1
|
Arieta LR, Smith ZH, Paluch AE, Kent JA. Effects of older age on contraction-induced intramyocellular acidosis and inorganic phosphate accumulation in vivo: A systematic review and meta-analysis. PLoS One 2024; 19:e0308336. [PMID: 39321147 PMCID: PMC11424002 DOI: 10.1371/journal.pone.0308336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 09/27/2024] Open
Abstract
Although it is clear that the bioenergetic basis of skeletal muscle fatigue (transient decrease in peak torque or power in response to contraction) involves intramyocellular acidosis (decreased pH) and accumulation of inorganic phosphate (Pi) in response to the increased energy demand of contractions, the effects of old age on the build-up of these metabolites has not been evaluated systematically. The purpose of this study was to compare pH and [Pi] in young (18-45 yr) and older (55+ yr) human skeletal muscle in vivo at the end of standardized contraction protocols. Full study details were prospectively registered on PROSPERO (CRD42022348972). PubMed, Web of Science, and SPORTDiscus databases were systematically searched and returned 12 articles that fit the inclusion criteria for the meta-analysis. Participant characteristics, contraction mode (isometric, dynamic), and final pH and [Pi] were extracted. A random-effects model was used to calculate the mean difference (MD) and 95% confidence interval (CI) for pH and [Pi] across age groups. A subgroup analysis for contraction mode was also performed. Young muscle acidified more than older muscle (MD = -0.12 pH; 95%CI = -0.18,-0.06; p<0.01). There was no overall difference by age in final [Pi] (MD = 2.14 mM; 95%CI = -0.29,4.57; p = 0.08), although sensitivity analysis revealed that removing one study resulted in greater [Pi] in young than older muscle (MD = 3.24 mM; 95%CI = 1.72,4.76; p<0.01). Contraction mode moderated these effects (p = 0.02) such that young muscle acidified (MD = -0.19 pH; 95%CI = -0.27,-0.11; p<0.01) and accumulated Pi (MD = 4.69 mM; 95%CI = 2.79,6.59; p<0.01) more than older muscle during isometric, but not dynamic, contractions. The smaller energetic perturbation in older muscle indicated by these analyses is consistent with its relatively greater use of oxidative energy production. During dynamic contractions, elimination of this greater reliance on oxidative energy production and consequently lower metabolite accumulations in older muscle may be important for understanding task-specific, age-related differences in fatigue.
Collapse
Affiliation(s)
- Luke R. Arieta
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Zoe H. Smith
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| | - Amanda E. Paluch
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jane A. Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
2
|
Nuzzo JL. Muscle Strength Preservation During Repeated Sets of Fatiguing Resistance Exercise: A Secondary Analysis. J Strength Cond Res 2024; 38:1149-1156. [PMID: 38781472 DOI: 10.1519/jsc.0000000000004794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Nuzzo, JL. Muscle strength preservation during repeated sets of fatiguing resistance exercise: A secondary analysis. J Strength Cond Res 38(6): 1149-1156, 2024-During sustained or repeated maximal voluntary efforts, muscle fatigue (acute strength loss) is not linear. After a large initial decrease, muscle strength plateaus at approximately 40% of baseline. This plateau, which likely reflects muscle strength preservation, has been observed in sustained maximal isometric and repeated maximal isokinetic contractions. Whether this pattern of fatigue occurs with traditional resistance exercise repetitions with free weights and weight stack machines has not been overviewed. Here, the aim was to determine whether the number of repetitions completed across 4 or more consecutive repetitions-to-failure tests exhibits the same nonlinear pattern of muscle fatigue. A secondary analysis was applied to data extracted as part of a recent meta-analysis on repetitions-to-failure tests. Studies were eligible if they reported mean number of repetitions completed in 4-6 consecutive repetitions-to-failure tests at a given relative load. Twenty-nine studies were included. Overall, the results show that the number of repetitions completed in consecutive repetitions-to-failure tests at a given load generally decreases curvilinearly. The numbers of repetitions completed in sets 2, 3, 4, 5, and 6 were equal to approximately 70, 55, 50, 45, and 45% of the number of repetitions completed in set 1, respectively. Longer interset rest intervals typically attenuated repetition loss, but the curvilinear pattern remained. From the results, a chart was created to predict the number of repetitions across 6 sets of resistance exercise taken to failure based on the number of repetitions completed in set 1. The chart is a general guide and educational tool. It should be used cautiously. More data from a variety of exercises, relative loads, and interset rest intervals are needed for more precise estimates of number of repetitions completed during repeated sets of fatiguing resistance exercise.
Collapse
Affiliation(s)
- James L Nuzzo
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
3
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
4
|
Alexander AM, Hurla LM, Didier KD, Hammer SM, Rollins KS, Barstow TJ. Sex differences in the intensity-duration relationships of the severe- and extreme-intensity exercise domains. Eur J Sport Sci 2023; 23:2221-2231. [PMID: 37199235 PMCID: PMC10615677 DOI: 10.1080/17461391.2023.2215723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Extreme-intensity exercise is described by W'ext (analogous to J' for isometric exercise) that is smaller than W' of severe-intensity exercise (W'sev) in males. Sex differences in exercise tolerance appear to diminish at near-maximal exercise, however, there is evidence of greater contributions of peripheral fatigue (i.e. potentiated twitch force; Qpot) in males during extreme-intensity exercise. Therefore, the current study tested the hypotheses that J'ext would not be different between males and females, however, males would exhibit a greater reduction in neuromuscular function (i.e. maximal voluntary contraction, MVC; Qpot) following extreme-intensity exercise. Seven males and 7 females completed three severe- (Tlim: 2-4 min, S3; 5-8 min, S2; 9-15 min, S1) and three extreme-intensity (70, 80, 90%MVC) knee-extension bouts. MVC and Qpot relative to baseline were compared at task failure and at 150 s of recovery. J'ext was significantly less than J'sev in males (2.4 ± 1.2kJ vs 3.9 ± 1.3kJ; p = 0.03) and females (1.6 ± 0.8kJ vs 2.9 ± 1.7kJ; p = 0.05); however, there were no sex differences in J'ext or J'sev. MVC (%Baseline) was greater at task failure following extreme-intensity exercise (76.5 ± 20.0% vs 51.5 ± 11.5% in males, 75.7 ± 19.4% vs 66.7 ± 17.4% in females), but was not different at 150 s of recovery (95.7 ± 11.8% in males, 91.1 ± 14.2% in females). Reduction in Qpot, however, was greater in males (51.9 ± 16.3% vs 60.6 ± 15.5%) and was significantly correlated with J'ext (r2 = 0.90, p < 0.001). Although there were no differences in the magnitude of J'ext, differences in MVC and Qpot are evidence of sex-specific responses and highlight the importance of appropriately characterizing exercise intensity regarding exercise domains when comparing physiological responses in males and females.Highlights We have previously shown evidence that extreme-intensity dynamic exercise is described by W'ext in males and smaller than W'sev. We currently tested for potential sex differences in J'ext (isometric analogue to W') and neuromuscular responses (i.e. maximal voluntary contraction, MVC; potentiated twitch force, Qpot) during extreme-intensity exercise.J'ext and extreme-intensity exercise tolerance was not different between males and females. The reduction in MVC was not different across extreme-intensity exercise across males and females, whereas the reduction in Qpot was greater in males following all extreme-intensity exercises, although not after exercise at 90%MVC.Together, although extreme-intensity exercise tolerance is not different, these data highlight differences in the contributing mechanisms of fatigue during severe- and extreme-intensity exercise between males and females.
