1
|
Peeters WM, Barrett M, Podlogar T. What is a cycling race simulation anyway: a review on protocols to assess durability in cycling. Eur J Appl Physiol 2025:10.1007/s00421-025-05725-1. [PMID: 39953333 DOI: 10.1007/s00421-025-05725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
Physiological resilience or durability is now recognised as a determinant of endurance performance such as road cycling. Reliable, ecologically valid and standardised performance tests in laboratory-based cycling protocols have to be established to investigate mechanisms underpinning, and interventions improving durability. This review aims to provide an overview of available race simulation protocols in the literature and examines its rigour around themes that influence durability including (i) exercise intensity anchoring and (ii) carbohydrate intake whilst also (iii) inspecting reliability and justification of the developed protocols. Using a systematic search approach, 48 articles were identified that met our criteria as a cycling race simulation. Most protocols presented limitations to be recommended as exercise test to investigate durability, such as not appropriately addressing the influence of exercise intensity domains by anchoring exercise intensity as % peak power or % V ˙ O2max. Ten articles provided reliability data, but only one articles under the appropriate conditions. Most studies sufficiently controlled nutrition during trials but not in the days leading to the trials or just before the trials. Thus, there is a paucity in protocols that combine justification and reliability with optimal nutritional support and mimic the true demands of a road-cycling race. This review lists an overview of protocols that researchers could use with caution to select a protocol for future experiments, but encourages further development of improved protocols, including utilisation of virtual software applications.
Collapse
Affiliation(s)
- W M Peeters
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK.
| | - M Barrett
- School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle-Upon-Tyne, UK
| | - T Podlogar
- Department of Public Health and Sport Sciences, University of Exeter Medical School, St Luke's Campus, Exeter, UK
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
2
|
Schamne JC, DE Souza Dos Santos P, Cavalcante VHV, Gonçalves F, Bertuzzi R, Pereira G, Dos Santos Paiva E, Okuno NM, Lima-Silva AE. Caffeine Attenuates Exacerbated Central Fatigue during Moderate-Intensity Cycling Exercise in Women with Fibromyalgia. Med Sci Sports Exerc 2024; 56:1782-1794. [PMID: 38768034 DOI: 10.1249/mss.0000000000003466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE To compare the development of fatigability during a moderate-intensity cycling exercise between women with fibromyalgia (FM) and control women (CON) after acute ingestion of caffeine and placebo. METHODS Ten FM and 10 CON women performed a 30-min moderate-intensity cycling exercise 1 h after the ingestion of a capsule containing either caffeine or a placebo. Fatigability and its central and peripheral determinants were determined via changes from pre- to post-15 and post-30 min of exercise in maximal voluntary isometric contractions, voluntary activation (VA), and quadriceps potentiated twitch torque ( Qtw-pot ), respectively. Heart rate, muscle oxygen saturation, perceptive responses, mood state, localized and widespread pain, and sleepiness were also monitored during and after exercise. RESULTS There was a time versus group interaction for maximal voluntary isometric contraction and VA ( P < 0.001) but not for Qtw-pot ( P = 0.363), indicating a greater rate of fatigability development, mainly caused by central mechanisms, in the FM than in the CON group. There was also a main effect of condition for VA ( P = 0.011), indicating that caffeine attenuates central mechanisms of fatigability in both groups. Caffeine ingestion also increased muscle oxygenation, perceived vigor, and energy, and decreased leg muscle pain, sleepiness, and perceived fatigue in both groups. However, caffeine improved perceived pleasure/displeasure and exercise adherence likelihood only in the FM group. CONCLUSIONS Compared with CON, women with FM present a greater rate of fatigability during exercise, mainly of central origin. Caffeine seems to be a promising bioactive to counteract the central mechanisms of fatigability and improve the exercise experience among FM women.
