES, 0.86), respectively. CONCLUSIONS Ten weeks of strength training added to the program of a postpubertal distance runner was highly likely to improve maximal speed and enhances RE by a small extent, without deleterious effects on body composition or other aerobic parameters.
Collapse
Affiliation(s)
- Richard C Blagrove
- Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, UNITED KINGDOM.,Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM
| | - Louis P Howe
- Department of Medical and Sports Sciences, University of Cumbria, UNITED KINGDOM
| | - Emily J Cushion
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM
| | - Adam Spence
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM.,Water Research Group, Northwest University, Potchefstroom, SOUTH AFRICA
| | - Charles R Pedlar
- School of Sport, Health and Applied Science, St Mary's University, Twickenham, UNITED KINGDOM.,Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA
| | - Philip R Hayes
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-upon-Tyne, UNITED KINGDOM
| |
Collapse
|
38
|
Abstract
PURPOSE In recent years (2011-2016), men's 800-m championship running performances have required greater speed than previous eras (2000-2009). The "anaerobic speed reserve" (ASR) may be a key differentiator of this performance, but profiles of elite 800-m runners and their relationship to performance time have yet to be determined. METHODS The ASR-determined as the difference between maximal sprint speed (MSS) and predicted maximal aerobic speed (MAS)-of 19 elite 800- and 1500-m runners was assessed using 50-m sprint and 1500-m race performance times. Profiles of 3 athlete subgroups were examined using cluster analysis and the speed reserve ratio (SRR), defined as MSS/MAS. RESULTS For the same MAS, MSS and ASR showed very large negative (both r = -.74 ± .30, ±90% confidence limits; very likely) relationships with 800-m performance time. In contrast, for the same MSS, ASR and MAS had small negative relationships (both r = -.16 ± .54; possibly) with 800-m performance. ASR, 800-m personal best, and SRR best defined the 3 subgroups along a continuum of 800-m runners, with SRR values as follows: 400-800 m ≥ 1.58, 800 m ≤ 1.57 to ≥ 1.48, and 800-1500 m ≤ 1.47 to ≥ 1.36. CONCLUSION MSS had the strongest relationship with 800-m performance, whereby for the same MSS, MAS and ASR showed only small relationships to differences in 800-m time. Furthermore, the findings support the coaching observation of three 800-m subgroups, with the SRR potentially representing a useful and practical tool for identifying an athlete's 800-m profile. Future investigations should consider the SRR framework and its application for individualized training approaches in this event.
Collapse
|
39
|
O Sullivan IJ, Johnson MI, Hind K, Breen S, Francis P. Are changes in running economy associated with changes in performance in runners? A systematic review and meta-analysis. J Sports Sci 2019; 37:1521-1533. [PMID: 30810467 DOI: 10.1080/02640414.2019.1575177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Improvements in running economy (RE) are thought to lead to improvements in running performance (P). Multiple interventions have been designed with the aim of improving RE in middle and long-distance runners. The aim of this study was to assess the effect of interventions of at least 2-weeks' duration on RE and P and to determine whether there is a relationship between changes in RE (ΔRE) and changes in running performance (ΔP). A database search was carried out in Web of Science, Scopus and SPORTDiscus. In accordance with a PRISMA checklist 10 studies reporting 12 comparisons between interventions and controls were included in the review. There was no correlation between percentage ΔRE and percentage ΔP (r = 0.46, P = 0.936, 12 comparisons). There was a low risk of reporting bias but an unclear risk of bias for other items. Meta-analyses found no statistically significant differences between interventions and controls for RE (SMD (95% CI) = -0.37 (-1.43, 0.69), 204 participants, p = 0.49) or for P (SMD (95% CI) = -0.65 (-26.02, 24.72, 204 participants, p = 0.99). There is a need for studies of greater statistical power, methodological quality, duration and homogeneity of intervention and population. Standardised measures of performance and greater control over non-intervention training are also required.