Collapse
Affiliation(s)
- Andrew M. Alexander
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Endocrinology, Diabetes, and Nutrition, Mayo Clinic, Rochester MN, USA
| | - Logan M. Hurla
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
| | - Kaylin D. Didier
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison WI, USA
| | - Shane M. Hammer
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater OK, USA
| | - Korynne S. Rollins
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
- Department of Safety Pharmacology, Lab Corp, Madison WI, USA
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan KS, USA
| |
Collapse
|
5
|
Nokoff NJ, Senefeld J, Krausz C, Hunter S, Joyner M. Sex Differences in Athletic Performance: Perspectives on Transgender Athletes. Exerc Sport Sci Rev 2023; 51:85-95. [PMID: 37057897 PMCID: PMC10330580 DOI: 10.1249/jes.0000000000000317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Sex hormone concentrations, particularly testosterone, are primary determinants of sex-based differences in athletic and sports performance, and this relationship may inform fair competition and participation for athletes. This article describes the sex-based dichotomy in testosterone and the implications for sex-based differences in individual sports performance, including factors that relate to athletic performance for transgender individuals, and areas of future investigation.
Collapse
Affiliation(s)
- Natalie J Nokoff
- Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus
| | - Jonathon Senefeld
- Department of Anesthesiology & Perioperative Medicine and Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Sandra Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic & Human Performance Research Center, Marquette University, Milwaukee, WI
| | - Michael Joyner
- Department of Anesthesiology & Perioperative Medicine and Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
6
|
Wang K, Smith SH, Iijima H, Hettinger ZR, Mallepally A, Shroff SG, Ambrosio F. Bioengineered 3D Skeletal Muscle Model Reveals Complement 4b as a Cell-Autonomous Mechanism of Impaired Regeneration with Aging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207443. [PMID: 36650030 DOI: 10.1002/adma.202207443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/11/2022] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of cell-autonomous skeletal muscle changes after injury can lead to novel interventions to improve functional recovery in an aged population. However, major knowledge gaps persist owing to limitations of traditional biological aging models. 2D cell culture represents an artificial environment, while aging mammalian models are contaminated by influences from non-muscle cells and other organs. Here, a 3D muscle aging system is created to overcome the limitations of these traditional platforms. It is shown that old muscle constructs (OMC) manifest a sarcopenic phenotype, as evidenced by hypotrophic myotubes, reduced contractile function, and decreased regenerative capacity compared to young muscle constructs. OMC also phenocopy the regenerative responses of aged muscle to two interventions, pharmacological and biological. Interrogation of muscle cell-specific mechanisms that contribute to impaired regeneration over time further reveals that an aging-induced increase of complement component 4b (C4b) delays muscle progenitor cell amplification and impairs functional recovery. However, administration of complement factor I, a C4b inactivator, improves muscle regeneration in vitro and in vivo, indicating that C4b inhibition may be a novel approach to enhance aged muscle repair. Collectively, the model herein exhibits capabilities to study cell-autonomous changes in skeletal muscle during aging, regeneration, and intervention.
Collapse
Affiliation(s)
- Kai Wang
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
| | - Stephen H Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirotaka Iijima
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary R Hettinger
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine, Division of Geriatric Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Adarsh Mallepally
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sanjeev G Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding, Charlestown, MA, 02129, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
7
|
Rakshit R, Xiang Y, Yang J. Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions. J Biomech 2021; 127:110695. [PMID: 34454329 DOI: 10.1016/j.jbiomech.2021.110695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023]
Abstract
The three-compartment controller with enhanced recovery (3CC-r) model of muscle fatigue has previously been validated separately for both sustained (SIC) and intermittent isometric contractions (IIC) using different objective functions, but its performance has not yet been tested against both contraction types simultaneously using a common objective function. Additionally, prior validation has been performed using common parameters at the joint level, whereas applications to many real-world tasks will require the model to be applied to agonistic and synergistic muscle groups. Lastly, parameters for the model have previously been derived for a mixed-sex cohort not considering the differece in fatigabilities between the sexes. In this work we validate the 3CC-r model using a comprehensive isometric contraction database drawn from 172 publications segregated by functional muscle group (FMG) and sex. We find that prediction errors are reduced by 19% on average when segregating the dataset by FMG alone, and by 34% when segregating by both sex and FMG. However, minimum prediction errors are found to be higher when validated against both SIC and IIC data together using torque decline as the outcome variable than when validated sequentially against hypothesized SIC intensity-endurance time curves with endurance time as the outcome variable and against raw IIC data with torque decline as the outcome variable.
Collapse
Affiliation(s)
- Ritwik Rakshit
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Yujiang Xiang
- School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
| | - James Yang
- Human-Centric Design Research Lab, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
8
|
Shelley S, James RS, Eustace S, Eyre E, Tallis J. The effects of high adiposity on concentric and eccentric muscle performance of upper and lower limb musculature in young and older adults. Appl Physiol Nutr Metab 2021; 46:1047-1057. [PMID: 33656946 DOI: 10.1139/apnm-2020-0945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study uniquely examined the influence of old age and adiposity on maximal concentric and eccentric torque and fatigue of the elbow and knee (KF, KE) flexors and extensors. Forty males were recruited and categorised into young (n = 21, 23.7 ± 3.4) and old (n = 19, 68.3 ± 6.1) and then further into normal (young = 16.9 ± 2.5%, old = 20.6 ± 3.1%) and high adiposity (young = 28.9 ± 5.0%, old = 31.3 ± 4.2%) groups. Handgrip strength, sit-to-stand performance, and isokinetic assessments of peak torque at 60°, 120° and 180°·s-1 were measured. Older men produced significantly less concentric and eccentric peak torque (P < 0.016) but this was not influenced by adiposity (P > 0.055). For KE and KF, high adiposity groups demonstrated reduced peak torque normalised to body mass (P < 0.021), and muscle and contractile mode specific reduction in torque normalised to segmental lean mass. Eccentric fatigue resistance was unaffected by both age and adiposity (P > 0.30) and perceived muscle soreness, measured up to 72 hours after, was only enhanced in the upper body of the young group following eccentric fatigue (P = 0.009). Despite the impact of adiposity on skeletal muscle function being comparable between ages, these results suggest high adiposity will have greater impact on functional performance of older adults. Novelty: Irrespective of age, high adiposity may negatively impact force to body mass ratio and muscle quality in a muscle and contractile mode specific manner. Whilst the magnitude of adiposity effects is similar across ages, the impact for older adults will be more substantial given the age-related decline in muscle function.