Collapse
Affiliation(s)
| | | | | | - Felippi Gonçalves
- Human Performance Research Group, Federal University of Technology-Parana (UTFPR), Curitiba, PR, BRAZIL
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport, University of São Paulo, São Paulo, SP, BRAZIL
| | - Gleber Pereira
- Department of Physical Education, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Eduardo Dos Santos Paiva
- Rheumatology, Internal Medicine Department, Federal University of Parana (UFPR), Curitiba, PR, BRAZIL
| | - Nilo Massaru Okuno
- Physical Education Department, State University of Ponta Grossa (UEPG), Ponta Grossa, PR, BRAZIL
| | | |
Collapse
|
3
|
Kamiue M, Tsubahara A, Ito T, Koike Y. Measurement of Knee Extensor Torque During Repetitive Peripheral Magnetic Stimulation: Comparison of the Forces Induced by Different Stimulators. Ann Rehabil Med 2024; 48:203-210. [PMID: 38714208 PMCID: PMC11217762 DOI: 10.5535/arm.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 04/11/2024] [Indexed: 05/09/2024] Open
Abstract
OBJECTIVE To investigate the factors that induce strong contractions during repetitive peripheral magnetic stimulation (rPMS) and compare the muscle torque induced by two stimulators (Stim A and Stim B) with different coil properties. METHODS rPMS was applied to the right vastus lateralis of 30 healthy young adults. Stim A contained a 10.1 cm2 rectangular iron core coil, while Stim B contained a 191 cm2 round coil. The knee extensor torque (KET) induced by rPMS at 30 Hz was measured isometrically and divided by the maximum voluntary contraction (MVC) to obtain a relative value of MVC (%MVC). KET at 100% intensity of Stim A (A100%, 1.08 T) was compared to those at 100% or 70% intensity of Stim B (B100%, 1.47 T vs. B70%, 1.07 T). Additionally, we conducted a comprehensive literature search for studies that measured the KET during rPMS. RESULTS Both the mean values of %MVC using B100% and B70% were significantly greater than that using A100%. Furthermore, the KET induced by Stim B was found to be larger than that described in previous reports, unless booster units were used to directly stimulate the main trunk of the femoral nerve. CONCLUSION Stim B induced a stronger muscle contraction force than Stim A did. This may be because the larger the coil area, the wider the area that can be stimulated. Additionally, a circular coil allows for deeper stimulation.
Collapse
Affiliation(s)
- Masanori Kamiue
- Doctoral Program in Rehabilitation, Graduate School of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Akio Tsubahara
- Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Tomotaka Ito
- Department of Physical Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Yasuhiro Koike
- Department of Occupational Therapy, Faculty of Rehabilitation, Kawasaki University of Medical Welfare, Kurashiki, Japan
| |
Collapse
|
4
|
Neuromuscular Fatigue Responses of Endurance- and Strength-Trained Athletes during Incremental Cycling Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148839. [PMID: 35886690 PMCID: PMC9319915 DOI: 10.3390/ijerph19148839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023]
Abstract
This study explored the development of neuromuscular fatigue responses during progressive cycling exercise. The sample comprised 32 participants aged 22.0 ± 0.54 years who were assigned into three groups: endurance-trained group (END, triathletes, n = 10), strength-trained group (STR, bodybuilders, n = 10) and control group (CG, recreationally active students, n = 12). The incremental cycling exercise was performed using a progressive protocol starting with a 3 min resting measurement and then 50 W workload with subsequent constant increments of 50 W every 3 min until 200 W. Surface electromyography (SEMG) of rectus femoris muscles was recorded during the final 30 s of each of the four workloads. During the final 15 s of each workload, participants rated their overall perception of effort using the 20-point rating of the perceived exertion (RPE) scale. Post hoc Tukey’s HSD testing showed significant differences between the END and STR groups in median frequency and mean power frequency across all workloads (p < 0.001 and p < 0.01, respectively). Athletes from the END group had significantly lower electromyogram amplitude responses than those from the STR (p = 0.0093) and CG groups (p = 0.0006). Increasing RPE points from 50 to 200 W were significantly higher in the STR than in the END group (p < 0.001). In conclusion, there is a significant variation in the neuromuscular fatigue profiles between athletes with different training backgrounds when a cycling exercise is applied. The approximately linear trends of the SEMG and RPE values of both groups of athletes with increasing workload support the increased skeletal muscle recruitment with perceived exertion or fatiguing effect.