Collapse
Affiliation(s)
- Ian J O Sullivan
- a Musculoskeletal Health Research Group, School of Clinical and Applied Science , Leeds Beckett University , Leeds , UK
| | - Mark I Johnson
- b Centre for Pain Research, Leeds Beckett University, School of Clinical and Applied Science , Leeds Beckett University , Leeds , UK
| | - Karen Hind
- c Research Institute for Sport, Physical Activity and Leisure , Leeds Beckett University , Leeds , UK
| | - Sarah Breen
- d School of Health and Human Performance , Northern Michigan University , Marquette , MI , USA
| | - Peter Francis
- a Musculoskeletal Health Research Group, School of Clinical and Applied Science , Leeds Beckett University , Leeds , UK
| |
Collapse
|
40
|
Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sports Med 2018; 48:1117-1149. [PMID: 29249083 PMCID: PMC5889786 DOI: 10.1007/s40279-017-0835-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Middle- and long-distance running performance is constrained by several important aerobic and anaerobic parameters. The efficacy of strength training (ST) for distance runners has received considerable attention in the literature. However, to date, the results of these studies have not been fully synthesized in a review on the topic. Objectives This systematic review aimed to provide a comprehensive critical commentary on the current literature that has examined the effects of ST modalities on the physiological determinants and performance of middle- and long-distance runners, and offer recommendations for best practice. Methods Electronic databases were searched using a variety of key words relating to ST exercise and distance running. This search was supplemented with citation tracking. To be eligible for inclusion, a study was required to meet the following criteria: participants were middle- or long-distance runners with ≥ 6 months experience, a ST intervention (heavy resistance training, explosive resistance training, or plyometric training) lasting ≥ 4 weeks was applied, a running only control group was used, data on one or more physiological variables was reported. Two independent assessors deemed that 24 studies fully met the criteria for inclusion. Methodological rigor was assessed for each study using the PEDro scale. Results PEDro scores revealed internal validity of 4, 5, or 6 for the studies reviewed. Running economy (RE) was measured in 20 of the studies and generally showed improvements (2–8%) compared to a control group, although this was not always the case. Time trial (TT) performance (1.5–10 km) and anaerobic speed qualities also tended to improve following ST. Other parameters [maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{ \hbox{max} }}}$$\end{document}V˙O2max), velocity at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{V}{\text{O}}_{{2{ \hbox{max} }}}$$\end{document}V˙O2max, blood lactate, body composition] were typically unaffected by ST. Conclusion Whilst there was good evidence that ST improves RE, TT, and sprint performance, this was not a consistent finding across all works that were reviewed. Several important methodological differences and limitations are highlighted, which may explain the discrepancies in findings and should be considered in future investigations in this area. Importantly for the distance runner, measures relating to body composition are not negatively impacted by a ST intervention. The addition of two to three ST sessions per week, which include a variety of ST modalities are likely to provide benefits to the performance of middle- and long-distance runners.
Collapse
|
41
|
Filipas L, Nerli Ballati E, Bonato M, La Torre A, Piacentini MF. Elite Male and Female 800-m Runners' Display of Different Pacing Strategies During Season-Best Performances. Int J Sports Physiol Perform 2018; 13:1344-1348. [PMID: 29745743 DOI: 10.1123/ijspp.2018-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 11/18/2022]
Abstract
PURPOSE To analyze the pacing profiles of the world's top 800-m annual performances between 2010 and 2016, comparing men's and women's strategies. METHODS A total of 142 performances were characterized for overall race times and 0-to-200-m, 200-to-400-m, 400-to-600-m, and 600-to-800-m split times using available footage from YouTube. Only the best annual performance for each athlete was considered. Overall race and split speed were calculated so that each lap speed could be expressed as a percentage of the mean race speed. RESULTS The mean speed of the men's 800-m was 7.73 (0.06) m·s-1, with the 0-to-200-m split faster than the others. After the first split, the speed decreased significantly during the 3 subsequent splits (P < .001). The mean speed of the women's 800-m was 6.77 (0.05) m·s-1, with a significative variation in speed during the race (P < .001). The first split was faster than the others (P < .001). During the rest of the race, speed was almost constant, and no difference was observed between the other splits. Comparison between men and women revealed that there was an interaction between split and gender (P < .001), showing a different pacing behavior in 800-m competitions. CONCLUSIONS The world's best 800-m performances revealed an important difference in the pacing profile between men and women. Tactics could play a greater role in this difference, but physiological and behavioral characteristics are likely also important.