Collapse
Affiliation(s)
- Sharn Shelley
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Rob S James
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Steven Eustace
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Emma Eyre
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - Jason Tallis
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK.,Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
9
|
Zdravkovic A, Hasenoehrl T, Crevenna R. Resistance Exercise in Prostate Cancer Patients: a Short Review. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-021-00307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
The aim of this paper is to provide an overview of recent findings concerning the utilization of resistance exercise (RE) in prostate cancer (PCa), in particular as pertaining to the management of cancer therapy side effects.
Recent Findings
As of late, studies investigating the effects of RE in PCa patients have found positive effects on muscle strength, body composition, physical functioning, quality of life, and fatigue. The combination of RE and impact training appears to decrease the loss of bone mineral density. RE seems to be well accepted and tolerated, even by patients with bone metastatic disease, although a modification of the RE prescription is often necessary.
Summary
In PCa patients, RE has been well-researched and the data are clear that it is beneficial in multiple ways. Future directions should look at the long-term effects of RE, including mortality and relapse, as well as implementation of exercise programs.
Collapse
|
10
|
Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, Thomas K, Hunter SK, Howatson G, Goodall S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol 2020; 598:5717-5737. [PMID: 32964441 DOI: 10.1113/jp280031] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax -1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elliott Atkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sarah Corden
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Amber Tygart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
11
|
Looft JM, Frey-Law LA. Adapting a fatigue model for shoulder flexion fatigue: Enhancing recovery rate during intermittent rest intervals. J Biomech 2020; 106:109762. [PMID: 32517992 PMCID: PMC8848298 DOI: 10.1016/j.jbiomech.2020.109762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/01/2022]
Abstract
Although the rotator cuff muscles are susceptible to fatigue, shoulder fatigue studies reporting torque decline during intermittent tasks are relatively uncommon in the literature. A previous modification to the three-compartment controller (3CC) fatigue model incorporated a rest recovery multiplier (3CC-r model) to represent augmented blood flow to muscle during rest intervals (Looft et al., 2018). A rest recovery value of r = 15 was optimal for ankle, knee, and elbow joint regions, whereas r = 30 was better for hand/grip muscles. However, shoulder torque decline data was unavailable in the literature for comparison. Thus, the purpose of this study was to collect fatigue data for two different intermittent, isometric shoulder flexion fatiguing tasks and assess the 3CC-r model with r = 15 or 30 compared to the original 3CC model. Twenty healthy participants (9 M) completed two fatigue tasks: 50% maximum voluntary contraction (MVC) with 50% duty cycle (DC) and 70% MVC with 70% DC. MVCs were assessed at discrete time points (1, 3, 5, 10, and 15 min) until endurance time (MET). Mean observed percent torque decline (%TD) for the two tasks were compared to three model estimates: 3CC-r (using r = 15 and r = 30) and 3CC. Using these data, we confirmed that the addition of a rest multiplier (r = 15 somewhat better than r = 30) substantially improved predictions of shoulder fatigue using a previously validated analytical fatigue model (3CC). The relatively large reduction in model errors over the original model suggests the importance of representing augmented recovery during rest periods.
Collapse
Affiliation(s)
- John M Looft
- Minneapolis VA Health Care System, Minneapolis, MN 55417, United States; Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52442, United States.
| | - Laura A Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52442, United States
| |
Collapse
|
12
|
Rozand V, Sundberg CW, Hunter SK, Smith AE. Age-related Deficits in Voluntary Activation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc 2020; 52:549-560. [PMID: 31688647 PMCID: PMC8015244 DOI: 10.1249/mss.0000000000002179] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Whether there are age-related differences in neural drive during maximal effort contractions is not clear. This review determined the effect of age on voluntary activation during maximal voluntary isometric contractions. The literature was systematically reviewed for studies reporting voluntary activation quantified with the interpolated twitch technique (ITT) or central activation ratio (CAR) during isometric contractions in young (18-35 yr) and old adults (>60 yr; mean, ≥65 yr). Of the 2697 articles identified, 54 were eligible for inclusion in the meta-analysis. Voluntary activation was assessed with electrical stimulation and transcranial magnetic stimulation on five different muscle groups. Random-effects meta-analysis revealed lower activation in old compared with young adults (d = -0.45; 95% confidence interval, -0.62 to -0.29; P < 0.001), with moderate heterogeneity (52.4%). To uncover the sources of heterogeneity, subgroup analyses were conducted for muscle group, calculation method (ITT or CAR), and stimulation type (electrical stimulation or transcranial magnetic stimulation) and number (single, paired, or train stimulations). The age-related reduction in voluntary activation occurred for all muscle groups investigated except the ankle dorsiflexors. Both ITT and CAR demonstrated an age-related reduction in voluntary activation of the elbow flexors, knee extensors, and plantar flexors. ITT performed with paired and train stimulations showed lower activation for old than young adults, with no age difference for the single electrical stimulation. Together, the meta-analysis revealed that healthy older adults have a reduced capacity to activate some upper and lower limb muscles during maximal voluntary isometric contractions; however, the effect was modest and best assessed with at least paired stimulations to detect the difference.
Collapse
Affiliation(s)
- Vianney Rozand
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Christopher W Sundberg
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences, University of South Australia, Adelaide, SA, AUSTRALIA
| |
Collapse
|
13
|
Rakshit R, Yang J. Modelling muscle recovery from a fatigued state in isometric contractions for the ankle joint. J Biomech 2020; 100:109601. [PMID: 31952819 DOI: 10.1016/j.jbiomech.2020.109601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/03/2019] [Accepted: 12/31/2019] [Indexed: 11/26/2022]
Abstract
Current models of localized muscular fatigue are capable of predicting performance in isometric tasks with reasonable accuracy. However, they do not account for the effect of continuously-varying task intensities on muscular recovery from a fatigued state. In this work, we propose and evaluate three continuous functions for modelling recovery to replace a dichotomous step-function in the three-compartment controller (3CC-r) model of muscle fatigue (Looft et al., 2018) and validate their predictions with previously collected data in the literature for intermittent and sustained isometric tasks of the ankle joint performed at different intensities. When compared to experimental data the accuracy of one of the three proposed models of recovery is found to be nearly the same as that yielded by the original step-function, but this seemingly-identical accuracy may be a limitation of the dataset used. A superelliptical curve relating recovery factor to task intensity is proposed to be the closest replacement for the step function as it depicts both the elevated value of recovery factor for near-rest activities as well as a nearly-constant value for low-to-high-intensity tasks.