Collapse
|
5
|
Takahashi R, Fujita K, Kobayashi Y, Ogawa T, Teranishi M, Kawamura M. Effect of muscle fatigue on brain activity in healthy individuals. Brain Res 2021; 1764:147469. [PMID: 33838129 DOI: 10.1016/j.brainres.2021.147469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 11/20/2022]
Abstract
Fatigue is affected by both peripheral and central factors. However, the interrelationship between muscle fatigue and brain activity has not yet been clarified. This study aimed to clarify the effect of muscle fatigue due to sustained pinch movement on brain activity in healthy individuals using functional near-infrared spectroscopy (fNIRS). Ten healthy adults participated in the study. Pinch movement of isometric contraction was the task to be performed, and electromyogram of the first dorsal interosseous muscle and brain activity by fNIRS were measured in this period. The median power frequency (MdPF) was calculated as an index of muscle fatigue and the oxygen-Hb value in the bilateral premotor and motor areas was calculated as an index of brain activity. As a result, MdPF showed a significant decrease in the middle and later phases compared with that in the early phase (p < 0.05, p < 0.001, respectively) and a significant decrease in the later phase compared with that in the middle phase (p < 0.05). The oxygen-Hb values in the motor cortex were not significantly different between the analysis sections. The oxygen-Hb values in the premotor cortex was significantly increased in the later phase (p < 0.05) compared with that in the early phase. The premotor cortex was found to be specifically activated during muscle fatigue.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan.
| | - Kazuki Fujita
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui-city, Fukui, Japan
| | - Yasutaka Kobayashi
- Department of Rehabilitation, Faculty of Health Science, Fukui Health Science University, Fukui-city, Fukui, Japan
| | - Tomoki Ogawa
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan
| | - Masanobu Teranishi
- Department of Physical Therapy Rehabilitation, Fukui General Hospital, Fukui-city, Fukui, Japan
| | - Mimpei Kawamura
- Department of Medical and Social, Faculty of Health Science, Kyoto Koka Women's University, Japan
| |
Collapse
|
6
|
Fukunaga T, Johnson CD, Nicholas SJ, McHugh MP. Muscle hypotrophy, not inhibition, is responsible for quadriceps weakness during rehabilitation after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2019; 27:573-579. [PMID: 30269167 DOI: 10.1007/s00167-018-5166-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/25/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE Quadriceps weakness is common after anterior cruciate ligament reconstruction (ACLR). Limited neuromuscular activation may have a role in the weakness. The purpose of this study was to use peripheral magnetic stimulation to measure changes in quadriceps inhibition in patients during rehabilitation from ACLR. METHODS Ten patients (7M/3F; age 35 ± 8 years; BMI 26.0 ± 4.8 kg/m2) who had ACLR with patellar tendon autograft were recruited. At 3 and 6 months postoperatively, patients' knee extension peak torque was measured during maximum voluntary isometric contraction (MVIC), magnetic stimulation-evoked contraction, and MVIC augmented with superimposed burst magnetic stimulation to the femoral nerve. All tests were done bilaterally at 30° and 65° of knee flexion on a dynamometer. Central activation ratio was calculated by dividing the peak torque before stimulation by peak torque after stimulation. RESULTS Patients had marked deficits in MVIC, with improvement from 3 to 6 months that was more apparent at 65° versus 30° (P < 0.05). There was significant deficit in stimulation-evoked torque on the involved side that diminished over time, and this change occurred differently between the two angles (P < 0.05). Central activation ratio was lower on the involved side versus the noninvolved side and this effect was more prominent at 3 versus 6 months: combining the angles, mean central activation ratio on the involved and noninvolved sides, respectively, was 91.4 ± 7.6% and 97.5 ± 5.3% at 3 months, and 93.0 ± 7.8% and 95.8 ± 6.8% at 6 months. CONCLUSIONS At 3 and 6 months after ACLR, there were significant deficits in quadriceps strength and activation. Quadriceps activation levels were high (> 90%) for both sides at both time points. The substantial strength deficits at this postoperative period may be largely due to muscle atrophy with limited contribution from central inhibition. Rehabilitation interventions to normalize quadriceps strength should emphasize hypertrophic stimuli as opposed to neuromuscular activation strategies. LEVEL OF EVIDENCE II, prospective cohort study.