Collapse
|
42
|
Silva WA, de Lira CAB, Vancini RL, Andrade MS. Hip muscular strength balance is associated with running economy in recreationally-trained endurance runners. PeerJ 2018; 6:e5219. [PMID: 30065859 PMCID: PMC6063213 DOI: 10.7717/peerj.5219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 12/02/2022] Open
Abstract
Background The percentage of sustained maximal oxygen uptake and the running economy are important factors that determine the running success of endurance athletes. Running economy is defined as the oxygen uptake required to run at a given speed and depends on metabolic, cardiorespiratory, biomechanical, neuromuscular, and anthropometric factors. With regard to anthropometric characteristics, total body mass seems to be a crucial factor for the running economy. Moreover, neuromuscular components, especially knee muscular strength and the strength balance ratio, also seem to be critical for the running economy. In addition to knee muscle strength, hip muscle strength is also an important contributor to running performance on level or hilly ground. However, the relationship between running economy and the hip muscles is unknown. Thus the aim of the present study was to verify whether hip flexor and extensor isokinetic peak torque, the isokinetic strength balance ratio, total body mass and fat free mass were associated with running economy in both sexes and to compare sex differences in physical fitness and isokinetic strength characteristics. Methods A total of 24 male (31.0 ± 7.7 years, 176.2 ± 7.3 cm, and 70.4 ± 8.4 kg) and 15 female (31.3 ± 6.7 years, 162.9 ± 3.9 cm, and 56.0 ± 5.3 kg) recreationally-trained endurance runners were recruited. Maximal oxygen uptake, running economy, conventional (concentric flexors-to-concentric extensors) and functional (concentric flexors-to-eccentric extensors) hip isokinetic strength balance ratios, peak torque of the hip flexor and extensor muscles, total body mass, and fat-free mass were measured. Running economy was assessed on two separate days by means of the energy running cost (Ec) using a motorized treadmill at 10.0 and 12.0 km h−1 (3% gradient) and 11.0 and 14.0 km h−1 (1% gradient). Results The functional balance ratio was significantly and negatively associated with Ec at 11.0 (r = − 0.43, P = 0.04) and 12.0 km h−1 (r = − 0.65, P = 0.04) when using a 3% gradient in male runners. Considering muscular strength, male runners only showed a significant relationship between Ec (assessed at 12 km h−1 and a 3% gradient) and peak torque for extensor muscle eccentric action (r = 0.72, P = 0.04). For female runners, only peak torque relative to total body mass for extensor muscles (180° s−1) was positively associated with Ec when assessed at 10 km h−1 using a 3% gradient (r = 0.59, P = 0.03). No significant relationships were found between Ec and total body mass or fat-free mass. Discussion Given that the functional balance ratio was associated with a better Ec, coaches and athletes should consider implementing a specific strengthening program for hip flexor muscles to increase the functional ratio.
Collapse
Affiliation(s)
- Wallace A Silva
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Rodrigo L Vancini
- Centro de Educação Física e Desportos, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Marilia S Andrade
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Shaw AJ, Ingham SA, Folland JP. The efficacy of downhill running as a method to enhance running economy in trained distance runners. Eur J Sport Sci 2018; 18:630-638. [PMID: 29561245 DOI: 10.1080/17461391.2018.1449892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Running downhill, in comparison to running on the flat, appears to involve an exaggerated stretch-shortening cycle (SSC) due to greater impact loads and higher vertical velocity on landing, whilst also incurring a lower metabolic cost. Therefore, downhill running could facilitate higher volumes of training at higher speeds whilst performing an exaggerated SSC, potentially inducing favourable adaptations in running mechanics and running economy (RE). This investigation assessed the efficacy of a supplementary 8-week programme of downhill running as a means of enhancing RE in well-trained distance runners. Nineteen athletes completed supplementary downhill (-5% gradient; n = 10) or flat (n = 9) run training twice a week for 8 weeks within their habitual training. Participants trained at a standardised intensity based on the velocity of lactate turnpoint (vLTP), with training volume increased incrementally between weeks. Changes in energy cost of running (EC) and vLTP were assessed on both flat and downhill gradients, in addition to maximal oxygen uptake (⩒O2max). No changes in EC were observed during flat running following downhill (1.22 ± 0.09 vs 1.20 ± 0.07 Kcal kg-1 km-1, P = .41) or flat run training (1.21 ± 0.13 vs 1.19 ± 0.12 Kcal kg-1 km-1). Moreover, no changes in EC during downhill running were observed in either condition (P > .23). vLTP increased following both downhill (16.5 ± 0.7 vs 16.9 ± 0.6 km h-1, P = .05) and flat run training (16.9 ± 0.7 vs 17.2 ± 1.0 km h-1, P = .05), though no differences in responses were observed between groups (P = .53). Therefore, a short programme of supplementary downhill run training does not appear to enhance RE in already well-trained individuals.