Collapse
Affiliation(s)
- Ritwik Rakshit
- Human-Centric Design Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - James Yang
- Human-Centric Design Research Laboratory, Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
14
|
Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Howatson G, Thomas K, Hunter SK, Goodall S. Sex differences in fatigability and recovery relative to the intensity-duration relationship. J Physiol 2019; 597:5577-5595. [PMID: 31529693 DOI: 10.1113/jp278699] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Females demonstrate greater fatigue resistance than males during contractions at intensities relative to maximum force. However, previous studies have not accounted for the influence of metabolic thresholds on fatigability. This study is the first to test whether sex differences in fatigability exist when exercise intensity is normalised relative to a metabolic threshold: the critical intensity derived from assessment of the intensity-duration relationship during intermittent, isometric knee extensor contractions. We show that critical intensity in females occurred at a higher percentage of maximum force compared to males. Furthermore, females demonstrated greater fatigue resistance at exercise intensities above and below this metabolic threshold. Our data suggest that the sex difference was mediated by lesser deoxygenation of the knee extensors during exercise. These data highlight the importance of accounting for metabolic thresholds when comparing fatigability between sexes, whilst emphasising the notion that male data are not generalisable to female populations. ABSTRACT Females are less fatigable than males during isometric exercise at intensities relative to maximal voluntary contraction (MVC); however, whether a sex difference in fatigability exists when exercise is prescribed relative to a critical intensity is unknown. This study established the intensity-duration relationship, and compared fatigability and recovery between sexes following intermittent isometric contractions normalised to critical intensity. Twenty participants (10 females) completed four intermittent isometric knee extension trials to task failure to determine critical intensity and the curvature constant (W'), followed by fatiguing tasks at +10% and -10% relative to critical intensity. Neuromuscular assessments were completed at baseline and for 45 min post-exercise. Non-invasive neurostimulation, near-infrared spectroscopy, and non-invasive haemodynamic monitoring were used to elucidate the physiological mechanisms responsible for sex differences. Females demonstrated a greater critical intensity relative to MVC than males (25 ± 3 vs. 21 ± 2% MVC, P = 0.003), with no sex difference for W' (18,206 ± 6331 vs. 18,756 ± 5762 N s, P = 0.850). Time to task failure was greater for females (62.37 ± 17.25 vs. 30.43 ± 12.75 min, P < 0.001) during the +10% trial, and contractile function recovered faster post-exercise (P = 0.034). During the -10% trial females experienced less contractile dysfunction (P = 0.011). Throughout the +10% trial, females demonstrated lesser decreases in deoxyhaemoglobin (P = 0.007) and an attenuated exercise pressor reflex. These data show that a sex difference in fatigability exists even when exercise is matched for critical intensity. We propose that greater oxygen availability during exercise permits females to sustain a higher relative intensity than males, and is an explanatory factor for the sex difference in fatigability during intermittent, isometric contractions.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
15
|
Alota Ignacio Pereira V, Augusto Barbieri F, Moura Zagatto A, Cezar Rocha Dos Santos P, Simieli L, Augusto Barbieri R, Pivetta Carpes F, Teresa Bucken Gobbi L. Muscle Fatigue Does Not Change the Effects on Lower Limbs Strength Caused by Aging and Parkinson's Disease. Aging Dis 2018; 9:988-998. [PMID: 30574412 PMCID: PMC6284767 DOI: 10.14336/ad.2018.0203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/03/2018] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to determine the impact of aging and Parkinson’s disease (PD) on lower limb muscle strength before and after muscle fatigue. One hundred thirty-five individuals were distributed over seven groups according to their age (20, 30, 40, 50, 60, 70 years old) and disease. Participants performed maximum voluntary isometric contractions (MVIC) in a leg press device followed by the muscle fatigue protocol (repeated sit-to-stand task). Immediately after muscle fatigue (less than 2 min), the MVIC were repeated. The peak force, peak rate of force development (first 50, 100, 200 ms), and root mean square and peak values of the vastus lateralis and vastus medialis muscle activity during MVIC were calculated before and after muscle fatigue. We found more pronounced reductions in lower limb muscle strength parameters (lower limb force, RFD-100 and RFD-200 - p<0.05) in individuals over 50 years of age and with PD. In addition, there was an inverse relation between aging and lower limb muscle strength parameters. The main findings were the lack of changes in peak force, RFDs and muscle activity of the vastus lateralis and vastus medialis after muscle fatigue according to aging and PD, and similar lower limb muscle strength parameters (before and after muscle fatigue) and effect of muscle fatigue in PD compared to the aged groups (60 and 70 years old groups).
Collapse
Affiliation(s)
- Vinicius Alota Ignacio Pereira
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Fabio Augusto Barbieri
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Alessandro Moura Zagatto
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Paulo Cezar Rocha Dos Santos
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| | - Lucas Simieli
- 1Human Movement Research Laboratory (MOVI-LAB), Department of Physical Education, Sao Paulo State University (Unesp), Bauru, Brazil
| | - Ricardo Augusto Barbieri
- 3Graduate Program in Physical Education and Sport at School of Physical Education and Sport of Ribeirao Preto (EEFERP), University of Sao Paulo, Centro Universitário Estacio de Ribeirao Preto, Brazil
| | - Felipe Pivetta Carpes
- 4Applied Neuromechanics Group, Laboratory of Neuromechanics, Federal University of Pampa, Uruguaiana, Brazil
| | - Lilian Teresa Bucken Gobbi
- 2Posture and Gait Studies Laboratory (LEPLO), Department of Physical Education, Sao Paulo State University (Unesp), Rio Claro, Brazil
| |
Collapse
|
16
|
Looft JM, Herkert N, Frey-Law L. Modification of a three-compartment muscle fatigue model to predict peak torque decline during intermittent tasks. J Biomech 2018; 77:16-25. [PMID: 29960732 PMCID: PMC6092960 DOI: 10.1016/j.jbiomech.2018.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 01/16/2023]
Abstract
This study aimed to test whether adding a rest recovery parameter, r, to the analytical three-compartment controller (3CC) fatigue model (Xia and Frey Law, 2008) will improve fatigue estimates during intermittent contractions. The 3CC muscle fatigue model uses differential equations to predict the flow of muscle between three muscle states: Resting (MR), Active (MA), and Fatigued (MF). This model uses a feedback controller to match the active state to target loads and two joint-specific parameters: F, fatigue rate controlling flow from active to fatigued compartments) and R, the recovery rate controlling flow from the fatigued to the resting compartments. This model does well to predict intensity-endurance time curves for sustained isometric tasks. However, previous studies find when rest intervals are present that the model over predicts fatigue. Intermittent rest periods would allow for the occurrence of subsequent reactive vasodilation and post-contraction hyperemia. We hypothesize a modified 3CC-r fatigue model will improve predictions of force decay during intermittent contractions with the addition of a rest recovery parameter, r, to augment recovery during rest intervals, representing muscle re-perfusion. A meta-analysis compiling intermittent fatigue data from 63 publications reporting decline in peak torque (% torque decline) were used for comparison. The original model over-predicted fatigue development from 19 to 29% torque decline; the addition of a rest multiplier significantly improved fatigue estimates to 6-10% torque decline. We conclude the addition of a rest multiplier to the three-compartment controller fatigue model provides a physiologically consistent modification for tasks involving rest intervals, resulting in improved estimates of muscle fatigue.