Collapse
Affiliation(s)
- Takumi Fukunaga
- Nicholas Institute of Sports Medicine and Athletic Trauma, Manhattan Eye, Ear, and Throat Hospital, 210 East 64th Sreet, New York, NY, 10065, USA.
| | - Christopher D Johnson
- Nicholas Institute of Sports Medicine and Athletic Trauma, Manhattan Eye, Ear, and Throat Hospital, 210 East 64th Sreet, New York, NY, 10065, USA
| | - Stephen J Nicholas
- Nicholas Institute of Sports Medicine and Athletic Trauma, Manhattan Eye, Ear, and Throat Hospital, 210 East 64th Sreet, New York, NY, 10065, USA
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Manhattan Eye, Ear, and Throat Hospital, 210 East 64th Sreet, New York, NY, 10065, USA
| |
Collapse
|
7
|
Karasiak FC, Guglielmo LGA. Effects of Exercise-Induced Muscle Damage in Well-Trained Cyclists' Aerobic and Anaerobic Performances. J Strength Cond Res 2018; 32:2623-2631. [PMID: 30134381 DOI: 10.1519/jsc.0000000000002522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Karasiak, FC and Guglielmo, LGA. Effects of exercise-induced muscle damage in well-trained cyclists' aerobic and anaerobic performances. J Strength Cond Res 32(9): 2632-2640, 2018-The purpose of this study was to analyze the effect of exercise-induced muscle damage (EIMD) in gross efficiency and in aerobic and anaerobic cycling performances. Nine well-trained cyclists (30.8 ± 6.4 years, cycling experience 8.4 ± 5.6 years) visited the laboratory 5 times. During the first visit, they performed a maximal incremental test on a cycle ergometer, to identify V[Combining Dot Above]O2max (55.2 ± 4.9 ml·kg·min) and maximum aerobic power (Pmax; 327.0 ± 28.5 W). During the second visit (control), they cycled 5 minutes at 60% of Pmax, 5 minutes at 70% of Pmax, 5-minute time trial, and Wingate test. During the third visit, the athletes performed 10 sets of 10 countermovement jumps, to generate EIMD. The athletes repeated the second visit tests (control) 30 minutes, 48 hours (fourth visit), and 96 hours (fifth visit) after the jumps. The rated perceived exertion values increased 48 hours after EIMD (3.8 vs. 3.1) at 60% of Pmax. The ventilation and respiratory exchange ratio increased at 60% of Pmax (up to 4.3 L·min and 0.04, respectively) and at 70% of Pmax (up to 5.4 L·min and 0.05, respectively), mainly after 96 hours. There was no significant difference in V[Combining Dot Above]O2, V[Combining Dot Above]CO2, and heart rate in submaximal exercises, neither in time trial. No differences were observed in the Wingate tests. In conclusion, the EIMD did not impair gross efficiency, nor aerobic and anaerobic performances in trained cyclists. However, despite the benefits of strength training to improve cyclists' performance, coaches must be cautious to the days after the strength training sessions because EIMD may change the perception of maintaining a given submaximal intensity during training or competition.
Collapse
Affiliation(s)
- Fábio C Karasiak
- Physical Effort Laboratory, Santa Catarina Federal University, Rector João David Ferreira Lima Campus, Sports Center, Trindade, Florianopolis, Brazil
| | | |
Collapse
|
8
|
Glace BW, Kremenic IJ, McHugh MP. Effect of carbohydrate beverage ingestion on central versus peripheral fatigue: a placebo-controlled, randomized trial in cyclists. Appl Physiol Nutr Metab 2018; 44:139-147. [PMID: 30058344 DOI: 10.1139/apnm-2017-0777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated whether carbohydrate ingestion delays fatigue in endurance-trained cyclists via peripheral or central mechanisms. Ten men (35 ± 9 years of age) and 10 women (42 ± 7 years of age) were assigned, in a double-blind, crossover design, to a sports drink (CHO) or to a placebo (PL). The following strength measures were made 3 times (before exercise, after a time trial (TT), and after a ride to exhaustion): (i) maximal voluntary contraction (MVC); (ii) MVC with superimposed femoral nerve magnetic stimulation to measure central activation ratio (CAR); and (iii) femoral nerve stimulation in a 3-s pulse train on relaxed muscle. The subjects cycled for 2 h at approximately 65% of peak oxygen consumption, with five 1-min sprints interspersed, followed by a 3-km TT. After strength testing, the cyclists remounted their bikes, performed a brief warm-up, and pedaled at approximately 85% peak oxygen consumption until unable to maintain workload. Changes in metabolic and strength measurements were analyzed with repeated-measures ANOVA. From before exercise to after the TT, MVC declined in men (17%) and women (18%) (p = 0.004), with no effect of beverage (p > 0.193); CAR decreased in both sexes with PL (p = 0.009), and the decline was attenuated by CHO in men only (time × treatment, p = 0.022); and there was no evidence of peripheral fatigue in either sex with either beverage (p > 0.122). Men rode faster in the TT with CHO (p = 0.005) but did not improve performance in the ride to exhaustion (p = 0.080). In women, CHO did not improve performance in the TT (p = 0.173) or in the ride to exhaustion (p = 0.930). We concluded that carbohydrate ingestion preserved central activation and performance in men, but not in women, during long-duration cycling.