Collapse
Affiliation(s)
- Andrew J Shaw
- a English Institute of Sport , Loughborough University , Loughborough , UK.,b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| | - Stephen A Ingham
- a English Institute of Sport , Loughborough University , Loughborough , UK.,c Supporting Champions , Loughborough , UK
| | - Jonathan P Folland
- b School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK
| |
Collapse
|
44
|
Tactical Behaviors in Men's 800-m Olympic and World-Championship Medalists: A Changing of the Guard. Int J Sports Physiol Perform 2018; 13:246-249. [PMID: 28488905 DOI: 10.1123/ijspp.2016-0780] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To assess the longitudinal evolution of tactical behaviors used to medal in men's 800-m Olympic Games (OG) or world-championship (WC) events in the recent competition era (2000-2016). METHODS Thirteen OG and WC events were characterized for 1st- and 2nd-lap splits using available footage from YouTube. Positive pacing strategies were defined as a faster 1st lap. Season's best 800-m time and world ranking, reflective of an athlete's "peak condition," were obtained to determine relationships between adopted tactics and physical condition prior to the championships. Seven championship events provided coverage of all medalists to enable determination of average 100-m speed and sector pacing of medalists. RESULTS From 2011 onward, 800-m OG and WC medalists showed a faster 1st lap by 2.2 ± 1.1 s (mean, ±90% confidence limits; large difference, very likely), contrasting a possibly faster 2nd lap from 2000 to 2009 (0.5, ±0.4 s; moderate difference). A positive pacing strategy was related to a higher world ranking prior to the championships (r = .94, .84-.98; extremely large, most likely). After 2011, the fastest 100-m sector from 800-m OG and WC medalists was faster than before 2009 by 0.5, ±0.2 m/s (large difference, most likely). CONCLUSIONS A secular change in tactical racing behavior appears evident in 800-m championships; since 2011, medalists have largely run faster 1st laps and have faster 100-m sector-speed requirements. This finding may be pertinent for training, tactical preparation, and talent identification of athletes preparing for 800-m running at OGs and WCs.
Collapse
|
45
|
Abstract
The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg−1 · km−1) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed–energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.
Collapse
|
46
|
Denadai BS, Greco CC. Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. J Appl Physiol (1985) 2017; 124:526-528. [PMID: 28982948 DOI: 10.1152/japplphysiol.00800.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Camila Coelho Greco
- Human Performance Laboratory, Paulista State University, Rio Claro, SP, Brazil
| |
Collapse
|
47
|
Beattie K, Carson BP, Lyons M, Rossiter A, Kenny IC. The Effect of Strength Training on Performance Indicators in Distance Runners. J Strength Cond Res 2017; 31:9-23. [PMID: 27135468 DOI: 10.1519/jsc.0000000000001464] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Beattie, K, Carson, BP, Lyons, M, Rossiter, A, and Kenny, IC. The effect of strength training on performance indicators in distance runners. J Strength Cond Res 31(1): 9-23, 2017-Running economy (RE) and velocity at maximal oxygen uptake (VV[Combining Dot Above]O2max) are considered to be the best physiological performance indicators in elite distance runners. In addition to cardiovascular function, RE and VV[Combining Dot Above]O2max are partly dictated by neuromuscular factors. One technique to improve neuromuscular function in athletes is through strength training. The aim of this study was to investigate the effect of a 40-week strength training intervention on strength (maximal and reactive strength), VV[Combining Dot Above]O2max, economy, and body composition (body mass, fat, and lean mass) in competitive distance runners. Twenty competitive distance runners were divided into an intervention group (n = 11; 29.5 ± 10.0 years; 72.8 ± 6.6 kg; 1.83 ± 0.08 m) and a control group (n = 9; 27.4 ± 7.2 years; 70.2 ± 6.4 kg; 1.77 ± 0.04 m). During week 0, 20, and 40, each subject completed 3 assessments: physiology (V2 mmol·L BLa, V2 mmol·L BLa [blood lactate], V4 mmol·L BLa, RE, VV[Combining Dot Above]O2max, V[Combining Dot Above]O2max), strength (1 repetition maximum back squat; countermovement jump and 0.3 m drop jump), and body composition (body mass, fat mass, overall lean, and leg lean). The intervention group showed significant improvements in maximal and reactive strength qualities, RE, and VV[Combining Dot Above]O2max, at weeks 20 (p ≤ 0.05) and 40 (p ≤ 0.05). The control group showed no significant changes at either time point. There were no significant changes in body composition variables between or within groups. This study demonstrates that 40 weeks of strength training can significantly improve maximal and reactive strength qualities, RE, and VV[Combining Dot Above]O2max, without concomitant hypertrophy, in competitive distance runners.