Collapse
Affiliation(s)
- John M Looft
- Department of Physical Therapy, University of Minnesota, Minneapolis, MN 55455, USA; Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Nicole Herkert
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
17
|
Jambassi-Filho JC, Gurjão AL, Ceccato M, Santos-Neto AG, Braz IA, Gobbi S. Acute effect of different exercise intensities and differences related to age on muscle performance in young and older women. J Sports Med Phys Fitness 2018; 59:541-546. [PMID: 29687689 DOI: 10.23736/s0022-4707.18.08361-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to compare the acute effect of different exercise intensities on the number of repetitions and total volume and differences related to age on the fatigue index. METHODS Twelve young women (19.0±1.6 years) and ten older women (66.6±5.8 years) performed two experimental sessions for the elbow flexor muscles in a balanced cross-over design. In one experimental session, the participants performed three sets to concentric muscle failure at 100% of 10-12 maximum repetitions (RM). In the other experimental session, the participants performed two sets of 12 repetitions and one final set until concentric muscle failure at 90% of 10-12 RM. A 90-second rest interval was adopted between sets. RESULTS The session performed at 90% of 10-12 RM showed a higher number of repetitions in the second and third sets and a greater total volume, compared to the session at 100% of 10-12 RM for both young and older women (all P<0.05). However, significant no differences were observed in the fatigue index between the young and older women for the sessions performed at 90% or 100% of 10-12 RM (P>0.05). CONCLUSIONS These findings suggest that a 10% load reduction promotes a greater number of repetitions and higher total volume in young and older adults. Moreover, the results indicate that young and older women present the same Fatigue Index for the elbow flexor muscles.
Collapse
Affiliation(s)
- José C Jambassi-Filho
- Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil - .,School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil -
| | - André L Gurjão
- Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil.,Department of Physical Education, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Marilia Ceccato
- Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Antonio G Santos-Neto
- Department of Physical Education, Federal University of São Francisco Valley, Petrolina, Brazil
| | - Igor A Braz
- Integraded Faculty Padre Albino, Catanduva, Brazil
| | - Sebastião Gobbi
- Department of Physical Education, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
18
|
García-Pinillos F, Delgado-Floody P, Martínez-Salazar C, Latorre-Román PÁ. Responsiveness of the Countermovement Jump and Handgrip Strength to an Incremental Running Test in Endurance Athletes: Influence of Sex. J Hum Kinet 2018; 61:199-208. [PMID: 29599872 PMCID: PMC5873349 DOI: 10.1515/hukin-2017-0121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The present study analyzed the acute effects of an incremental running test on countermovement jump (CMJ) and handgrip strength performance in endurance athletes, considering the effect of post-exercise recovery time and sex. Thirty-three recreationally trained long-distance runners, 20 men and 13 women, participated voluntarily in this study. The participants performed the Léger test, moreover, the CMJ and handgrip strength tests were carried out before and after the running test and during different stages of recovery (at the 1st min of recovery (posttest1), 5th min of recovery (posttest2), and 10th min of recovery (posttest3)). Two-way analysis of variance revealed a significant improvement in the CMJ (pre-posttest1, p = 0.001) and handgrip strength (pre-posttest2, p = 0.017) during recovery time. The Pearson’s Chi-2 test showed no significant relationship (p ≥ 0.05) between sex and post-activation potentiation (PAP). A linear regression analysis pointed to heart rate recovery as a predictive factor of CMJ improvement (PAP). In conclusion, despite significant fatigue reached during the Léger test, the long-distance runners did not experience an impaired CMJ and handgrip strength performance, either men or women, achieving an improvement (PAP) in posttest conditions. The results obtained showed no significant relationship between sex and PAP. Moreover, significant effect of recovery after running at high intensity on CMJ performance and handgrip strength was found. Finally, the data suggest that PAP condition can be predicted by heart rate recovery in endurance runners.
Collapse
Affiliation(s)
- Felipe García-Pinillos
- Faculty of Education Sciences, Department of Didactics of Corporal Expression. University of Jaen, Paraje de Las Lagunillas s/n. D2 Building, Dep. 142. 23071, Jaen, Spain
- Felipe García-Pinillos. Faculty of Education Sciences. Department of Didactics of Corporal Expression. University of Jaén (Spain). Campus de las Lagunillas s/n, 23071, Jaén (Spain). Tel: (+34) 660062066, (+34) 953 212710. E-mail:
| | - Pedro Delgado-Floody
- Universidad de La Frontera, Faculty of Education, Social Sciences and Humanities, Department of Physical Education, Sport and Recreation, Temuco, Chile
| | - Cristian Martínez-Salazar
- Universidad de La Frontera, Faculty of Education, Social Sciences and Humanities, Department of Physical Education, Sport and Recreation, Temuco, Chile
| | - Pedro Á. Latorre-Román
- Faculty of Education Sciences, Department of Didactics of Corporal Expression. University of Jaen, Paraje de Las Lagunillas s/n. D2 Building, Dep. 142. 23071, Jaen, Spain
| |
Collapse
|
19
|
Sex-specific reliability and multidimensional stability of responses to tests assessing neuromuscular function. HOMO-JOURNAL OF COMPARATIVE HUMAN BIOLOGY 2017; 68:452-464. [PMID: 29175061 DOI: 10.1016/j.jchb.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
The objective of this study was to estimate sex-specific effects in the test-retest cross-reliability of peripheral and central changes in nonlinear and linear measures of a surface electromyography signal during a brief (5 second) and sustained (2minute) isometric maximal voluntary contraction, combined with superimposed electrical stimulation involving the ankle plantar flexors over five identical trials. In this study, we repeated the testing protocol used in our previous study of 10 women (age 20.9, SD=0.3 years) (Bernecke et al., 2015) in a group of 10 men (age 21.2, SD=0.4 years). Despite the central (sex effect; p<0.05, ηp2>0.71, SP>70%) and peripheral fatigability (sex effect; p<0.01, ηp2>0.8, SP>90%) during sustained isometric maximal voluntary contraction, and lower reliability for central activation ratio during brief (intraclass correlation coefficient [ICC]=0.95 for men and ICC=0.82 for women) and sustained maximal voluntary contraction (ICC>0.82 for men and ICC>0.66 for women) over ankle plantar flexors expressed in women more than in men, all the ICCs of all indices measured by tests assessing neuromuscular function across the five identical test-retest trials were found as meaningful (correlation significance of p<0.05 was reached) and no significant differences were found between trials for any of the measured variables. In conclusion, the present study demonstrated greater central and peripheral fatigue for female participants following sustained (2minute) isometric maximal voluntary contraction of the plantar flexor muscles for all repeated trials and indicated an acceptable agreement between measurements of the characteristic variables made using the three different devices (dynamometry, electrical stimulation, and surface electromyography) over time for both sexes.