Collapse
Affiliation(s)
- Beth W Glace
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| | - Ian J Kremenic
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| | - Malachy P McHugh
- Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA.,Nicholas Institute of Sports Medicine and Athletic Trauma, Lenox Hill Hospital, New York, NY 10065, USA
| |
Collapse
|
9
|
Neyroud D, Temesi J, Millet GY, Verges S, Maffiuletti NA, Kayser B, Place N. Comparison of electrical nerve stimulation, electrical muscle stimulation and magnetic nerve stimulation to assess the neuromuscular function of the plantar flexor muscles. Eur J Appl Physiol 2015; 115:1429-39. [DOI: 10.1007/s00421-015-3124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/03/2015] [Indexed: 01/15/2023]
|
10
|
Chiou SY, Wang RY, Liao KK, Yang YR. Homologous muscle contraction during unilateral movement does not show a dominant effect on leg representation of the ipsilateral primary motor cortex. PLoS One 2013; 8:e72231. [PMID: 23991067 PMCID: PMC3749103 DOI: 10.1371/journal.pone.0072231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/08/2013] [Indexed: 12/04/2022] Open
Abstract
Co-activation of homo- and heterotopic representations in the primary motor cortex (M1) ipsilateral to a unilateral motor task has been observed in neuroimaging studies. Further analysis showed that the ipsilateral M1 is involved in motor execution along with the contralateral M1 in humans. Additionally, transcranial magnetic stimulation (TMS) studies have revealed that the size of the co-activation in the ipsilateral M1 has a muscle-dominant effect in the upper limbs, with a prominent decline of inhibition within the ipsilateral M1 occurring when a homologous muscle contracts. However, the homologous muscle-dominant effect in the ipsilateral M1 is less clear in the lower limbs. The present study investigates the response of corticospinal output and intracortical inhibition in the leg representation of the ipsilateral M1 during a unilateral motor task, with homo- or heterogeneous muscles. We assessed functional changes within the ipsilateral M1 and in corticospinal outputs associated with different contracting muscles in 15 right-handed healthy subjects. Motor tasks were performed with the right-side limb, including movements of the upper and lower limbs. TMS paradigms were measured, consisting of short-interval intracortical inhibition (SICI) and recruitment curves (RCs) of motor evoked potentials (MEPs) in the right M1, and responses were recorded from the left rectus femoris (RF) and left tibialis anterior (TA) muscles. TMS results showed that significant declines in SICI and prominent increases in MEPs of the left TA and left RF during unilateral movements. Cortical activations were associated with the muscles contracting during the movements. The present data demonstrate that activation of the ipsilateral M1 on leg representation could be increased during unilateral movement. However, no homologous muscle-dominant effect was evident in the leg muscles. The results may reflect that functional coupling of bilateral leg muscles is a reciprocal movement.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Ray-Yau Wang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Kwong-Kum Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yea-Ru Yang
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
- Taipei City Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
11
|
KLASS MALGORZATA, ROELANDS BART, LÉVÉNEZ MORGAN, FONTENELLE VINCIANE, PATTYN NATHALIE, MEEUSEN ROMAIN, DUCHATEAU JACQUES. Effects of Noradrenaline and Dopamine on Supraspinal Fatigue in Well-Trained Men. Med Sci Sports Exerc 2012; 44:2299-308. [DOI: 10.1249/mss.0b013e318265f356] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Glace BW, Kremenic IJ, McHugh MP. Sex differences in central and peripheral mechanisms of fatigue in cyclists. Eur J Appl Physiol 2012; 113:1091-8. [DOI: 10.1007/s00421-012-2516-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/27/2012] [Indexed: 02/03/2023]
|
13
|