Collapse
Affiliation(s)
- Kris Beattie
- 1Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland; and 2National Sports Campus, Irish Institute of Sport, Dublin, Ireland
| | | | | | | | | |
Collapse
|
48
|
Black MI, Potter CR, Corbett J, Clark CCT, Draper SB. Maximal Oxygen Uptake Is Achieved in Hypoxia but Not Normoxia during an Exhaustive Severe Intensity Run. Front Physiol 2017; 8:96. [PMID: 28270770 PMCID: PMC5319197 DOI: 10.3389/fphys.2017.00096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Highly aerobically trained individuals are unable to achieve maximal oxygen uptake (V˙O2max) during exhaustive running lasting ~2 min, instead V˙O2 plateaus below V˙O2max after ~1 min. Hypoxia offers the opportunity to study the (V˙O2) response to an exhaustive run relative to a hypoxia induced reduction in V˙O2max. The aim of this study was to explore whether there is a difference in the percentage of V˙O2max achieved (during a 2 min exhaustive run) in normoxia and hypoxia. Fourteen competitive middle distance runners (normoxic V˙O2max 67.0 ± 5.2 ml.kg−1.min−1) completed exhaustive treadmill ramp tests and constant work rate (CWR) tests in normoxia and hypoxia (FiO2 0.13). The V˙O2 data from the CWR tests were modeled using a single exponential function. End exercise normoxic CWR V˙O2 was less than normoxic V˙O2max (86 ± 6% ramp, P < 0.001). During the hypoxic CWR test, hypoxic V˙O2max was achieved (102 ± 8% ramp, P = 0.490). The phase II time constant was greater in hypoxia (12.7 ± 2.8 s) relative to normoxia (10.4 ± 2.6 s) (P = 0.029). The results demonstrate that highly aerobically trained individuals cannot achieve V˙O2max during exhaustive severe intensity treadmill running in normoxia, but can achieve the lower V˙O2max in hypoxia despite a slightly slower V˙O2 response.
Collapse
Affiliation(s)
- Matthew I Black
- School of Sport, Exercise and Health Sciences, Loughborough University Loughborough, UK
| | | | - Jo Corbett
- Department of Sport and Exercise Science, University of Portsmouth Portsmouth, UK
| | - Cain C T Clark
- HE Sport, University Centre, Hartpury College Gloucestershire, UK
| | - Stephen B Draper
- HE Sport, University Centre, Hartpury College Gloucestershire, UK
| |
Collapse
|
49
|
Tanji F, Tsuji T, Shimazu W, Enomoto Y, Nabekura Y. Relationship between 800-m running performance and running economy during high-intensity running in well-trained middle-distance runners. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2017. [DOI: 10.7600/jpfsm.6.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fumiya Tanji
- Department of Sport Science, Japan Institute of Sport Sciences
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Toshiki Tsuji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Wataru Shimazu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Nagoya Senior High School
| | | | | |
Collapse
|
50
|
Tanji F, Shirai Y, Tsuji T, Shimazu W, Nabekura Y. Relation between 1,500-m running performance and running economy during high-intensity running in well-trained distance runners. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2017. [DOI: 10.7600/jpfsm.6.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fumiya Tanji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yusuke Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Institute of Sports Science and Nutrition, Integrated Physiology, University of Copenhagen
| | - Toshiki Tsuji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Wataru Shimazu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | |
Collapse
|