Collapse
|
20
|
Suzuki FS, Kalytczak MM, Casarin CADS, Serra AJ, Evangelista AL, Marchetti PH, Politti F, Alonso AC, Figueira Junior AJ, Baker JS, Bocalini DS. PHYSICAL ACTIVITY LEVEL DOES NOT INFLUENCE THE NEUROMUSCULAR FATIGUE IN ADULTS. REV BRAS MED ESPORTE 2016. [DOI: 10.1590/1517-869220162202150282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: Fatigue during voluntary muscle contractions is a complex and multifactorial phenomenon associated with central changes and adaptations of the neuromuscular system. Objective: The purpose of this study was to evaluate the fatigue induced by intermittent successive extension of the knee between active and inactive university students. Method: Twenty healthy men (≥18 years), voluntarily participated in this study. To determine the maximum voluntary isometric contraction (MVIC) of the knee extensors muscle group, three sets of isometric contractions of knee extension were performed for five seconds with five minutes of rest between sets. The fatigue protocol consisted of 10 sets of 10 maximal concentric contractions of the extensor on the right knee, performed at 75% of MVIC with an interval of 45". Results: Significant reductions were observed (p<0.01), both in isometric strength (-34±4%) and the dynamic strength (-40 ± 3%). In addition, the slope of relationship strength x repetition was -0.79±0.07 Nm/repetitions and the magnitude of the effect reached -8.90. Conclusion: The protocol was useful to induce peripheral fatigue, although muscle strength is greater in the active group. In both isometric and dynamic action, muscle fatigue did not differ between groups.
Collapse
|
21
|
Fruggiero F, Riemma S, Ouazene Y, Macchiaroli R, Guglielmi V. Incorporating the Human Factor within Manufacturing Dynamics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.ifacol.2016.07.825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Hunter SK. Sex differences in fatigability of dynamic contractions. Exp Physiol 2015; 101:250-5. [PMID: 26440505 DOI: 10.1113/ep085370] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/30/2015] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? Women are usually less fatigable than men for isometric fatiguing contractions of similar intensity, but whether this occurs for dynamic tasks is less clear. This review presents evidence that the sex difference in muscle fatigue of repeated dynamic contractions is specific to the task requirements, including the velocity of shortening and the muscle group involved. What advances does it highlight? Contractile mechanisms are responsible for the sex differences in muscle fatigue for slow-velocity and low-load dynamic tasks. The variability of the sex difference in fatigability among dynamic tasks has implications for fatiguing contractions prescribed in training and rehabilitation to men and women. Women are usually less fatigable than men during single-limb isometric contractions, primarily because of sex-related differences in contractile mechanisms. It is less clear whether these sex differences in muscle fatigue occur for dynamic fatiguing tasks. This review highlights new findings that the sex difference in fatigability for dynamic shortening contractions with a single limb is dependent on the contraction velocity and the muscle group involved. Recent studies demonstrate that women are less fatigable than men for a dynamic task as follows: (i) the elbow-flexor muscles at slow- but not high-velocity contractions; and (ii) the knee-extensor muscles when muscle fatigue was quantified as a reduction in the maximal voluntary isometric contraction force after the dynamic fatiguing task. Contractile mechanisms are responsible for the sex difference in muscle fatigue of the dynamic contractions, with no evidence for a sex difference in the reduction in voluntary activation (i.e. central fatigue). Thus, these findings indicate that the sex difference in muscle fatigue of dynamic contractions is task specific. These data also challenge the assumption that men and women respond in a similar manner to training and rehabilitation that involve fatiguing contractions to overload the neuromuscular system. There is, however, a tremendous opportunity for conducting high-impact studies to gain insight into those factors that define the sex-based differences in muscle fatigue during dynamic tasks. Such studies can define the boundaries to human performance in both men and women during athletic endeavours, ergonomic tasks and rehabilitation.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
23
|
Intensity-dependent effect of ageing on fatigue during intermittent contractions of the human calf muscle in males and females. Eur J Appl Physiol 2015; 115:1927-37. [PMID: 25911632 DOI: 10.1007/s00421-015-3178-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
Ageing reduces fatigue during submaximal intermittent contractions, but the influence of intensity on this ageing effect in males and females is not clear. Younger males (n = 8; 23 ± 2 years), younger females (n = 8; 22 ± 1 years), older males (n = 8; 67 ± 5 years) and older females (n = 10; 64 ± 7 years) completed intermittent calf contractions at four submaximal intensities (30-70 %MVC) for up to 20 min. MVC was assessed during exercise at 30-60 s intervals and its linear rate of decline represented fatigue. Individual relationships between intensity and fatigue (%MVC min(-1)) were fitted to a biphasic function consisting of a linear and nonlinear component. There was no age × sex × intensity interaction for fatigue (3-way ANOVA, P = 0.46). However, there were significant interactive effects of age and sex on endurance at 70 %MVC, fatigue at 70 %MVC and the linear component of the intensity-fatigue relationship. Endurance was lower and fatigue and its linear component were greater (P < 0.05) in younger males compared with other groups, but not different between younger and older females. This suggests that there is an intensity-dependent effect of human ageing on fatigue during submaximal exercise that is specific to males.
Collapse
|
24
|
Smith-Ryan AE, Ryan ED, Fukuda DH, Costa PB, Cramer JT, Stout JR. The effect of creatine loading on neuromuscular fatigue in women. Med Sci Sports Exerc 2014; 46:990-7. [PMID: 24152706 DOI: 10.1249/mss.0000000000000194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to examine the effects of intermittent isometric fatigue on maximal voluntary contraction (MVC) strength, percent voluntary activation (%VA), peak twitch force (PTF), peak rate of force development (PRFD), half relaxation time (HRT), and maximal compound action potential (M-wave) amplitude of the soleus and medial gastrocnemius muscles before and after creatine (Cr) loading. METHODS Using a double-blinded, placebo-controlled, randomized design, 12 women were assigned to a Cr (n = 6; mean age ± SD = 23.3 ± 3.0 yr) or placebo (PL; n = 6; mean age ± SD = 21.3 ± 1.6 yr) group. Participants supplemented four times daily for 5 d with 5 g of Cr + 10 g of fructose or 10 g of fructose. At baseline and after testing, an isometric MVC and the twitch interpolation procedure were used before and after a 4-min isometric fatigue protocol of the plantarflexor muscles, which consisted of six intermittent duty cycles per minute (7-s contraction, 3-s relaxation) at 70% MVC. RESULTS There were no interactions between the Cr and PL groups (P > 0.05) for any dependent variable. The fatigue protocol reduced voluntary strength (-17.8%, P < 0.001) and %VA (-3.7%, P = 0.005). Baseline PTF (P < 0.005) and PRFD (P < 0.001) values were less than those of all respective time points, but PTF value decreased from 3 min to 4 min and after testing (P < 0.005). HRT increased from baseline to minutes 1 and 2 and then returned to baseline at minutes 3 and 4 and after testing. The M-wave did not change (P > 0.05). CONCLUSIONS Five days of Cr loading did not influence isometric force, %VA, evoked twitch properties, or the central and peripheral aspects of fatigue measured in this study.