Evaluation of the numeric rating scale for perception of effort during isometric elbow flexion exercise. Eur J Appl Physiol 2011; 112:1167-75. [PMID: 21769733 DOI: 10.1007/s00421-011-2074-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 07/04/2011] [Indexed: 11/27/2022]
Abstract
The aim of the study was to examine the reliability and validity of the numerical rating scale (0-10 NRS) for rating perception of effort during isometric elbow flexion in healthy people. 33 individuals (32 ± 8 years) participated in the study. Three re-test measurements within one session and three weekly sessions were undertaken to determine the reliability of the scale. The sensitivity of the scale following 10 min isometric fatiguing exercise of the elbow flexors as well as the correlation of the effort with the electromyographic (EMG) activity of the flexor muscles were tested. Perception of effort was tested during isometric elbow flexion at 10, 30, 50, 70, 90, and 100% MVC. The 0-10 NRS demonstrated an excellent test-retest reliability [intra class correlation (ICC) = 0.99 between measurements taken within a session and 0.96 between 3 consecutive weekly sessions]. Exploratory curve fitting for the relationship between effort ratings and voluntary force, and underlying EMG showed that both are best described by power functions (y = ax ( b )). There were also strong correlations (range 0.89-0.95) between effort ratings and EMG recordings of all flexor muscles supporting the concurrent criterion validity of the measure. The 0-10 NRS was sensitive enough to detect changes in the perceived effort following fatigue and significantly increased at the level of voluntary contraction used in its assessment (p < 0.001). These findings suggest the 0-10 NRS is a valid and reliable scale for rating perception of effort in healthy individuals. Future research should seek to establish the validity of the 0-10 NRS in clinical settings.
Collapse
|
14
|
Tomazin K, Verges S, Decorte N, Oulerich A, Maffiuletti NA, Millet GY. Fat tissue alters quadriceps response to femoral nerve magnetic stimulation. Clin Neurophysiol 2011; 122:842-7. [DOI: 10.1016/j.clinph.2010.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
|
15
|
Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S. Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 2010; 22:381-91. [PMID: 20807390 DOI: 10.1111/j.1600-0838.2010.01167.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of central and peripheral fatigue development during an intensive constant-load cycling exercise was evaluated to better understand the mechanisms of task failure. Thirteen males cycled to exhaustion at 80% of maximal power output in intermittent bouts of 6 min of exercise with 4-min break between bouts to assess quadriceps fatigue with maximal voluntary contractions and single (1 Hz), paired (10 and 100 Hz) potentiated and interpolated magnetic stimulations of the femoral nerve (TwQ). Surface electromyographic signals (EMG) of the quadriceps muscles were recorded during stimulations and cycling. Total cycling duration (TCD) was 27 min 38 s±7 min 48 s. The mechanical response evoked by magnetic stimulation decreased mostly during the first half of TCD (TwQ1 Hz reduction: -34.4±12.2% at 40% TCD and -44.8±9.2% at exhaustion; P<0.001), while a reduction in maximum voluntary activation was present toward the end of exercise only (-5.4±4.8% and -6.4±5.6% at 80% TCD and exhaustion, respectively; P<0.01). The increase in quadriceps EMG during cycling was significantly correlated to the TwQ reduction for the rectus femoris (r(2) =0.20 at 1 Hz, r(2) =0.47 at 100 Hz, all P≤0.001). We conclude that peripheral fatigue develops early during constant-load intense cycling and is compensated by additional motor drive, while central fatigue appears to be associated with task failure.
Collapse
Affiliation(s)
- N Decorte
- Exercise Research Unit, University Hospital and HP2 Laboratory, Joseph Fourier University, Grenoble, France
| | | | | | | | | |
Collapse
|
16
|
Tomazin K, Verges S, Decorte N, Oulerich A, Millet GY. Effects of coil characteristics for femoral nerve magnetic stimulation. Muscle Nerve 2010; 41:406-9. [DOI: 10.1002/mus.21566] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|