Collapse
Affiliation(s)
- Abbie E Smith-Ryan
- 1Department of Exercise and Sport Science, University of North Carolina Chapel Hill, Chapel Hill, NC; 2Sport and Exercise Science, University of Central Florida, Orlando, FL; 3Department of Kinesiology, California State University-San Bernardino, San Bernardino, CA; and 4Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | | | | | | | | | | |
Collapse
|
25
|
Evolving concepts on the age-related changes in "muscle quality". J Cachexia Sarcopenia Muscle 2012; 3:95-109. [PMID: 22476917 PMCID: PMC3374023 DOI: 10.1007/s13539-011-0054-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/26/2011] [Indexed: 01/06/2023] Open
Abstract
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).
Collapse
|
26
|
Schoenfeld BJ. Does Exercise-Induced Muscle Damage Play a Role in Skeletal Muscle Hypertrophy? J Strength Cond Res 2012; 26:1441-53. [DOI: 10.1519/jsc.0b013e31824f207e] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Abstract
BACKGROUND During senescence, despite the loss of strength (force-generating capability) associated with sarcopenia, muscle endurance may improve for isometric contractions. PURPOSE The purpose of this study was to perform a systematic meta-analysis of young versus older adults, considering likely moderators (ie, contraction type, joint, sex, activity level, and task intensity). DATA SOURCES A 2-stage systematic review identified potential studies from PubMed, CINAHL, PEDro, EBSCOhost: ERIC, EBSCOhost: Sportdiscus, and The Cochrane Library. STUDY SELECTION Studies reporting fatigue tasks (voluntary activation) performed at a relative intensity in both young (18-45 years of age) and old (≥ 55 years of age) adults who were healthy were considered. DATA EXTRACTION Sample size, mean and variance outcome data (ie, fatigue index or endurance time), joint, contraction type, task intensity (percentage of maximum), sex, and activity levels were extracted. DATA SYNTHESIS Effect sizes were (1) computed for all data points; (2) subgrouped by contraction type, sex, joint or muscle group, intensity, or activity level; and (3) further subgrouped between contraction type and the remaining moderators. Out of 3,457 potential studies, 46 publications (with 78 distinct effect size data points) met all inclusion criteria. LIMITATIONS A lack of available data limited subgroup analyses (ie, sex, intensity, joint), as did a disproportionate spread of data (most intensities ≥ 50% of maximum voluntary contraction). CONCLUSIONS Overall, older adults were able to sustain relative-intensity tasks significantly longer or with less force decay than younger adults (effect size=0.49). However, this age-related difference was present only for sustained and intermittent isometric contractions, whereas this age-related advantage was lost for dynamic tasks. When controlling for contraction type, the additional modifiers played minor roles. Identifying muscle endurance capabilities in the older adult may provide an avenue to improve functional capabilities, despite a clearly established decrement in peak torque.
Collapse
|
28
|
Christie A, Snook EM, Kent-Braun JA. Systematic review and meta-analysis of skeletal muscle fatigue in old age. Med Sci Sports Exerc 2011; 43:568-77. [PMID: 20881888 DOI: 10.1249/mss.0b013e3181f9b1c4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
UNLABELLED Despite intense interest in understanding how old age may alter skeletal muscle fatigability, a quantitative examination of the impact of study design on age-related differences in muscle fatigue does not exist. PURPOSE The purpose of this study was to conduct a systematic review of the differences in muscle fatigue between young and older adults, with specific examination of moderator variables suggested to contribute to discrepancies across studies: contraction intensity, contraction mode, duty cycle, fatigue index, sex, muscle group, and contraction type. METHODS The standardized effect of age on muscle fatigue was computed for 37 studies (60 standardized effects). Standardized effects were coded as positive when less fatigue was reported in older individuals compared with young individuals. RESULTS The overall standardized effect of age on muscle fatigue was positive (0.56). In studies using dynamic contractions or using muscle power as the index of fatigue, the standardized effect was negative (-0.12 and -2.5, respectively). The standardized effect for all other moderator categories was positive (range = 0.09-0.90), indicating less fatigue in older adults under all other methodological conditions. CONCLUSION This review provides the first quantitative analysis of the effect of study design on age-related differences in muscle fatigue. The results indicate that older individuals develop less muscle fatigue than young individuals, particularly during isometric contractions of the elbow flexor and knee extensor muscles. However, the results also suggest that older adults develop greater fatigue during dynamic contractions, particularly when the decline in power is assessed. Studies that verify this latter outcome are needed, as are studies designed to elucidate the mechanisms of fatigue.
Collapse
Affiliation(s)
- Anita Christie
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
29
|
Hunter GR, Bickel CS, Del Corral P, Byrne NM, Hills AP, Larson-Meyer DE, Bamman MM, Newcomer BR. Age, muscle fatigue, and walking endurance in pre-menopausal women. Eur J Appl Physiol 2011; 111:715-23. [PMID: 20972575 PMCID: PMC3217467 DOI: 10.1007/s00421-010-1694-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2010] [Indexed: 12/01/2022]
Abstract
Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by (31)P MRS). Age was related to increased walking economy (low VO(2), r = -0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (-0.26, P < 0.03). However, age was associated with reduced WE (-0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age -0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age -0.25, P < 0.02). Inclusion of VO(2max) and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.
Collapse
Affiliation(s)
- Gary R Hunter
- Department of Human Studies, University of Alabama at Birmingham, 901 South 13th Street, Birmingham, AL 35294-1250, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Matsuura C, Gomes PSC, Haykowsky M, Bhambhani Y. Cerebral and muscle oxygenation changes during static and dynamic knee extensions to voluntary fatigue in healthy men and women: a near infrared spectroscopy study. Clin Physiol Funct Imaging 2010; 31:114-23. [PMID: 21029329 DOI: 10.1111/j.1475-097x.2010.00986.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of the study was to examine the changes in cerebral and muscle blood volume (Cbv, Mbv) and oxygenation (Cox, Mox) during static and dynamic knee extensions to fatigue in men (N=10; 29±9 years) and women (N=14; 27±8 years). After assessment of 1 repetition maximum (1RM) during unilateral knee extensions with the dominant limb, each subject exercised at 50%, 75% and 100% of 1 RM in random order on separate occasions. Simultaneous changes in Cbv, Cox, Mbv and Mox from the contralateral prefrontal lobe and the dominant limb were measured by near infrared spectroscopy. During all three contractions, Cbv and Cox increased while Mbv and Mox decreased until fatigue in both genders. There were no signs of levelling off or decline in Cbv and Cox during any of these contractions, implying that there was no reduction in cerebral neuronal activation. Conversely, there was a rapid decline in Mbv and Mox during the early stages of the contractions, with a plateau or slight increase towards the end. The respective delta values at 50%, 75% and 100% of 1RM for Cbv (0·088 versus 0·062 versus 0·070), Cox (0·042 versus 0·033 versus 0·038), Mbv (-0·225 versus -0·198 versus -0·196), and Mox (-0·169 versus -0·146 versus -0·158) were not significantly different in the total group (N=24). These findings suggest that fatigue during resistance exercise lasting up to 60 s is mediated peripherally because of reduced blood volume and oxygen availability and is independent of the type and intensity of muscle contraction and gender.
Collapse
Affiliation(s)
- Cristiane Matsuura
- Escola de Educação Física do Exército, Exército Brasileiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
31
|
Alexander NB, Taffet GE, Horne FM, Eldadah BA, Ferrucci L, Nayfield S, Studenski S. Bedside-to-Bench conference: research agenda for idiopathic fatigue and aging. J Am Geriatr Soc 2010; 58:967-75. [PMID: 20722821 PMCID: PMC4540791 DOI: 10.1111/j.1532-5415.2010.02811.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The American Geriatrics Society, with support from the National Institute on Aging and the John A. Hartford Foundation, held its fifth Bedside-to-Bench research conference, "Idiopathic Fatigue and Aging," to provide participants with opportunities to learn about cutting-edge research developments, draft recommendations for future research, and network with colleagues and leaders in the field. Fatigue is a symptom that older persons, especially by those with chronic diseases, frequently experience. Definitions and prevalence of fatigue may vary across studies, across diseases, and even between investigators and patients. The focus of this review is on physical fatigue, recognizing that there are other related domains of fatigue (such as cognitive fatigue). Many definitions of fatigue involve a sensation of "low" energy, suggesting that fatigue could be a disorder of energy balance. Poor energy utilization efficiency has not been considered in previous studies but is likely to be one of the most important determinants of fatigue in older individuals. Relationships between activity level, capacity for activity, a tolerable rate of activity, and a tolerable fatigue threshold or ceiling underlie a notion of fatiguability. Mechanisms probably contributing to fatigue in older adults include decline in mitochondrial function, alterations in brain neurotransmitters, oxidative stress, and inflammation. The relationships between muscle function and fatigue are complex. A number of diseases (such as cancer) are known to cause fatigue and may serve as models for how underlying impaired physiological processes contribute to fatigue, particularly those in which energy utilization may be an important factor. A further understanding of fatigue will require two key strategies: to develop and refine fatigue definitions and measurement tools and to explore underlying mechanisms using animal and human models.
Collapse
Affiliation(s)
- Neil B Alexander
- Mobility Research Center, Geriatrics Center and Division of Geriatric Medicine, University of Michigan Hospitals and Veterans Affairs Ann Arbor Health Care System Geriatric Research Education and Clinical Center, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rawson ES. Enhanced fatigue resistance in older adults during repeated sets of intermittent contractions. J Strength Cond Res 2010; 24:251-6. [PMID: 19661832 DOI: 10.1519/jsc.0b013e3181a8f7cf] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reportedly, muscle fatigue in older individuals is greater, less than, or similar to young individuals, potentially because of differences in muscle groups studied, type of contraction, continuous vs. intermittent contractions, exercise duration, duty cycle, and contraction speed. During a single set of isokinetic mode knee extensions, muscle fatigue is similar between older and younger individuals. However, repeated sets may favor the more oxidative nature of muscle from older adults and may be necessary to reveal age-associated enhanced fatigue resistance. The purpose of this investigation was to compare muscular fatigue induced by repeated sets of intermittent isokinetic mode knee extensions in older and younger males. Nineteen older (mean +/- SD) (66 +/- 6 yr) and 16 younger (21 +/- 2 yr) men completed 5 sets of 30 isokinetic mode knee extensions at 180 degrees/second. In the analysis of absolute fatigue, both groups significantly decreased torque production during each set, with young men having significantly higher torque production during all 5 sets. Relative fatigue was significantly greater in young participants during sets 2 through 5 (old vs. young: set 2: 17.1 vs. 26.6%; set 3: 25.5 vs. 39.7%; set 4: 28.1 vs. 45.1%; set 5: 29.3 vs. 46.4%; overall relative fatigue: old 22.2%; young 38.1%). These data indicate enhanced fatigue resistance in older men, which was revealed using repeated sets of intermittent contractions. Resistance to muscle fatigue is only one component of healthy aging muscle, and perhaps exercise interventions targeted toward prevention of falls in the elderly should focus on improved muscle power rather than fatigability/sustainability of contractions.
Collapse
Affiliation(s)
- Eric S Rawson
- Department of Exercise Science, Bloomsburg University, Bloomsburg, Pennsylvania, USA.
| |
Collapse
|
33
|
Abstract
Women can be less fatigable than men because of sex-related differences within the neuromuscular system that impact physiological adjustments during a fatiguing task. However, the involved mechanism(s) for the sex difference is task specific. This review explores the novel hypothesis that variation of the task will alter the magnitude of the sex-difference in muscle fatigue and the contribution of involved mechanisms.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA.
| |
Collapse
|
34
|
Dipla K, Tsirini T, Zafeiridis A, Manou V, Dalamitros A, Kellis E, Kellis S. Fatigue resistance during high-intensity intermittent exercise from childhood to adulthood in males and females. Eur J Appl Physiol 2009; 106:645-53. [PMID: 19404672 DOI: 10.1007/s00421-009-1058-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2009] [Indexed: 02/01/2023]
Abstract
This study examined the maturation pattern of fatigue resistance (FR) from childhood to adulthood in females and males during high-intensity intermittent exercise and compared FR between females and males in childhood and adolescence. Thirty males (boys 11.3 +/- 0.5 years, teen-males 14.7 +/- 0.3 years, men 24.0 +/- 2.1 years) and 30 females (girls 10.9 +/- 0.6 years, teen-females 14.4 +/- 0.7 years, women 25.2 +/- 1.4) participated in this study. They performed high-intensity intermittent exercise (4 x 18 maximal knee flexions and extensions with 1-min rest) on an isokinetic dynamometer at 120 degrees s(-1). Peak torque of flexors (PTFL) and extensors (PTEX), and total work (TW) were measured. FR was calculated as % of PTEX, PTFL, and TW in 4th versus 1st set. FR was greater (P < 0.05) in boys versus teen-males and men, and in teen-males versus men. In females, FR was greater (P < 0.05) in girls versus teen-females and women, but not different between teen-females and women. FR was not different in boys versus girls and in teen-males versus teen-females. FR for PTFL, PTEX, and TW correlated negatively (P < 0.001) with the respective peak values (r = -0.68 to -0.84), and FR for TW with peak lactate (r = -0.58 to -0.69). In addition, age correlated (P < 0.01) with FR for males (r = -0.75) and females (r = -0.55). In conclusion, FR during high-intensity intermittent exercise undergoes a gradual decline from childhood to adulthood in males, while in females the adult profile establishes at mid-puberty (14-15 years). The maturation profile of FR in males and females during development appears to reflect the maturation profiles of peak torque, short-term muscle power, and lactate concentration after exercise.
Collapse
Affiliation(s)
- Konstantina Dipla
- Department of Physical Education & Sport Sciences at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62110 Serres, Greece
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The results of recent studies indicate that in healthy men and women aged beyond approximately 65 years, the energy-producing pathways in skeletal muscle may combine with changes in motor unit behavior and muscle contractile properties to provide a unique environment for resisting muscle fatigue under some conditions.
Collapse
Affiliation(s)
- Jane A Kent-Braun
- Muscle Physiology Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|